Please use this identifier to cite or link to this item:
標題: 黑點青鱂魚(Oryzias dancena)之排氯機制:鰓蓋膜上富含粒線體細胞之研究及鰓上氯離子通道之分子表現
The chloride secretory mechanisms of the brackish medaka, Oryzias dancena: studies on the mitochondrion-rich cells of the opercular membrane and molecular expression of branchial chloride channel (cystic fibrosis transmembrane conductance regulator)
作者: 林上濤
Lin, Shang-Tao
關鍵字: Euryhaline teleost
Salinity tolerance
出版社: 生命科學系所
引用: Blanco, G., Mercer, R.W., 1998. Isozymes of the Na+-K+-ATPase: heterogeneity in structure, diversity in function. Am. J. Physiol. 275, F633-650. Bodinier, C., Boulo, V., Lorin-Nebel, C., Charmantier, G., 2008. Influence of salinity on the localization and expression of the CFTR chloride channel in the ionocytes of the European sea-bass Dicentrarchus labrax during ontogeny. FASEB J. 22, 932-933. Burns, J., Copeland, D.E., 1950. Chloride Excretion in the Head Region of Fundulus heteroclitus. Biol. Bull. Vol. 99, No. 3 (Dec., 1950), pp. 381-385 Degnan, K.J., Karnaky, K.J., Zadunaisky, J.A., 1977. Active chloride transport in the in vitro opercular skin of a teleost (Fundulus heteroclitus), a gill-like epithelium rich in chloride cells. J. Physiol. 271, 155-191. Evans, D.H., Piermarini, P.M., Choe, K.P., 2005. The Multifunctional Fish Gill: Dominant Site of Gas Exchange, Osmoregulation, Acid-Base Regulation, and Excretion of Nitrogenous Waste. Physiol. Rev. 85, 97-177. Foskett, J.K., Logsdon, C.D., Turner, T., Machen, T.E., Bern, H.A., 1981. Differentiation of the Chloride Extrusion Mechanism During Seawater Adaptation of a Teleost Fish, The Cichlid Sarotherodon Mossambicus. J Exp Biol 93, 209-224. Gamba, G., Bobadilla, N., 2005. Molecular Physiology of the Renal Na+-Cl− and Na+-K+-2Cl− Cotransporters. In: Cell Volume and Signaling, pp.55-65559. Haas, M., Forbush Iii, B., 2000. The Na+-K+-Cl- Cotransporter of Secretory Epithelia. Annu. Rev. Physiol. 62, 515-534. Haruta, K., Yamashita, T., Kawashima, S., 1991. Changes in arginine vasotocin content in the pituitary of the medaka (Oryzia latipes) during osmotic stress. Gen. Comp. Endocrinol. 83, 327-336. Hebert, S.C., Mount, D.B., Gamba, G.,, 2004. Molecular physiology of cation-coupled Cl- cotransport: the SLC12 family Pflugers Arch. 447, 580-593. Hiroi, J., Yasumasu, S., McCormick, S.D., Hwang, P.-P., Kaneko, T., 2008. Evidence for an apical Na-Cl cotransporter involved in ion uptake in a teleost fish. J Exp Biol 211, 2584-2599. Hirose, S., Kaneko, T., Naito, N., Takei, Y., 2003. Molecular biology of major components of chloride cells. Comp. Biochem and Physiol. A 136, 593-620. Hoffmann, E.K., Dunham, P.B., Kwang, W.J., Jonathan, J., 1995. Membrane Mechanisms and Intracellular Signalling in Cell Volume Regulation. In: Int. Rev. Cytol., vol. 161. Academic Press, pp. 173-262 Hwang, P.P., Lee, T.H., 2007. New insights into fish ion regulation and mitochondrion-rich cells. Comp. Biochem and Physiol. A 148, 479-497. Inokuchi, M., Hiroi, J., Watanabe, S., Lee, K.M., Kaneko, T., 2008. Gene expression and morphological localization of NHE3, NCC and NKCC1a in branchial mitochondria-rich cells of Mozambique tilapia (Oreochromis mossambicus) acclimated to a wide range of salinities. Comp. Biochem and Physiol. A 151, 151-158. Kaneko, T., Soichi Watanabe, a.K.M.L., 2008. Functional Morphology of Mitochondrion-Rich Cells in Euryhaline and Stenohaline Teleosts. Aqua. BioSci. Monogr. 1, 1-62. Kang, C.K., Tsai, H.J., Liu, C.C., Lee, T.H., Hwang, P.P., 2010. Salinity-dependent expression of a Na+, K+, 2Cl- cotransporter in gills of the brackish medaka Oryzias dancena: A molecular correlate for hyposmoregulatory endurance. Comp. Biochem and Physiol. A 157, 7-18. Kang, C.K., Tsai, S.C., Lee, T.H., Hwang, P.P., 2008. Differential expression of branchial Na+/K+-ATPase of two medaka species, Oryzias latipes and Oryzias dancena, with different salinity tolerances acclimated to fresh water, brackish water and seawater. Comp. Biochem and Physiol. A 151, 566-575. Karnaky, K.J., Ernst, S.A., Philpott, C.W., 1976. Teleost chloride cell. I. Response of pupfish Cyprinodon variegatus gill Na+,K+-ATPase and chloride cell fine structure to various high salinity environments. J. Cell Biol. 70, 144-156. Karnaky, K.J., Kinter, L.B., Kinter, W.B., Stirling, C.E., 1976. Teleost chloride cell. II. Autoradiographic localization of gill Na,K-ATPase in killifish Fundulus heteroclitus adapted to low and high salinity environments. J. Cell Biol. 70, 157-177. Katoh, F., Kaneko, T., 2003. Short-term transformation and long-term replacement of branchial chloride cells in killifish transferred from seawater to freshwater, revealed by morphofunctional observations and a newly established `time-differential double fluorescent staining'' technique. J Exp Biol 206, 4113-4123. Katsuhisa, U., Toyoji, K., Kohei, Y., Tetsuya, H., 1996. Morphometrical analysis chloride cell activity in the gill filaments and lamellae and changes in Na+, K+-ATPase activity during seawater adaptation in chum salmon fry. J. Exp. Zool. 276, 193-200. Kregenow, 1981. Osmoregulatory salt transporting mechanisms: control of cell volume in anisotonic media. Annu. Rev. Physiol. 1981;43:493-505. Lee, T. H., Feng, S. H., Lin, C. H., Hwang, Y. H., Huang, C. L., Hwang, P. P., 2009. Ambient Salinity Modulates the Expression of Sodium Pumps in Branchial Mitochondria-Rich Cells of Mozambique Tilapia, Oreochromis mossambicus. Zool. Sci. 20, 29-36. Lin, C.H., Huang, C.L., Yang, C.H., Lee, T.H., Hwang, P.P., 2004. Time-course changes in the expression of Na+, K+-ATPase and the morphometry of mitochondrion-rich cells in gills of euryhaline tilapia (Oreochromis mossambicus) during freshwater acclimation. J. Exp. Zool. A 301A, 85-96. Lin, Y.M., Chen, C.N., Lee, T.H., 2003. The expression of gill Na, K-ATPase in milkfish, Chanos chanos, acclimated to seawater, brackish water and fresh water. Comp. Biochem and Physiol. A 135, 489-497. Lorin-Nebel, C., Boulo, V., Bodinier, C., Charmantier, G., 2006. The Na+/K+/2Cl- cotransporter in the sea bass Dicentrarchus labrax during ontogeny: involvement in osmoregulation. J Exp Biol 209, 4908-4922. Marshall, W.S., Chris, M.W., Trevor, J.S., 1995. 1 Transport Processes in Isolated Teleost Epithelia: Opercular Epithelium and Urinary Bladder. In: Fish Physiology, vol. 14. Academic Press, pp. 1-23 Marshall, W.S., Lynch, E.M., Cozzi, R.R.F., 2002. Redistribution of immunofluorescence of CFTR anion channel and NKCC cotransporter in chloride cells during adaptation of the killifish Fundulus heteroclitus to sea water. J Exp Biol 205, 1265-1273. Marshall, W.S., Singer, T.D., 2002. Cystic fibrosis transmembrane conductance regulator in teleost fish. Biochim. Biophys. Acta 1566, 16-27. McCormick, S.D., Sundell, K., Bjornsson, B.T., Brown, C.L., Hiroi, J., 2003. Influence of salinity on the localization of Na+/K+-ATPase, Na+/K+/2Cl- cotransporter (NKCC) and CFTR anion channel in chloride cells of the Hawaiian goby (Stenogobius hawaiiensis). J Exp Biol 206, 4575-4583. Payne, J.A., Xu, J.-C., Haas, M., Lytle, C.Y., Ward, D., Forbush, B., 1995. Primary Structure, Functional Expression, and Chromosomal Localization of the Bumetanide-sensitive Na+-K+-Cl- Cotransporter in Human Colon. J. Biol. Chem. 270, 17977-17985. Pierre, L., Perry, S.F., 1990. Effects of cortisol on gill chloride cell morphology and ionic uptake in the freshwater trout,Salmo gairdneri. Cell Tissue Res. 429-442. Riordan, J.R., Forbush, B., Hanrahan, J.W., 1994. The molecular basis of chloride transport in shark rectal gland. J Exp Biol 196, 405-418. Roberts, D.J., Ellis, L.A., 1998. Determination of copper, cadmium, manganese and lead in saline water with flow injection and atom trapping atomic absorption spectrometry. J. Anal. Atom. Spec. Russell, J.M., 2000. Sodium-Potassium-Chloride Cotransport. Physiol. Rev. 80, 211-276. Sakamoto, T., Kozaka, T., Takahashi, A., Kawauchi, H., Ando, M., 2001. Medaka (Oryzias latipes) as a model for hypoosmoregulation of euryhaline fishes. Aquaculture 193, 347-354. Sheppard, D.N., Welsh, M.J., 1999. Structure and Function of the CFTR Chloride Channel. Physiol. Rev. 79, 23-45. Singer, T.D., Tucker, S.J., Marshall, W.S., Higgins, C.F., 1998. A divergent CFTR homologue: highly regulated salt transport in the euryhaline teleost F.eteroclitus. Am. J. Physiol. 274, C715-723. Tse, W.K.F., Au, D.W.T., Wong, C.K.C., 2006. Characterization of ion channel and transporter mRNA expressions in isolated gill chloride and pavement cells of seawater acclimating eels. Biochem. Biophys. Res. 346, 1181-1190. Uchida, K., Kaneko, T., Miyazaki, H., Hasegawa, S., Hirano, T., 2009. Excellent Salinity Tolerance of Mozambique Tilapia (Oreochromis mossambicus): Elevated Chloride Cell Activity in the Branchial and Opercular Epithelia of the Fish Adapted to Concentrated Seawater. Zool. Sci. 17, 149-160. William, S.M., Richard, S.N., 1980. Relation of mitochondria-rich chloride cells to active chloride transport in the skin of a marine teleost. J. Exp. Zool. 214, 147-156. Wilson, J.M., Randall, D.J., Donowitz, M., Vogl, A.W., Ip, A.K., 2000. Immunolocalization of ion-transport proteins to branchial epithelium mitochondria-rich cells in the mudskipper (Periophthalmodon schlosseri). J Exp Biol 203, 2297-2310. Wittbrodt, J., Shima, A., Schartl, M., 2002. Medaka -a model organism from the far east. Nat Rev Genet 3, 53-64. Wong, C.K., Chan, D.K., 1999. Isolation of viable cell types from the gill epithelium of Japanese eel Anguilla japonica. Am. J. Physiol. 276, R363-372. Wong, C.K.C., Chan, D.K.O., 1999. Chloride cell subtypes in the gill epithelium of Japanese eel Anguilla japonica. Am. J. Physiol. 277, R517-522. Wood, C.M., Marshall, W.S., 1994. Ion balance, acid-base regulation, and chloride cell function in the common killifish, Fundulus heteroclitus-a euryhaline estuarine teleost Estuaries Volume 17, Number 1 Xu, J.C., Lytle, C., Zhu, T.T., Payne, J.A., Benz, E., Forbush, B., 1994. Molecular cloning and functional expression of the bumetanide-sensitive Na+-K+-Cl- cotransporter. Proc. Natl. Acad. Sci. U.S.A. 91, 2201-2205.
摘要: 本研究推論硬骨魚類的鰓蓋膜上普遍存在分布有許多富含粒線體細胞 (Mitochondria Rich, MR cells),此富含粒線體細胞據觀測顯示具有滲透壓調控的功能。研究的結果顯示,在此研究所用的模式物種“黑點青鱂魚” brackish medaka (Oryzias dancena)的鰓蓋膜上所發現的富含粒線體細胞隨著鹽度環境變化而改變。改變的趨勢在細胞頂膜開口區的超微結構、細胞的大小與密度、Na+, K+, 2Cl− cotransporter (NKCC)、Cystic fibrosis transmembrane conductance regulator (CFTR)等離子調控蛋白在MR細胞上的相對表現位置、鈉鉀氯離子共同通道蛋白(NKCC1a) 表現量,以及氯離子通透訊號的偵測等各種趨勢上都與先前在鰓的研究趨勢類似。另一方面,在將黑點青鱂魚由海水環境直接轉移至淡水的實驗中發現,NKCC1a 蛋白在轉移中消失的速度較緩慢,並且在轉移後14天仍有部分NKCC1a蛋白未消失。然而,CFTR蛋白在轉移實驗中快速的消失。鰓上MR細胞的CFTR蛋白在一天內就完全消失。在鰓蓋膜中甚至發現CFTR蛋白在一小時內就完全消失了。此研究也完成了黑點青鱂魚CFTR基因的序列全長,此序列與其他幾種廣鹽性模式魚種比對呈現高度的相似。研究也偵測了CFTR基因的mRNA表現量,並發現海水環境中鰓上的CFTR基因表現量顯著高於淡水環境魚鰓上的表現量。
The present study elucidated that MR cells were speculated to distribute generally in the opercular membrane of the teleosts and play the roles in osmoregulation. In our results of brackish medaka (Oryzias dancena), MR cells in the opercular membrane reacted to different salinity environments similarly to MR cells in gills reported in the previous studies, including the ultrastructures of apical region, cell size and density, NKCC1a protein expression, localization of ion regulatory protein, and the way of Cl- flux. High similarity between MR cells in these two tissues indicated that studies on MR cells of opercular membrane may apply to gills. On the other hand, the transferred experiments showed that the expression of CFTR and NKCC1a-like proteins changed when SW fish were directly exposed to FW. NKCC1a-like protein vanished in slower rate with small number remained over 14 days after transfer. However, CFTR protein vanished completely in 1 day. In the opercular membrane, CFTR even decayed immediately after transfer and vanished in 1 hour. In addition, the cftr gene of brackish medaka was cloned and showed high similarity to other model euryhaline teleosts. The CFTR mRNA expression in the gill was as expected significantly higher in the SW fish than FW fish.
其他識別: U0005-2807201023014200
Appears in Collections:生命科學系所



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.