Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/23194
DC FieldValueLanguage
dc.contributor陳珠亮zh_TW
dc.contributor.advisor鄧資新zh_TW
dc.contributor.advisorTzu-Shing Dengen_US
dc.contributor.author張家綸zh_TW
dc.contributor.authorJhang, Jia-Luenen_US
dc.contributor.other中興大學zh_TW
dc.date2008zh_TW
dc.date.accessioned2014-06-06T07:19:47Z-
dc.date.available2014-06-06T07:19:47Z-
dc.identifierU0005-0502200722142700zh_TW
dc.identifier.citation參考文獻 廖君達、林金和。(2001) 作物在淹水逆境下的適應生理。行政院國家科學委員會研究彙刊 25(3): 148-157。 張豫立、周美惠、林明芳。(2002) 憂鬱症之藥物發展新趨勢。臨床醫學 49: 169-76。 Alan, L. and Miller, N. D. (1998) St. John’s Wort(Hypericum perforatum L.): clinical effects on depression and other conditions. Alterm. Med. Rev. 3:18-26. Bais, H. P., Vepachedu, R., Lawrence, C. B., Stermitz, F. R. and Vivanco, J. M. (2003) Molecular and biochemical characterization of anenzyme responsible for the formation of hypericin in St. John’s Wort (Hypericum perforatum L.) J. Biol. Chem. 278:32413-32422. Barkla, B. J. and Pantoja, O. (1996) Physiology of ion transport across the tonoplast of higher plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 47:159-183. Baysal, T. and Starmans, D. A. (1999) Supercritical carbon dioxide extraction of carvone and limonene from caraway seed. J. Supercirtical fluids 14:225-234. Beerhues, L. (1996) Benzophenone synthase from cultured cells of Centaurium erythraea. FEBS Lett. 383:264-6. BerghÖfer, R. and HÖlzl, J. (1987) Biflavonoids in Hypericum perforatum. L.;Part1. Isolation of I3’Π8-biapigenin. Planta Med. 53:216-17. BerghÖfer, R. and HÖlzl, J. (1989) Isolation of I3’Π8-biapigenin (amentoflavone) from Hypericum perforatum. Planta Med. 55:91. Birch, A. J. (1967) Biosynthesis of polyketides and related compounds. Sci. 156:202-206. Blumenthal, M.(1999)Herbal market levels after five years of boom. Herbal Gram. 47:64-5. Bombardelli, E. and Morazzoni, P. (1995) Hypericum perforatum. L. Fitoterapia 66(1):43–68. Brenner, D. M., Baltensperger, D. D., Kulakow, P. A., Lehmann, J. W., Myers, R.L., Slabbert, M. M. and Sleugh, B. B. (2000) Genetic resources and breeding of Amaranthus. Plant Breed. Rev. 19:227–285. Brigham, L. A., Michael, P. J. and Flores, H. E. (1999) Cell-specific production and antimicrobial activity of naphthoquinones in roots of Lithospermum erythrorhizon. Plant Physiol. 119:417–428. Brockmann, H., Haschad, M. N., Maier, K. and Pohl, F. (1939) Über das Hypericin,den photodynamisch wirksamen Farbstoff aus Hypericum perforatum. Naturwissenschaften 32: 550. Brockmann, H. and Sanne, W. (1953) Pseudohypericin,ein neuer Hypericum-Farbstoff. Naturwissensbaften 40:461. Brockmann, H., Kluge, F. and Muxfeldt, H. (1957) Totalsynthese des Hypericins. Chemische Berichte 90(2): 2302-18. Brolis, M., Gabetta, B., Fuzzati,R. and Pace. (1998) Indentification by high-performance liquid chromatography-diode arra / detection-mass spectrometry and quantificatioin by high-performance liquid chromatography-UV absorbance detection of active constituents of Hypericum perforatum. J. Chromatogr. A 825:9-16. Brown, P. H., Hu, H. (1996) Phloem mobility of boron is species dependent: evidence for phloem mobility in sorbitol rich species. Annals of Botany. 77(5):497-505. Brune, A. and Ubachw, D. K. (1994) Compartmentation and Transpor of Zinc in Barley Primary Leaves as Basic Mechanisms Involved in Zinc Tolerance J. Plant, Cell and Environment. 17:153-162. Bush, D.S. (1995) Calcium regulation in plant cells and its role in signaling. Annu. Rev. Plant Physiol. Plant Mol. Biol. 46: 95–122 Butterweck, V., Petereit, F., Winterhoff, H. and Nahrstedt, A. (1998) Solubilized hypericin and pseudohypericin from Hypericum perforatum exert antidepressant activity in the forced swimming test. Planta Med. 64 :291–294. Carpenter, S., Fehr, M. J. G., Kraus, A., Petrich, J. W.(1994)Chemiluminescent Activation of the Antiviral Activity of Hypericin: A Molecular Flashlight . Proceedings of the National Academy of Sciences of the United States of America, Vol. 91:12273-12277 Chang, H. B., Lin, C. W., Huang, H. J. (2005) Zinc induces mitogenactivated protein kinase activation mediated by reactive oxygen species in rice roots. Plant Physiol Biochem. 43:963-968. Chen, Z. Y., Chan, P. T., Ho, K. Y., Fung, K. P . and Wang, J. (1999) Antioxidant activity of natural favonoids is governed by number and location of their aromatic hydroxyl groups. Chemistry and Physics of Lipids 79 :157 -163. Chen, H., Qualls, R. G. and Miller, G. C. (2002) Adaptive responses of Lepidium latifolium to soil flooding:biomass allocation, adventitious rooting, aerenchyma formation and ethylene production. Environ. Expt. Bot. 48: 119-128. Clemens, S., Palmgren, M. G., Kra¨mer, U. (2002) A long way ahead: understanding and engineering plant metal accumulation. Trends in Plant Science 7 :309-315. Couch, J. F., Naghski, J. and Krewson, C. F. (1946) Buckwheat as a source of rutin. Sci. 130:197-198. Dat, J. F., Capelli, N., Folzer. H., Bourgeade, P., Bodot, P. M. (2004) Sensing and signalling during plant flooding. Plant Physiol. Biochem. 42: 273-282. Dewick, P. M. (1997) Medicinal Natural Products.Wiley, West Sussex, UK. 56-60. Dixon, R. A. and Paiva, N. L. (1995) Stress induced phenylpropanoid metabolism. Plant Cell 7:1085-97. Dixon, R. A. and Steele, C. L. (1999) Flavonoids and isoflavonoids a glod mine for metabolic engineering. Trends Plant sci. 4:394-400. Donald, P. ,Briskin, Margaret, C. and Gawienowski. (2001) Differential effects of light and nitrogen on production of hypericins and leaf glands in Hypericum perforatum Plant Physiol. Biochem. 39: 1075-1081. Epstein, E. (1972) Ion absorption by roots: the role of micro-organisms. New Phytol. 71:873. Ernst, W.H.O. (1976 ) Physiological and biochemical aspects of mental tolerance effect of air pollutants on plant.Cambridge University Press. 115-133. Falk, H. and Schmitzberger, W. (1992) On the Nature of "Soluble" Hypericin in Hypericum Species Monatsh. Chem. 123-731. Fiebich, B. L., Hollig, A. and Lieb, K. (2001) Inhibition of substance P-induced cytokine synthesis by St. John''s Wort extracts. Pharmacopsychiatry Suppl. 1: 26-8. Freedman, B. and Hutchinson, T. C. (1981) Sources of mental and elemental contamination of terrestrial enviroments. In Effect of Heavy Metal Pollution in plants 2:35-94. Galema, S. A. (1997) The Michael Reaction Under Microwave Irradiation Chem. Soc. Rev. 26:233-238. Ganzler, K. and Solga, A. (1987) a new method superseding traditional soxhlet extraction. J. Micro. Extra. 6:274-276 . Geddes, J., Freemantle, N., Harrison, P. and Bebbington, P. (2000) Atypical antipsychotics in the treatment of schizophrenia systematic overview and meta-regression analysis. BMJ. 321:1371-1376. Granzow, D. (2000) Untersuchungen zu Hypericum perforatum L. Anbau und Selektion.analytische und präparative Arbeiten. Thesis,University of Marburg,Germany. Gurevich, A. I. (1971) Hyperforin, an antibiotic from Hypericum perforatum. L. Antibiotic.(Moskow) 16:510-13. Hall, S., Matson, P. A. and Lohse, K. (2002) The globalization of nitrogen deposition: consequences for terrestrial ecosystems. Ambio. 31:113-119. Harborne, J. B. (1986) Nature, distribution and function of plant flavonoids. Progress in Clinical and Biological Research 213: 15-24. Harrer, G. and Schulz, V. (1994) Clinical investigation of the antidepressant effectiveness of Hypericum. perforatum. L. J. Geri. Psychi. and Neuro. 7: 6-8. Hian, K. L., and Gang, S. (2003) Headspace liquid-phase microextraction of chlorobenzenes in soil with gas chromatography-electron capture detection J. Anal. Chem. 75:98-103. Hobbs, C. (1988/1989) St. Johns Wort ( Hypericum perforatum L.) Herbal Gram No.18/19 Fall 1988/Winter 1989:24-33. Hobbs, C. (1997) Plants for food and medicine. Herbal Gram. 38:56-57. Hurng, W. P. and Kao, C. H. (1993) Loss of starch and increase of α-amylase activity in leaves of flooded tobacco plants. Plant Cell Physiol. 34 :531-534. Jansseon,H.G., Lou,X. and Cramers,C.A. (1997) Anal.Chem. 69:1598-1603. Jorge, M. et al. (1999) Characterization of two Novel TypI Ribosome-inactivating Protein from the storge root of Andean Crop Mirabilis expansa. Plant physiol. 119:1477-1456. Kallithraka, S., Garciaviguera, C., Bridle, P. and Bakker, J. I. (1995) Survey of solvents for the extraction of grapeseed phenolics. Phytochem.Anal. 6:265-267. Kao, Y. Y., Harding, S. A. and Tsai, C. J. (2002) Differential expression of two distinct phenylalanine ammonia-lyase genes in condensed tannin-accumulation and lignifying cells of quaking aspen. Plant Physiol. 130: 796-807. Karley, A.J. (2000) Where do all the ions go? The cellular basis of differential ion accumulation in leaf cells. Trends Plant Sci. 5:465–470. Kastori, R. et al. (1992) Effect of excess Pb, Cd, Cu and Zn on water relations in sunflower, J. Plant Nutr. 15: 2427-2439. Kaul, R.(2000)Johanniskraut; Wissenschaftliche Verlagsgesellschaft mbH Stuttgart. ISBN. 3:8047-1704. Ke, D. and Saltveit, M. E. (1989) Regulation of russet spotting, phenolic metabolism, and IAA oxydase by low oxygen in iceberg lettuce. J. Am. Soc. Hort. Sci. 114:638–642. Khokhar, S. and Magnusdottir, S. G. M. (2002) Total phenol, catechin, and caffeine contents of teas commonly consumed in the United Kingdom. J. Agric. Food Chem. 50:565-570. Kingston,H. M. and Jassie, L. B. (1986 ) Application of microwave digestion in analytical chemistry. J. Anal. Chem. 58:25-34. Laakmann, G., Schule, C., Baghai, T. and Kieser, M. (1998) St. John’s Wort in mild to moderate depression-the relevance of hyperforin for the clinical efficacy. Pharmaco. 31:54–59. Liu, T., Staden, J. V. and Cress, W. A. (2000) Salinity induced nuclear and DNA degradation in meristematic cells of soybean (Glycine max L.) root. Plant Growth Regulation 30:49-54. Lopez-Avila, V., Young, R. and Bechet, W. F. (1994) Microware-assited extraction of organic compounds from standard reference soils and sediments. J. Anal.Chem. 66(7) : 1097-1106. Martarelli, D., Martarelli, B., Pediconi, D., Nabissi, M. I., Perfumi, M. and Pompei, P. (2004) Hypericum perforatum methanolic extract inhibits growth of human prostatic carcinoma cell line orthotopically implanted in nude mice. Cancer Lett. 210:27-33. Meruelo, D., Lavie, G. and Lavie, D. (1988 ) Therapeutic agents with dramatic antiretroviral activity and little toxicity at effective doses aromatic polycyclic diones hypericin and pseudohypericin. PNAS. 85:5230-5234. Mosaleeyanon, K., Zobayed, S. M. A., Afreen, F. and Kozai, T. (2005) Relationships between net photosynthetic rate and secondary metabolite contents in St. John’s Wort. Plant Science. 169:523-531. Mukherjee, P. K., Saha, K., Murugesan, T., Mandal, S.C., Pal, M. and Saha, B.P. (1998) Screening of anti-diarrhoeal profile of some plant extracts of a specific region of West Bengal, India. J. Ethnopharmacol. 60(1):85-89. Müller, W. E., Singer, A., Wonnemann, M., Hafner, U. and Rolli, M. (1998) Hyperforin represents the neurotransmitter reuptake inhibiting constituent of Hypericum extract. Pharmacopsy. 31:19-21. Muruganandam, A. V., Ghosal, S. and Bhattacharya, S. K. (2000) The role of xanthones in the antidepressant activity of Hypericum perforatum involving dopaminergic and serotoninergic systems. Biog. Amines 15:553–567. Murch, S. J., Choffe, K. L., Victor, J. M. R., Slimmon, T. Y., Krishna, R. S. and Saxena, P. K. (2000) Thidiazuron-induced plant regeneration from hypocotyl cultures of St. John’s Wort.(Hypericum perforatum.L. ). Plant Cell Rep. 19:576-581. Nahrstedt, A. and Butterweck, V. (1997) Biologically active and other chemical constituents of the herb Hypericum perforatum L. Pharmaco. 30 :129–134. Nathan, P. J.(1999)The experimental and clinical pharmacology of St John''s Wort (Hyperium perforatum). Mol. Psychiatry 4 :333-338. Pearcy, R. W. (1998) Acclimat ion to sun and shade. In: Ragharendra AS, ed. Photosynthesis.Cambridge: Cambridge Univ. Press 250-63. Pellati, F. and Benvenuti, M. (2005) High-performance liquid chromatography methods for the analysis of adrenergic amines and flavanones in Citrus aurantium L. var. amara. J. Chromatogr. A 1088:205-217. Philipp, M., Kohnen, R. and Hiller, K.O. (1999) Hypericum extract versus imipramine or placebo in patients with moderate depression. randomized multicenter study of treatment for eight weeks. BMJ. 319:1534-9. Rivero, R. M., Ruiz, J. M., García, P. C., Lópex-Lefebre, L. R., Sánchez, E. and Romero, L. (2001) Resistance to cold and great stress: accumulation of phenolic compounds in tomato and watermelon plants. Plant Sci. 160: 315-321. Ralph, P. J., Burchett, M. D.(1998)Photosynthetic response of Halophila ovalis to heavy metal stress. Envir. Pol. Vol. 103:91-101 Robson, N. K. B. (1977) Studies in the genus Hypericum perforatum L. (Guttiferae). I. Infrageneric classification. Bull. Br. Mus. Nat. Hist. (Bttany) 5:293-355. Rodewald, R., Arnold, R., Giesler, J. and Steglich, W. (1977) Synthese von Hypericin and verwandten meso-Naphthodianthronen durch alkalische Dimerisierung von Hydroxyanthrachinonen. Angew. Chem. 89:56-7. Roboson, N. K. B. (1981) Studies in the genus Hypericum L.(Guttiferae). 2. Characters the genus. Bull. Br. Mus.Nat.Hist.(Bttany) 8:55-226. Saltveit, M. E., Young, J. C. and Francisco A. (2005 ) Involvement of components of the phospholipid-signaling pathway in wound-induced phenylpropanoid metabolism in lettuce (Lactuca sativa) leaf tissue. Physiol. Plant 125:3-345 . Satyavati, G. V., Gupta, A. K. and Tandon, N. (1987) Medicinal Plants of India, Indian Council of Medical Research. New Delhi. India. 2:490-499. Scalbert, A. and Williamson, G. (2001) Dietary intake and bioavailability of polyphenols. J. Nutr. 130:2073-2085. Schelosky, N. (1997) Separation of hypericin in extracts of Hypericum perforatum. Thesis,University of Innsbruck,Austria. Skoog, F. (1940) Relational between zine and auxin in the growth of highter plant, Amer. J. Bot. 27:939-951. Schinazi, R.F. (1990 ) Anthraquinones as a new class of antiviral agents against human immunodeficiency virus. Antivi. Res. 13:265-272. Simmen, U., Bobimac, I., Ullmer, C., Lubbert, H. Buter, K.B., Schaffner, W.and Schoeffter, P. (2003) Antagonist effect of pseudohypericin at CRF1 receptors. Eur. J. Pharmacol. 458:251-256. Sommer, A. L.and Lipman, C.B. (1926) Evidence of the indispensable nature of zinc and boron for high green plants. Plant Physiol. 1:231-249. Southwell, I. A., Campbell, M. H.(1991)Hypericin content variation in Hypericum perforatum in Australia . J. Phytochem. 30: 457- 478. Taiz, L. and Zeiger E. (1998) Stress physiology. In: Plant physiology, 2nd edn. Sunderland, MA: Sinauer Associates Inc. 725–757. Teufel-Mayer, R. and Gleitz, J. (1997) Effects of long-term administration of Hypericum extracts on the affinity and density of the central serotonergic 5-HT1A and 5-HT2A receptors. Pharmacopsy. 30 :113-116. Thiele, B., Brink, I. and Ploch, M. (1994) Modulation of cytokine expression by Hypericum extract. Pharmacopsy. Suppl. 1: 60-2. Vandenbogaerde, A. (2000) Evidence that totalextract of Hypericum perforatum affects exploratory behaviour and exerts anxiolytic effects in rats.Pharmacol. Biochem. Behav. 65:627–633. Verotta, L., Appendino, G., Jakupovic, J. and Bombardelli, E. (2000) Hyperforin analogues from Hypericum perforatum(St. John’s Wort). J. Nat. Prod. 63:412-15. Volz, H. P. (1997) Controlled clinical trials of Hypericum extracts in depressed patients-an overview. Pharmaco. 30:72-76. Volz, H. P. and Laux, P. (2000) Potential treatment of subthreshold and mild depression: a comparison of St John’s wort extracts and fluoxetine. Compr. Psychiatry 41:133–137. Walker, T. S., Bais, H. P. and Vivanco, J. M. (2002) Jasmonic acidinduced hypericin production in cell suspension cultures of Hypericum perforatum L. Phyto. 60:289-293. Wang, H., K., Helliwell and You, X. (2000) Isocratic elution system for the determination of catechins, caffeine and gallic acid in green tea using HPLC. Food Chem. 68:115-121. Watkin, E.L.J., Thomson, C.J., Greenway, H.(1998) Root development and aerenchyma formation in two wheat cultivars and one triticale cultivar grown in stagnant agar and aerated nutrient solution. Ann. Bot.81:349-354 Wills, C. J., Petersen, M., Bryant, W. A., Reichle, M., Saucedo, G. J., Tan, S., Taylor, G. and Treiman, J. ( 2000) A siteconditions ap for California based on geology and shear-wave velocity. Bull. Seismol. Soc. Amer. 90:187-208. Xiang and Moore (2002) Inactivation, Complementation, and Heterologous Expression of encP, a Novel Bacterial Phenylalanine Ammonia-Lyase Gene* J. Biol. Chem., Vol. 277, Issue 36:32505-32509. Zlotorzynski, A. (1995) The application of microwave radiation to analytical and environmental chemistry J. Critical Review in Analytical Chemistry 25(1): 43-76.zh_TW
dc.identifier.urihttp://hdl.handle.net/11455/23194-
dc.description.abstract中文摘要 本研究以聖約翰草為材料,施加奈米氧化鋅和不同鋅化合物來探討對聖約翰草生長發育及有效成份的影響。結果發現,在試驗處理條件下,三星期後皆可達到近60%以上的發芽率。當光強度在350 (µmole m-2s-1)以上或光週期超過6小時的處理,可增加hypericin的產生,且光強度與植物鮮重的大小有著明顯的關係存在。以最適生長條件施加各種鋅化合物,濃度在5mM以上皆會造成減產甚至植物死亡。Hyp1活性方面,濃度以2.5mM、5mM處理者皆可誘導酵素活性的表現;而PAL活性方面,發現水份逆境或不同鋅化合物處理皆明顯誘導PAL的活性表現,結果顯示利用Hyp1能夠調控hypericin成份的產生,而PAL酵素因為有許多機制相互影響,其與成份的生合成關係不易觀察。微波萃取方面:使用甲醇溶劑在750W的功率下,50分鐘內能快速且有效的萃取各種指標成份,萃取溶劑選擇方面,hypericin以甲醇萃取約10分鐘就達到不錯的萃取效果,而hyperforin來說,以ethyl acetate萃取約5分鐘就可達到不錯的效果,最後使用一種HPLC分析條件可在60分鐘內成功地分析並定量6種指標成分。綜合以上結果,使用5mM濃度的鋅化合物能有效來調控植物的生長。但除了hypericin外,對其他有效成分之產量尚未找出其關連性。因此思考未來如何更有效利用鋅化合物來提高聖約翰草活性成分的產率就有其重要性,或許也可以評估作為土壤復育植物的潛力,藉此開發更多聖約翰草的經濟應用價值。 關鍵字:聖約翰草、奈米氧化鋅、微波裝置、Hyp1、PAL、Hypericin、Hyperforin、Pseudohypericin、Quercetin、Quercitrin、Rutinzh_TW
dc.description.abstractAbstract In this study, the effects of nano-scale Zinc Oxide and different Zinc-compounds on effective ingredients, growth and development of St. John’s Wort have been investigated.The results show that the germination rate of Hypericum perforatum seeds can reach over 65% after 3 weeks under experimental conditions. The content of hypericin in H. perforatum increases under the treatment of light intensity at 350(µmole m-2s-1) and the photoperiod over 6h. In addition, the relationship between light intensity and plant fresh weight correlates obviously. The experiment reveals that considered by appropriate conditions for H. perforatum, all of Zinc-compounds (>5mM) will reduce yield and even lead to death of H. perforatum. For the activity of Hyp1, treatment with Zinc-compounds(both at 2.5mM and 5mM) can induce Hyp1 activity. The enzyme activity of PAL can be obviously induced under water stress or with different Zinc-compounds. The effect of study shows that Hyp1 was used to control the production of ingredients of hypericin. However, the relationship between PAL and the ingredient flavonols are not easily observed because they interact each other by many mechanisms. It has been shown that the rapid and effective microwave extraction of indicator ingredients of H. perforatum can be conducted at 750W in 50 minates through the use of methanol. For hypericin, methanol shows the satisfied extraction efficacy can be completed about 10 minates. Regarding hyperforin, satisfied extraction efficacy can be completed about 5 minates through the use of ethyl acetate. For HPLC analysis, by this analytic method, 6 indicator ingredients of H. perforatum can be successfully analysed and quantified respectively. Taken together,zinc-compounds at 5mM can be regulate the plant growth effectively. But it seems to have no correlation with the productivity of effective ingredients inbetween except hypericin.Therefore,it’s important to consider to use zinc-compounds more effectively to elevate production of active ingredients of H. perforatum in the future. It will be also able to evaluate St. John’s Wort as a phytoremedy of soil for its more diverse economic applications. Key words:H. perforatum、nano-scale ZnO、microwave equipment、Hyp1、PAL、 Hypericin、Hyperforin、Pseudohypericin、Quercetin、Quercitrin、Rutin.zh_TW
dc.description.tableofcontents目錄 中文摘要………………………………………………………………1 英文摘要…………………………………………………………………2 目錄………………………………………………………………………4 圖表目錄………………………………………………………………9 前言……………………………………………………………………12 前人研究………………………………………………………………15 1. 聖約翰草的有效成份………………………………………………15 1.1 Hypericin…………………………………………………………15 1.1.1 Hypericin理化性質……………………………………………16 1.1.2 Hypericin的屬性…………………………………………16 1.2 Hyperforin………………………………………………………17 1.2.1 Hyperforin理化性質…………………………………………17 1.2.2 Hyperforin的屬性……………………………………………18 1.3 Quercetin、Quercitrin、Rutin、biapigenin………………18 1.3.1 Quercetin的理化性質…………………………………………18 1.3.2 Quercitrin的理化性質………………………………………19 1.3.3 Rutin的理化性質………………………………………………19 1.3.4 Biapigenin的理化性質……………………………………20 1.3.5 Flavonoids和biflavonoids的屬性…………………………20 2. 聖約翰草已知主要酚類化合物可能的生合成路徑……………21 2.1 Hypericin的生合成途徑…………………………………………21 2.2 Flavonoids的生合成……………………………………………22 2.3 Xanthones的生合成………………………………………………22 3. 微量元素鋅的介紹…………………………………………………23 3.1 植物體内鋅的含量和分佈……………………………………24 3.2 鋅的運送方式……………………………………24 3.3 鋅的營養功能…………………………………………26 (1). 多種酶或蛋白質的组成………………………………26 (2). 調節生長素的合成…………………………………………26 (3). 參與光合作用中CO2的水合作用………………………26 (4). 調節蛋白質代謝…………………………………………27 (5). 參與活性氧代謝…………………………………………27 (6). 抗旱能力……………………………………………27 4. 生物對抗重金屬鋅的毒性…………………………………………27 5. Hyp 1於聖約翰草中的功能…………………28 6. 苯丙氨酸解氨酶於植物二次代謝物中扮演的角色………………29 7. 植物在淹水逆境下的反應……………30 研究目的…………………………………………………………31 研究架構32 材料與方法……………………………………………………………33 1. 聖約翰草種子的生長………………………………………………33 2. 聖約翰草在不同光強度與光週期下生長情況比較………………35 3. 奈米氧化鋅粉末的介紹………………………………………35 4. 根長的測量…………………………………………………………37 5. Evans blue 根部染色法…………………………………………37 6. 不同粒徑濃度奈米氧化鋅和不同鋅化合物處理下的比較………38 6.1 鋅化合物材料的選擇……………………………………………38 6.2 施用方式……………………………………………………39 7. 微波萃取裝置介紹…………………………………………………40 8. 不同的微波萃取條件和不同溶劑選擇的比較……………………42 9. 不同萃取方法的比較………………………………………………42 10. HPLC的選擇……………………………………………………43 10.1 標準校正曲線的製作&分析精確性……………………………43 11. 分析方法…………………………………………………………43 12. 蛋白質萃取的方法………………………………………………43 13. Emodin轉換為hypericin的能力比較……………………………44 14. PAL活性測定………………………………………………………44 15. 各種鋅的含量觀察方法…………………………………………45 15.1 小角度x光繞射儀………………………………………………45 15.2 場發射掃描式電子顯微鏡………………………………………46 15.3 元素分析儀……………………………………………………46 16. 統計方法……………………………………………………46 結果與討論……………………………………………………47 一、 Hypericum perforatum生長條件的試驗……………………47 1.1 Hypericum perforatum發芽率的觀察方法……………………47 1.2 光週期與Hypericum perforatum發芽率之關係……………47 1.3 光強度與Hypericum perforatum發芽率之關係………………48 1.4 光週期與Hypericum perforatum生長情況之關係……………48 1.5 光強度與Hypericum perforatum生長情況之關係……………48 1.6 光強度與光週期和Hypericum perforatum黑色腺體與 hypericin之關係……………………………………………………49 二、 奈米氧化鋅對Hypericum perforatum根部生長的影響情況…………………………………………………………………56 2.1 不同濃度奈米氧化鋅(MA)處理,觀察Hypericum perforatum 根的發育情況……………………………………………………56 2.2 不同濃度的奈米氧化鋅(MA)處理Hypericum perforatum所誘導 的根部細胞壞死情況……………………………………56 2.3 奈米氧化鋅MA(25mM)於不同時間點所誘導的根部細胞壞死情況……………………………………………………56 三、 不同濃度及粒徑的奈米氧化鋅對Hypericum perforatum生長的影響……………………………………………………60 3.1 不同濃度的奈米氧化鋅處理二個月觀察其外觀型態的差異……………………………………………………60 四、 奈米氧化鋅和不同鋅化合物對Hypericum perforatum生長的調查……………………………………………………62 4.1 不同濃度的鋅化合物處理三個月後,觀察頂端葉片型態的差異……………………………………………………62 4.2 不同粒徑的奈米氧化鋅和鋅化合物於5mM濃度下處理聖約翰草 四個月後觀察生長的差異…………………………………62 4.3 不同粒徑的奈米氧化鋅於10mM濃度下處理二個月後觀察 聖約翰草生長的差異……………………………………………62 4.4 不同粒徑的奈米氧化鋅於30mM濃度下處理二個月後觀察 聖約翰草生長的差異……………………………………………63 4.5 不同粒徑的奈米氧化鋅於50mM濃度下處理二個月後觀察 聖約翰草生長的差異……………………………………………63 4.6 不同粒徑的奈米氧化鋅於120mM濃度下處理二個月後觀察 聖約翰草生長的差異……………………………………………63 4.7 不同粒徑的奈米氧化鋅於240mM濃度下處理二個月後觀察 聖約翰草生長的差異……………………………………………63 4.8 不同粒徑的奈米氧化鋅於360mM濃度下處理二個月後觀察 聖約翰草生長的差異……………………………………………64 4.9 不同粒徑的奈米氧化鋅於600mM濃度下處理二個月後觀察 聖約翰草生長的差異……………………………………………64 4.10不同濃度及不同粒徑的鋅化合物處理三個月……………65 五、 不同奈米粒徑及濃度的奈米氧化鋅處理下聖約翰草中hypericin的成份比較……………………………………………77 六、 不同濃度的鋅化合物處理三個月後,對聖約翰草六種指標性成份的比較……………………………………………………79 6.1 不同濃度鋅化合物處理三個月後對hypericin和quercetin含量 的影響……………………………………………………79 6.2 不同濃度鋅化合物處理三個月後對pseudohypericin和rutin含量的影響……………………………………………………79 6.3 不同濃度鋅化合物處理三個月後對quercitrin和hyperforin含量的影響……………………………………………………79 七、 水耕逆境處理下聖約翰草生長調查…………………………83 7.1 不同鋅化合物在兩種濃度(3μM、1.6μM)下處理三個月後 調查聖約翰草的水耕生長記錄……………………………………83 7.2 觀察水耕逆境在不同的奈米氧化鋅和不同鋅化合物處理下 聖約翰草的生長差異………………………………………………83 八、 測定emodin在不同濃度的水溶性蛋白中轉換的能力………86 8.1 Emodin標準品(A)分別以40μl、100μl的水溶性蛋白來測定 emodin轉換成hypericin的能力(B)…………………………………86 8.2 Emodin轉換為hypericin的能力比較…………………………86 8.3 不同鋅化合物處理下,聖約翰草中Hyp1蛋白質將emodin轉換 為hypericin的能力比較………………………………………………86 九、 不同奈米粒徑及濃度氧化鋅和鋅化合物處理下,聖約翰草的 PAL活性比較……………………………………………………92 9.1 不同鋅化合物與不同環境培養下,聖約翰草中PAL活性的比較……………………………………………………92 9.2 不同奈米粒徑及濃度的氧化鋅和鋅化合物處理的比較……………………………………………………92 十、 不同的標準品檢量線………………………………………95 十一、 聖約翰草主要成份金絲桃素(hypericin)不同萃取方法的比較………………………………………………………………98 十二、 不同微波能量與萃取時間對植物外觀的組織破壞情況……………………………………………………………………100 十三、不同的微波時間和功率對聖約翰草有效成份的影響…………………………………………………………………102 13.1 微波處理時間和功率對hypericin和quercetin萃取效率的影響…………………………………………………………102 13.2 微波處理時間和功率對pseudohypericin和rutin萃取效率的影響………………………………………………………102 13.3 微波處理時間和功率對quercitrin和hyperforin萃取效率的影響…………………………………………………………103 13.4 不同的微波時間以750W的功率對聖約翰草有效成份萃取效率 的影響……………………………………………………………103 13.5 不同萃取溶劑不同的微波時間750W的功率對聖約翰草有效 成份的影響…………………………………………………………103 十四、以HPLC分析不同的移動相條件設定下對聖約翰草有效 成分分析的影響……………………………………………………109 十五、聖約翰草葉片中各種鋅的含量觀察方法……………………………………………………………………115 15.1 小角度x光繞射儀對葉片鋅元素的測定……………………………………………………………………115 15.2 場發射掃描式電子顯微鏡對葉片鋅元素的觀察…………………………………………………………………115 15.3 元素分析儀對植物鋅元素的測定……………………………115 結論………………………………………………………119 參考文獻………………………………………………………120 圖表目錄 表一、 各個微量元素的功能簡介……………………………23 表二、 聖約翰草活性成份的參數…………………………97 圖 1. Naphthodianthrones類的結構…………………………15 圖 2. Phloroglucinols類的結構………………………………17 圖 3. Flavonoids類的結構………………………………………18 圖 4. Biflavonoids 類的結構……………………………………20 圖 5. 兩種金絲桃屬植物(H. perforatum. and H. androsaemum)已知主要酚類化合物之生合成路徑……………………21 圖 6. Hypericum perforatum發芽率的測量及裝置……………34 圖 7. 不同奈米粒徑氧化鋅的外觀照片……………………………35 圖 8. 電子顯微鏡下不同ZnO奈米尺度的大小差異…………………36 圖 9. 微波萃取設備介紹……………………………………………41 圖 10. 光週期與Hypericum perforatum發芽率之關係………………………………………………………………………51 圖 11. 光強度與Hypericum perforatum發芽率之關係……………………………………………………………………52 圖 12. 光週期與Hypericum perforatum生長狀況之關係……………………………………………………………………53 圖 13. 光強度與Hypericum perforatum生長狀況之關係……………………………………………………………………54 圖 14. 光強度和光週期對Hypericum perforatum黑色腺點數目和 hypericin含量關係………………………………………………55 圖 15. 在不同濃度奈米氧化鋅(MA)處理下,觀察聖約翰草根長的變化………………………………………………………………57 圖 16. ZnO(MA)處理下,誘導聖約翰草根部細胞的壞死情況……………………………………………………………………58 圖 17. 奈米氧化鋅MA(25mM)於不同處理時間下誘導聖約翰草的 根部細胞壞死情況…………………………………………………59 圖18. 不同濃度及粒徑下的奈米氧化鋅處理聖約翰草六個月其外觀型態…………………………………………………………………61 圖 19. 不同濃度及粒徑的奈米氧化鋅和其他鋅化合物處理三個月後 聖約翰草頂端的葉片型態……………………………………………66 圖 20. 不同粒徑的奈米氧化鋅於5mM濃度下處理二個月後觀察 聖約翰草之生長差異…………………………………………………67 圖 21. 不同粒徑的奈米氧化鋅於10mM濃度下處理二個月後觀察 聖約翰草之生長差異………………………………………68 圖 22. 不同粒徑的奈米氧化鋅於30mM濃度下處理二個月後觀察 聖約翰草之生長差異…………………………………………………69 圖 23. 不同粒徑的奈米氧化鋅於50mM濃度下處理二個月後觀察 聖約翰草之生長差異…………………………………………………70 圖 24. 不同粒徑的奈米氧化鋅於120mM濃度下處理二個月後觀察 聖約翰草之生長差異…………………………………………………71 圖 25. 不同粒徑的奈米氧化鋅於240mM濃度下處理二個月後觀察 聖約翰草之生長差異…………………………………………………72 圖 26. 不同粒徑的奈米氧化鋅於360mM濃度下處理二個月後觀察 聖約翰草之生長差異…………………………………………………73 圖 27. 不同粒徑的奈米氧化鋅於600mM濃度下處理二個月後觀察 聖約翰草之生長差異………………………………………………74 圖 28. 不同濃度(1.25mM、2.5mM、5mM)的鋅化合物處理三個月後 觀察聖約翰草生長的差異……………………………………………75 圖 29. 不同濃度(1.25mM、2.5mM、5mM)鋅化合物處理三個月後 聖約翰草外觀生長的差異…………………………………………76 圖 30. 不同奈米粒徑及濃度(A.:0~600mM;B.:0~10mM)的氧化鋅 處理下,聖約翰草中的hypericin的成份差異………………………78 圖 31. 鋅化合物處理聖約翰草三個月後對其hypericin和quercetin 含量的影響……………………………………………………………80 圖 32. 鋅化合物處理聖約翰草三個月後對其pseudohypericin和rutin含量的影響………………………………81 圖 33. 鋅化合物處理聖約翰草三個月後對其quercitrin和hyperforin含量的影響……………………………………82 圖 34. 鋅化合物在3μM及1.6μM濃度下處理聖約翰草三個月後,在水 份逆境下的生長情況…………………………………………………84 圖 35. 鋅化合物處理下聖約翰草於水份逆境下的生長外觀觀察……………………………………………………………………85 圖 36. Emodin及聖約翰草水溶性蛋白將之轉化為hypericin的 HPLC指紋分析圖譜……………………………………………………88 圖 37. 聖約翰草水溶性蛋白質萃取液將emodin轉換為hypericin的能力…………………………………………………………………89 圖 38. 聖約翰草在不同鋅化合物處理下,其萃取之水溶性蛋白質 轉換hypericin能力的比較…………………………………………90 圖 39. 土耕下之聖約翰草在鋅化合物處理下,其萃取之水溶性 蛋白質轉換hypericin能力的比較…………………………………91 圖 40. 以不同奈米粒徑及濃度的氧化鋅和其他鋅化合物處理下 聖約翰草的PAL活性差異異…………………………………………93 圖 41. 以不同奈米粒徑及濃度的氧化鋅和其他鋅化合物處理土耕栽培三個月下聖約翰草其檞皮酮含量的差異……………………94 圖 42. 分析標準品之檢量線…………………………………………96 圖 43. 聖約翰草中金絲桃素不同萃取方法的比較…………………99 圖 44. 場發射掃瞄式電子顯微鏡下觀察微波功率與萃取時間對聖約翰草組織破壞情況之照片……………………………………………101 圖 45. 微波萃取時間和功率對聖約翰草hypericin和quercetin萃取的影響………………………………………………………………104 圖 46. 微波處理時間和功率對聖約翰草pseudohypericin和rutin萃取的影響………………………………………………………………105 圖 47. 微波處理時間和功率對聖約翰草quercitrin和hyperforin萃取的影響……………………………………………………………106 圖 48. 以甲醇為溶劑於不同的微波處理時間在750W的功率下對聖約翰草六種有效成份萃取效率的影響…………………………………107 圖 49. 以不同溶劑於不同的微波萃取時間在750W的功率下對聖約翰草六種有效成份萃取效率的影響…………………………………108 圖 50. HPLC移動相條件對聖約翰草有效成份分析的影響………………………………………………111 圖 51. HPLC移動相條件對聖約翰草有效成份分析的影響……………………………………………………112 圖 52. HPLC移動相條件對聖約翰草有效成份分析的影響…………………………………………………113 圖 53. HPLC移動相條件對聖約翰草有效成份分析的影響………………………………………………114 圖 54. 小角度x光繞射儀對聖約翰草葉片中鋅元素的測定…………………………………………………116 圖 55. 場發射掃描式電子顯微鏡對聖約翰草葉片中鋅元素的測定…………………………………………117 圖 56. 元素分析儀對聖約翰草中鋅元素的測定……………………………………118zh_TW
dc.language.isoen_USzh_TW
dc.publisher生命科學院碩士在職專班zh_TW
dc.relation.urihttp://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-0502200722142700en_US
dc.subjectH. perforatumen_US
dc.subject聖約翰草zh_TW
dc.subjectnano-scale ZnOen_US
dc.subjectmicrowave equipmenten_US
dc.subjectHyp1en_US
dc.subjectPALen_US
dc.subject奈米氧化鋅zh_TW
dc.subject微波裝置zh_TW
dc.title鋅化合物對聖約翰草生長及有效成分影響之 研究zh_TW
dc.titleStudy on effects of Zinc-compounds on growth and effective ingredients in St. John's Wort (Hypericum perforatum)en_US
dc.typeThesis and Dissertationzh_TW
Appears in Collections:生命科學系所
文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.