Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/23285
標題: 大氣電漿改質神經導管在周邊神經再生的影響
The effects of nerve conduits modified by atmospheric plasma for peripheral nerve regeneration
作者: 楊怡津
Yang, Yi-Chin
關鍵字: air plasma
大氣電漿
polylactic acid
microgroove
microporous
neural stem cell
聚乳酸
微孔洞
微溝槽
神經幹細胞
出版社: 生命科學院碩士在職專班
引用: 1 吳禹利、胡朝乾、張淑鳳,組織學圖譜,臺北:合記圖書,民74; 44-60。 2 劉湘海、關尚勇, 基礎神經病理學(初版),臺北:合記圖書,民82。 3 John A. Kiernan原著,徐淑媛、陳金山譯,巴氏神經解剖學,臺北:藝軒出版社,民88; 42-63。 4 Paul R. Wheater , H. Grorge Burkitt , Peter Lancaster原著,劉國鈞譯,組織學彩色圖譜,臺北:力大圖書,民79; 112-138。 5 Stephen W. Kuffler, John G. Nicholls, A. Robert Martin 原著,張人驥、潘其麗譯,神經生物學-從神經元到大腦,北京:大眾出版社,民84。 6 Seddon H. Surgical Disorders of the Peripheral Nerves (2nd ed.),New York: Churchill Livingstone. 1975. 7 Keilhoff G, Goihl A, Stang F, Wolf G, Fansa H. Peripheral nerve tissue engineering: autologous Schwann cells vs. transdifferentiated mesenchymal stem cells. Tissue Eng. 2006; 12(6): 1451-1465. 8 林哲信、林岳峰,大氣電漿系統及其於高分子聚合物表面改質及接合之應用,化工技術,民94; 13(4): 185-199。 9 劉志宏、陳志瑋、林春宏,大氣壓電漿表面改質技術與其應用介紹,化工資訊與商情,民95; 32: 39-51。 10 Almazán-Almazán MC, Paredes JI, Pérez-Mendoza M, Domingo-García M, López-Garzón FJ, Martínez-Alonso A, Tascón JM. Surface characterisation of plasma-modified poly(ethylene terephthalate). J Colloid Interface Sci. 2006; 293(2): 353-363. 11 Zhang Q, Wang C, Babukutty Y, Ohyama T, Kogoma M, Kodama M. Biocompatibility evaluation of ePTFE membrane modified with PEG in atmospheric pressure glow discharge. J Biomed Mater Res. 2002; 60(3): 502-509. 12 Kibayashi H, Teraoka F, Fujimoto S, Nakagawa M, Takahashi J. Surface modification of pure titanium by plasma exposure and its bonding to resin. Dent Mater J. 2005; 24(1): 53-58. 13 Kim MK, Park IS, Park HD, Wee WR, Lee JH, Park KD, Kim SH, Kim YH, J. Cataract. Refract. Surg. 2001; 27(5): 766–774. 14 Sioshansi, P. and Tobin, E.J. Surface Treatment of Biomaterials. by Ion Beam Process, Surf. Coat. Technol. 1996; 83: 175–182. 15 Xie Y, Sproule T, Li Y, Powell H, Lannutti JJ, Kniss DA. Nanoscale modifications of PET polymer surfaces via oxygen-plasma discharge yield minimal changes in attachment and growth of mammalian epithelial and mesenchymal cells in vitro. J Biomed Mater Res. 2002; 61(2): 234-245. 16 Hopper RH, Young AM, Orishimo KF, Engh CA. Effect of terminal sterilization with gas plasma or gamma radiation on wear of polyethylene liners. J Bone Joint Surg Am. 2003; 85-A(3): 464-8. 17 Dai XJ, Kviz L. Study of Atmospheric and Low Pressure Plasma Modification on the Surface Properties of Synthetic and Natural Fibres. Textile Institute 81st World Conference, Melbourne, Australia, 2001. 18 McCord MG, Hwang YJ, Hauser PJ, Qiu Y, Cuomo JJ, Hankins OE, Bourham MA, Canup LK. Modifying Nylon and Polypropylene Fabrics with Atmospheric Pressure Plasmas, Textile Res. J. 2002; 72(6): 491-498. 19 張家豪、魏鴻文、翁政輝、柳克強、李安平、寇崇善、吳敏文、曾錦清、蔡文發、鄭國川,電漿源原理與應用之介紹,物理雙月刊,民95; 28(2): 440-451。 20 Fried D, Ragadio J, Akrivou M, Featherstone JD, Murray MW, Dickenson KM. Dental hard tissue modification and removal using sealed transverse excited atmospheric-pressure lasers operating at lambda=9.6 and 10.6 microm. J Biomed Opt. 2001; 6(2): 231-238. 21 Wang P, Tan KL, Kang ET. Surface modification of poly(tetrafluoroethylene) films via grafting of poly(ethylene glycol) for reduction in protein adsorption. J Biomater Sci Polym Ed. 2000; 11(2): 169-186. 22 Nakagawa M, Teraoka F, Fujimoto S, Hamada Y, Kibayashi H, Takahashi J. Improvement of cell adhesion on poly(L-lactide) by atmospheric plasma treatment.J Biomed Mater Res A. 2006; 77(1): 112-118. 23 Penache C, Gessner C, Betker T, Bartels V, Hollaender A, Klages CP. Plasma printing: patterned surface functionalisation and coating at atmospheric pressure. IEE Proc Nanobiotechnol. 2004; 151(4): 139-144. 24 Lee GB, Lin CH, Lee KH, Lin YF. On the surface modification of microchannels for microcapillary electrophoresis chips. Electrophoresis. 2005; 26(24): 4616-4624. 25 Teraoka, F, M. Nakagawa, and M. Hara, Surface modification of poly (L-lactide) by atmospheric pressure plasma treatment and cell response. Dent Mater J. 2006; 25(3): 560-565. 26 陳克紹、陳素真、陳天牧、邱世華,表面電漿改質技術於生醫材料之應用,化工資訊與商情,民93; 18: 30-39。 27 馬寧元、李新中,生物材料之電漿表面改質技術,化工資訊與商情,民96; 44: 46-54。 28 劉志宏、陳志瑋、張加強、林春宏,簡介大氣電漿技術及產業應用,機械工業雜誌,民95; 282: 87-98。 29 廖學良,電漿技術在高分子材料上之應用,化工資訊月刊,民91; 61(18): 52-57。 30 Mooney DJ, Organ G, Vacanti JP, Langer R. Design and fabrication of biodegradable polymer devices to engineer tubular tissues. Cell Transplant. 1994; 3(2): 203-210. 31 Shibuya I, Akaike T, Watanabe Y. Design of a temporally and spatially controlled drug delivery system for the treatment of liver diseases in mice. Hepatology. 2000; 32(6): 1300-1308. 32 Pellegrino JJ, Geer S, Maegley K, Rivera R, Steward D, Ko M. Chitin-chitosan membranes. Separations of amino acids and polypeptides. Ann N Y Acad Sci. 1990; 589: 229-244. 33 Razdan A, Pettersson D. Effect of chitin and chitosan on nutrient digestibility and plasma lipid concentrations in broiler chickens. Br J Nutr. 1994; 72(2): 277-288. 34 Tsukada K, Matsumoto T, Aizawa K, Tokoro A, Naruse R, Suzuki S, Suzuki M. Antimetastatic and growth-inhibitory effects of N-acetylchitohexaose in mice bearing Lewis lung carcinoma. Jpn J Cancer Res. 1990; 81(3): 259-265. 35 Zielinski BA, Aebischer P. Chitosan as a matrix for mammalian cell encapsulation. Biomaterials. 1994; 15(13): 1049-1056. 36 Kuang Y, Hou C, Gou S. Experimental study of the effect on growth of Schwann cell from chitin and chitosan in vitro. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi. 1998; 12(2): 90-93. 37 Eser Elçin A, Elçin YM, Pappas GD. Neural tissue engineering: adrenal chromaffin cell attachment and viability on chitosan scaffolds. Neurol Res. 1998; 20(7): 648-654. 38 Wu D, Zhao D. Tissue engineering study on repairment of injured nerve gap in rat. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 1997; 14(2): 108-110. 39 郭又菁、葉晨聖,奈米材料:金屬奈米粒子,工業材料雜誌,民93; 211: 167-171。 40 Jen CP, Chen YH, Fan CS, Yeh CS, Lin YC, Shieh DB, Wu CL, Chen DH, Chou CH. A nonviral transfection approach in vitro: the design of a gold nanoparticle vector joint with microelectromechanical systems. Langmuir. 2004; 20(4): 1369-1374. 41 Kim TS, Stiehl JD, Reeves CT, Meyer RJ, Mullins CB. Cryogenic CO oxidation on TiO(2)-supported gold nanoclusters precovered with atomic oxygen. J Am Chem Soc. 2003; 125(8): 2018-2019. 42 Christof M. Nanoparticles, Proteins, and Nucleic Acids: Biotechnology Meets Materials Science. Angewandte Chemie International Edition. 2001; 40(22): 4128-4158. 43 Fritzsche W. DNA-gold conjugates for the detection of specific molecular interactions. J Biotechnol. 2001; 82(1): 37-46. 44 葉晨聖、黃志嘉、邱顯明、鄭百喬、葉志麟,金屬奈米顆粒及其應用,化工資訊與商情,民94; 5: 54-65. 45 Stemple DL, Anderson DJ. Isolation of a stem cell for neurons and glia from the mammalian neural crest. Cell. 1992; 71(6): 973-985. 46 Sun Y, Shi J, Fu SL, Lu PH, Xu XM. Effects of embryonic neural stem cells and glial cell line-derived neurotrophic factor in the repair of spinal cord injury. Sheng Li Xue Bao. 2003; 55(3): 349-354. 47 Bochinski D, Lin GT, Nunes L, Carrion R, Rahman N, Lin CS, Lue TF. The effect of neural embryonic stem cell therapy in a rat model of cavernosal nerve injury. BJU Int. 2004; 94(6): 904-909. 48 Wang Y, Lu G, Li L, Han Z, Yang M, Huang T. Effects of neural stem cells transplantation on glial cell line-derived neurotrophic factor and growth associated protein 43 after spinal cord injury in rats. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi. 2005; 19(6): 416-419. 49 Kimura H, Yoshikawa M, Matsuda R, Toriumi H, Nishimura F, Hirabayashi H, Nakase H, Kawaguchi S, Ishizaka S, Sakaki T. Transplantation of embryonic stem cell-derived neural stem cells for spinal cord injury in adult mice. Neurol Res. 2005; 27(8): 812-819. 50 Chiu IM, Touhalisky K, Liu Y, Yates A, Frostholm A. Tumorigenesis in transgenic mice in which the SV40 T antigen is driven by the brain-specific FGF1 promoter. Oncogene. 2000; 19(54): 6229-6239. 51 Chiu IM, Touhalisky K, Baran C. Multiple controlling mechanisms of FGF1 gene expression through multiple tissue-specific promoters. Prog Nucleic Acid Res Mol Biol. 2001; 70: 155-174. 52 Inada Y, Morimoto S, Takakura Y, Nakamura T. Regeneration of peripheral nerve gaps with a polyglycolic acid-collagen tube. Neurosurgery. 2004; 55(3): 640-648. 53 Maquet V, Martin D, Malgrange B, Franzen R, Schoenen J, Moonen G, Jerome R. Peripheral nerve regeneration using bioresorbable macroporous polylactide scaffolds. J Biomed Mater Res. 2000; 52(4): 639-651. 54 Evans GR, Brandt K, Katz S, Chauvin P, Otto L, Bogle M, Wang B, Meszlenyi RK, Lu L, Mikos AG, Patrick CW, Jr. Bioactive poly(L-lactic acid) conduits seeded with Schwann cells for peripheral nerve regeneration. Biomaterials. 2002; 23(3): 841-848. 55 Itoh S, Yamaguchi I, Suzuki M, Ichinose S, Takakuda K, Kobayashi H, Shinomiya K, Tanaka J. Hydroxyapatite-coated tendon chitosan tubes with adsorbed laminin peptides facilitate nerve regeneration in vivo. Brain Res. 2003; 993(1-2): 111-123. 56 Rutkowski GE, Miller CA, Jeftinija S, Mallapragada SK. Synergistic effects of micropatterned biodegradable conduits and Schwann cells on sciatic nerve regeneration.J Neural Eng. 2004; 1(3): 151-157. 57 Walboomers XF, Jansen JA. Microgrooved silicone subcutaneous implants in guinea pigs. Biomaterials. 2000; 21(6): 629-636. 58 Yamaguchi I, Itoh S, Suzuki M, Osaka A, Tanaka J. The chitosan prepared from crab tendons: II. The chitosan/apatite composites and their application to nerve regeneration. Biomaterials. 2003; 24(19): 3285-3292. 59 Nakagawa M, Teraoka F, Fujimoto S, Hamada Y, Kibayashi H, Takahashi J. Improvement of cell adhesion on poly(L-lactide) by atmospheric plasma treatment. J Biomed Mater Res A. 2006; 77(1): 112-118. 60 Huang YC, Huang CC, Huang YY, Chen KS. Surface modification and characterization of chitosan or PLGA membrane with laminin by chemical and oxygen plasma treatment for neural regeneration. J Biomed Mater Res A. 2007.(in press) 61 Chang CJ, Hsu SH. The effect of high outflow permeability in asymmetric poly(dl-lactic acid-co-glycolic acid) conduits for peripheral nerve regeneration. Biomaterials. 2006; 27(7): 1035-1042. 62 Chang CJ, Hsu SH, Yen HJ, Chang H, Hsu SK. Effects of unidirectional permeability in asymmetric poly(DL-lactic acid-co-glycolic acid) conduits on peripheral nerve regeneration: An in vitro and in vivo study. J Biomed Mater Res B Appl Biomater. 2007.(in press) 63 Hsu SH, Chen CY, Lu PS, Lai CS, Chen CJ. Oriented Schwann cell growth on microgrooved surfaces. Biotechnol Bioeng. 2005; 92(5): 579-88. 64 Hsu SH, Liu BS, Lin WH, Chiang HC, Huang SC, Cheng SS. Characterization and biocompatibility of a titanium dental implant with a laser irradiated and dual-acid etched surface. Biomed Mater Eng. 2007; 17(1): 53-68. 65 Lin YL, Jen JC, Hsu SH, Chiu IM. Sciatic nerve repair by microgrooved nerve conduits made of chitosan-gold nanocomposites. Surgical Neurology. 2007. (submitted) 66 Chen H, Ouyang W, Lawuyi B, Martoni C, Prakash S. Reaction of chitosan with genipin and its fluorogenic attributes for potential microcapsule membrane characterization. J Biomed Mater Res A. 2005; 75(4): 917-927. 67 Chen H, Ouyang W, Lawuyi B, Prakash S. Genipin cross-linked alginate-chitosan microcapsules: membrane characterization and optimization of cross-linking reaction. Biomacromolecules. 2006; 7(7): 2091-2098. 68 Chen H, Ouyang W, Lawuyi B, Lim T, Prakash S. A new method for microcapsule characterization: use of fluorogenic genipin to characterize polymeric microcapsule membranes. Appl Biochem Biotechnol. 2006; 134(3): 207-222. 69 Bain JR, Mackinnon SE, Hunter DA. Functional evaluation of complete sciatic, peroneal, and posterior tibial nerve lesions in the rat. Plast Reconstr Surg. 1989; 83(1): 129-138. 70 Schmidt CE, Leach JB. Neural tissue engineering: strategies for repair and regeneration. Annu Rev Biomed Eng. 2003; 5: 293-347.
摘要: 本研究以聚乳酸(PLA)生物可降解材料,利用相轉移製程製備出具(對稱/非對稱)之多孔性神經導管,為增加細胞之排序功能;導管內襯以微影製程之模板拓印出具方向性溝槽,並在溝槽上以大氣電漿技術改質,接枝具生物相容性之幾丁聚醣-奈米金複合材料,之後觀察神經幹細胞在各基材上排列、增生以及牛血清白蛋白滲透率的情形。體外實驗結果發現,細胞在各微溝槽表面基材上皆會沿溝槽方向生長排列,分析其排序比例和神經幹細胞增生皆較改質後塗佈一層幾丁聚醣-奈米金複合材料為佳,孔洞對稱與非對稱表面微溝槽細胞排序程度相當,但滲透率則是以非對稱孔洞基材改質一層幾丁聚醣-奈米金複合材料最為理想。另外進行體內實驗,以大鼠坐骨神經損傷動物模式,利用步跡測試觀察,六週後犧牲,組織切片以蘇木紫-伊紅(HE)染色法和神經髓鞘染色來比較各基材於體內之受損神經修復情形,結果顯示藉由非對稱孔洞基材改質一層幾丁聚醣-奈米金複合材料之神經導管;搭配神經幹細胞治療大鼠坐骨神經損傷,能有效排出導管內代謝產物及促使神經再生,對神經修復效果最佳。
In this study the nerve conduits with microporous (symmetric/asymmetric porous) structure were prepared from biodegradeable polylactide (PLA) by using a phase-inverse technique. The inner surface of the films was fabricated with microgrooves to provide instructive environments. Furthermore, the substrates were grafted with chitosan-Au nanocomposites (CA) after atmosphere air plasma treatment to modify the hydrophobic surface. The permeability of the PLA films were analyzed by using bovine serum albumin. For in vitro studies, the degree of cell alignment and the proliferation of neural stem cells were evaluated. It was shown that the degree of cell alignment and cell proliferation were higher in the CA grafted PLA surface. There was no significant difference between symmetric and asymmetric porous surfaces for cell alignment. Comparing the permeability of the substrates, the asymmetric substrates with CA grafting showed the most effective diffusion (outflow > inflow). The PLA conduits were implanted in the rat sciatic nerve to test the regenerative capacity. The repair outcome was evaluated by the walking behavior, histology and immunochemistry. In vivo results demonstrated that the asymmetrical microporous conduits with chitosan-Au nanocomposite modified inner surface provided a combination of physical permissive pathway for nutrient diffusion and metabolic products removal and biological cues for regenerating axons in repairing rat sciatic nerve transactions.
URI: http://hdl.handle.net/11455/23285
其他識別: U0005-1707200701554200
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-1707200701554200
Appears in Collections:生命科學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.