Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/23314
標題: 探討紅麴產品調節血脂與減少動脈粥狀硬化危險因子之功效
Studies on the lipid modulatory effects and reduction of risk factors in atherosclerosis by Monascus products
作者: 王慧貞
Wang, Hui-Chen
關鍵字: Monascus products
紅麴產品
lipid modulatory
reduction of risk factors in atherosclerosis
調節血脂
減少動脈粥狀硬化危險因子
出版社: 生命科學院碩士在職專班
引用: 第六章、參考文獻 林讚峰,1982。紅麴菌發展之演進,製酒科技專論彙編,第4卷:第66-77頁 林讚峰,1992。紅麴菌在保健食品上的新用途,食品工業,第二十四卷,第十期,第41-45頁 林俊毅,2002。建立紅麴毒素 citrinin 酵素免疫分析法之研究。國立台灣大學碩士論文 李俊霖 ,2003。提高紅麴中 monacolin K、GABA 與降低 citrinin 生成量之研究。國立台灣大學碩士論文 吳素心 ,2004。紅麴中降低citrinin生成之條件探討。中國文化大學碩士論文 陳彥霖、李昭蓉、陳建州、袁國芳,1998。紅麴菌種的研究開發與應用,食品工業月刊,第30卷,第七期,第1-10頁。 黃顯宗,1985。紅麴菌研究的回顧與展望,行政院國科會生物科學研究中心專題演講論文及專刊第12號,第109-124頁。 鄭子彥 ,2003。紅麴citrinin定量分析方法之研究。國立台灣大學碩士論文 蘇遠志,黃世佑,八十六年二月第二版。微生物化學工程學,華香園出版社,台北市,第89-90頁。 蘇遠志,1999。應用微生物學,國立編譯館,華香園出版,第945-960頁。 Achliya GS., Wadodkar SG., Dorle AK. 2004. Evaluation of hepatoprotective effect of Amalkadi Ghrita against carbon tetrachloride-induced hepatic damage in rats. J Ethnopharmacol. 90(2-3):229-232. Adama MR., Golden DL., Register TC., Anthony MS., Hodgi JB., Maeda N., Williams JK. 2002. The atheroprotective effect of dietary soy isoflavones in apolipoprotein E -/- mice requires the presence of estrogen receptor-alpha. Arterioscler. Thromb. Vasc. Biol. 22: 1859-1864. Adama MR., Golden DL., Anthony MS., Register TC., Williams J. K. 2002. The inhibitory effect of soy protein isolate o atherosclerosis in mice does not require the presence of LDL receptors or alteration of plasma. J. Nutr. 132: 43-49. Afzal M., Safer AM., Al-Bloushi S. 2005. CoQ9 potentiates green tea antioxidant activities in Wistar rats. Biofactors. 25(1-4): 255-259. Allian CC., Poon LS., Chan CSG., Richmond W., Fu PC. 1974. Enzymatic determination of total serum cholesterol. Clin.Chem. 20:470-475. Alberts AW., Chen J., Kuron G., Hunt V., Huff J., Hoffman C., Rothrock J., Lopez M., Joshua H., Harris E., Patchett A., Monaghan R., Currie S., Stapley E., Albers-Schonberg G., Hensens O., Hirshfield J., Hoogsteen K., Liesch J., Springer J. 1980. Mevinolin: a highly potent competitive inhibitor of hydroxymethylglutaryl- coenzyme A reductase and a cholesterol-lowering agent. Proc Natl Acad Sc. 77(7):3957-3961. Aniya Y., Yokomakura T., Yonamine M., Shimada K., Nagamine T., Shimabukuro M., Gibo H. 1999. Screening of antioxidant action of various molds and protection of Monascus anka against experimentally induced liver injuries of rats.Gen Pharmacol. 32(2): 225-231. Anderson JW., Diwadkar VA., Bridges, SR. 1998. Selective effects of different antioxidants on oxidation of lipoproteins from rats. Proc. Soc. Exp. Biol. Med. 218: 376–381. Arliss RM and Biermann CA. 2002. Do soy isoflavones lower cholesterol, inhibit atherosclerosis, and play a role in cancer prevention? Holist. Nurs. Pract. 16: 40-48 Blomhoff, R. 2005. Dietary antioxidants and cardiovascular disease. Curr. Opin. Lipidol. 16: 47-54. Arai M and Hibino T. 1983. Tumorigenicity of citrinin in male F344 rats. Cancer Lett. 17(3):281-287. Ashok Kumar N. and Pari L. 2003. Antioxidant action of Moringa oleifera Lam. (drumstick) against antitubercular drugs induced lipid peroxidation in rats. J Med Food. 6(3):255-259. Baskar AA., Manoharan S., Manivasagam T., Subramanian P.2004.Temporal patterns of lipid peroxidation product formation and antioxidants activity in oral cancer patients. Cell Mol Biol 9:665–673. Belinky PA., Aviram M., Mahmood S., Vaya J. 1998. Structural aspects of the inhibitory effect of glabridin on LDL oxidation. Free Radic Biol Med. 24(9):1419-1429. Belinky PA., Aviram M., Fuhrman B., Rosenblat M., Vaya J. 1998. The antioxidative effects of the isoflavan glabridin on endogenous constituents of LDL during its oxidation. Atherosclerosis. 137(1):49-61. Betina V and Barath Z. 1980. Secondary effects of citrinin on nucleic acid and protein synthesis in Bacillus subtilis and Saccharomyces cerevisiae. Biologia (Bratisl.) 35: 389-397. Belinky PA., Aviram M., Mahmood S and Vaya J.1998. Structural aspects of the inhibitory effect of glabridin on LDL oxidation. Structural aspects of the inhibitory effect of glabridin on LDL oxidation. Free Radic Biol Med. 24(9): 1419-1429. Belinky PA., Aviram M., Fuhrman B., Rosenblat M and Vaya J. 1998. The antioxidative effects of the isoflavan glabridin on endogenous constituents of LDL during its oxidation. Atherosclerosis. 137(1): 49-61. Bjorkhem I., Freyschuss A., Breuer O., Diczfalusy U., Berblund L., Henriksson P. 1991. The antioxidant butylated hydroxytoluene protects against atherosclerosis. Arterioscler. Thromb. 11: 15-22. Blanc P J., Laussac JP., Le Bars. J., Le Bars. P., Loret MO., Pareilleux A., Prome D., Prome JC., Santerre AL., Goma G. 1995. Characterization of monascidin A from Monascus as citrinin. Int. J. Food Microbiol. 27: 201-213. Blomhoff R. 2005.Dietary antioxidants and cardiovascular disease Curr Opin Lipidol. 16(1):47-54. Bondy GS and Armstrong CL. 1998. Cytotoxicity of nephrotoxic fungal toxins to kidney-derived LLC-PK1 and OK cell lines. Cell Biol Toxicol.14(5):323-332. Bouche N and Fromm H. 2004. GABA in plants: just a metabolite? Trends Plant Sci. 9:110-115. Bonorden WR and Pariza MW. 1994. Antioxidant nutrients and protection from free radicals. In: Kotsonis FN., Mackey M and Hjelle J. eds. Nutritional Toxicology. New York: Raven. 19-48. Brown MS and Goldstein JL. 1980. Multivalent feedback regulation of HMG CoA reductase, a control mechanism coordinating isoprenoid synthesis and cell growth. J Lipid Res. 21(5):505-517. Budavari S., Maryadele JO., Smith A., Heckelman PE.1989. The Merck Index. 11: 2330-2331 and 6042-6043. Bun SS., Bun H., Guedon D., Rosier C., Ollivier E. 2006. Effect of green tea extracts on liver functions in Wistar rats. Food Chem Toxicol. 44(7): 1108-1113. Campoy S., Rumbero A., Martín JF., Liras P. 2006. Characterization of an hyperpigmenting mutant of Monascus purpureus IB1: identification of two novel pigment chemical structures. Appl Microbiol Biotechnol. 70(4):488-496. Casas Lopez JL., Sanchez Perez JA., Fernandez Sevilla JM., Acien Fernandez FG., Molina Grima E., Chisti Y. 2003. Production of lovastatin by Aspergillus terreus: effects of the C:N ratio and the principal nutrients on growth and metabolite production. Enzyme Microb Technol. 33(8): 270-277. Carels M and Shepherd D. 1975. Sexual reproductive cycle of Monascus in submerged shaken culture. J. Bacteral. 122: 288-294. Carels M and Shepherd D. 1977. The effect of different nitrogen sources on pigment production and sporulation of Monascus species in submerged, shaken culture. Can J Microbiol. 23 (10):1360-1372. Chagas GM., Oliveira BM., Campello AP., Kluppel ML.1992. Mechanism of citrinin induced dysfunction of mitochondria. II. Effect on respiration, enzyme activities, and membrane potential of liver mitochondria. Cell Biochem Funct. 10(3): 209-216. Chagas GM., Campello AP., Kluppel ML.1992.Mechanism of citrinin-induced dysfunction of mitochondria. I. Effects on respiration, enzyme activities and membrane potential of renal cortical mitochondria. J. Appl Toxicol. 12(2): 123-129. Chang JC., Wu MC., Liu IM., Cheng JT. 2006 .Plasma glucose-lowering action of Hon-Chi in streptozotocin-induced diabetic rats. Horm Metab Res. 38(2):76-81. Chen F and Hu X. 2005. Study on red fermented rice with high concentration of monacolin K and low concentration of citrinin. Int J Food Microbiol. 103(3): 331-337. Cheng BJ., Moritomo A., Yamasaki Y., Wu LX, Inagaki M., Nishimura M., Tanishima K., Poracova J. 2004. Preventive effect of traditional herbal formulae against experimental hypercholesterolemia in rats with special reference to blood lipoprotein cholesterol levels. J Ethnopharmacol. 94(2-3): 275-278. Chagas GM., Oliveira MA., Campello AP., Kluppel ML.1995.Mechanism of citrinin-induced dysfunction of mitochondria. IV--Effect on Ca2+ transport. Cell Biochem Funct. 13(1): 53-59. Chyu KY., Babbidge SM., Zhao X., Dandillaya R., Rietveld AG., Yano J., Dimayuga P., Cercek B.,Shah PK. 2004. Differential effects of green tea-derived catechin on developing versus established atherosclerosis in apolipoprotein E-null mice. Circulation. 109(20): 2448-2453. Chen JD., Wu YZ., Tao ZL., Chen ZM., Liu XP. 1995. Hawthorn (shan zha) drink and its lowering effect on blood lipid levels in humans and rats. World Rev Nutr Diet.77: 147-154. Chu CY., Lee MJ., Liao CL., Lin WL., Yin YF., Tseng TH. 2003. Inhibitory effect of hot-water extract from dried fruit of Crataegus pinnatifida on low-density lipoprotein (LDL) oxidation in cell and cell-free systems. J Agric Food Chem. 51(26): 7583-7588. Chapman MJ. 1980. Animal lipoproteins: chemistry, structure, and comparative aspects. J. Lipid Res. 21: 789-853. Chen CC., Liu IM., Cheng JT. 2006. Improvement of insulin resistance by miracle fruit (Synsepalum dulcificum) in fructose-rich chow-fed rats. Phytother Res. 20(11):987-992. Chu CY., Lee MJ., Liao CL., Lin WL., Yin YF., Tseng TH. 2003 Inhibitory effect of hot-water extract from dried fruit of Crataegus pinnatifida on low-density lipoprotein (LDL) oxidation in cell and cell-free systems. J Agric Food Chem. 51(26):7583-7588. Chen YL., Yang S.P, Shiao MS., Chen JW., Lin SJ. 2001. Salvia miltiorrhiza inhibits intimal hyperplasia and monocyte chemotactic protein-1 expression after balloon injury in cholesterol-fed rabbits. J Cell Biochem. 83(3):484-493. Cicero AF., Brancaleoni M., Laghi L., Donati F., Mino M. 2005. Antihyperlipidaemic effect of a Monascus purpureus brand dietary supplement on a large sample of subjects at low risk for cardiovascular disease: a pilot study.Complement Ther Med. 13(4):273-278. Ciegler A., Vesonder RF., Jackson LK. 1977. Produciton and biological activity of patulin and citrinin from Penicillium expansum. Appl Environ Microbiol. 33 (4):.1004-1006. Clair RS and Anthony M. 2005. Soy isoflavones and atherosclerosis. Handb. Exp. Pharmacol. 170: 301-323. Clarkson TB. 2002. Soy:soy phytoestroges and cardiovascular disease. J. Mar. 132: 566S-569S. Cooper R., Morre DJ., Morre DM. 2005. Medicinal benefits of green tea: part II. review of anticancer properties. J Altern Complement Med. 11(4): 639-652. Crawford RS., Kirk EA., Rosenfeld ME., LeBoeuf RC., Chait A. 1998. Dietary antioxidants inhibit development of fatty streak lesions in the LDL receptor-deficient mouse. Arterioscler. Thromb. Vasc. Biol. 18: 1506–1513. Datta S., Wang L., Moore DD., Osborne TF. 2006. Regulation of 3-hydroxy-3- methylglutaryl coenzyme A reductase promoter by nuclear receptors liver receptor homologue-1 and small heterodimer partner: a mechanism for differential regulation of cholesterol synthesis and uptake. J Biol Chem. 281(2):807-812. Da Lozzo EJ., Oliveira MB., Carnieri EG. 1998. Citrinin-induced mitochondrial permeability transition. J Biochem Mol Toxicol. 12(5): 291-297. Dhale MA., Divakar S., Kumar SU., Vijayalakshmi G. 2007. Isolation and characterization of dihydromonacolin-MV from Monascus purpureus for antioxidant properties. Appl Microbiol Biotechnol. 73(5):1197-1202. Dhiman RK and Chawla YK. 2005. Herbal medicines for liver diseases. Dig Dis Sci.50(10):1807-1812. Diaz MN., Frei B., Vita JA., Keaey JF. 1997. Antioxidant and atherosclerotic heart disease. N. Engl. J. Med. 337: 408-416. Du GH., Qiu Y., Tian YE., Zhang JT. 1995. Prevention of galactose-induced cataractogenesis in rats by salvianolic acid A Yao Xue Xue Bao. 30(8):561-566. El-Beshbishy HA. 2005. Hepatoprotective effect of green tea (Camellia sinensis) extract against tamoxifen-induced liver injury in rats. J Biochem Mol Biol. 38 (5):563-570. Endo A., Hasumi K., Negishi S. 1985. Monacolins J and L, new inhibitors of cholesterol biosynthesis produced by Monascus ruber. J Antibiot (Tokyo). 38(3):420-422. Endo A., Hasumi K., Nakamura T., Kunishima M., Masuda M. 1985. Dihydromonacolin L and monacolin X, new metabolites which inhibit cholesterol biosynthesis. J Antibiot (Tokyo). 38(3):321-327. Endo A., Kuroda M., Tsujita Y. 1976. ML-236A, ML-236B, and ML-236C, new inhibitors of cholesterogenesis produced by Penicillium citrinium. J Antibiot (Tokyo). 29(12): 1346-1348. Endo A .1979. Monacolin K, a new hypocholesterolemic agent produced by Monascus species. J Antibiot 32: 852–854. Fang JG., Liu YH., Wang WQ., Xie W., Fang SX., Han HG. 2005. The anti-endotoxic effect of o-aminobenzoic acid from Radix Isatidis. Acta Pharmacol Sin. 26(5):593-597. Fears R., Richards DH., Ferres H. 1980. The effect of compactin, a potent inhibitor of 3-hydroxy-3-methylglutaryl coenzyme-A reductase activity, on cholesterogenesis and serum cholesterol levels in rats and chicks. Atherosclerosis. 35(4):439-449. Ferroni P., Basili S., Santilli F., Davi G. 2006.Low-density lipoprotein-lowering medication and platelet function. Pathophysiol Haemost Thromb. 35(3-4):346-354. Review. Fiorini RN., Donovan JL., Rodwell D., Evans Z., Cheng G., May HD, Milliken CE., Markowitz JS., Campbell C., Haines JK., Schmidt MG., Chavin KD. 2005. Short-term administration of (-)-epigallocatechin gallate reduces hepatic steatosis and protects against warm hepatic ischemia/reperfusion injury in steatotic mice. Liver Transpl. 11(3): 298-308. Frei B. and Higdon JV. 2003. Antioxidant activity of tea polyphenols in vivo: evidence from animal studies. J Nutr. 133(10):3275S-3284S. Fuhrman B., Volkova N., Kaplan M., Presser D., Attias J., Hayek T., Aviram M. 2002. Antiatherosclerotic effects of licorice extract supplementation on hypercholesterolemic patients: increased resistance of LDL to atherogenic modifications, reduced plasma lipid levels, and decreased systolic blood pressure. Nutrition.18(3): 268-273. Fuhrman B., Buch S., Vaya J., Belinky PA., Coleman R., Hayek T., Aviram M.1997. Licorice extract and its major polyphenol glabridin protect low-density lipoprotein against lipid peroxidation: in vitro and ex vivo studies in humans and in atherosclerotic apolipoprotein E-deficient mice. Am J Clin Nutr. 66(2): 267-275. Galati G., Lin A., Sultan AM., O''Brien PJ. 2006. Cellular and in vivo hepatotoxicity caused by green tea phenolic acids and catechins.. Free Radic Biol Med.40(4):570-580. Belinky PA., Aviram M., Fuhrman B., Rosenblat M., Vaya J. 1998. The antioxidative effects of the isoflavan glabridin on endogenous constituents of LDL during its oxidation. Atherosclerosis. 137(1):49-61. Guan Y and Zhao S. 1995.Yishou jiangzhi (de-blood-lipid) tablets in the treatment of hyperlipemia.J Tradit Chin Med. 15(3):178-179. Guan Y., Miao CY., Su DF. 2001. Effects of six antihypertensive drugs on blood pressure and hypothalamic GABA content in spontaneously hypertensive rats. Fundam Clin Pharmacol. 15(4):221-226. Halliwell B. 1995. Oxidation of low-density lipoproteins: questions of initiation, propagation, and the effect of antioxidants. Am J Clin Nutr. 61(3 Suppl): 670S-677S. Review. Hawksworth DL and Pitt J I. 1983. A new taxonomy for Monascus species based on cultural and microscopical characters. Aust. J. Botany. 31: 51-61. Hajjaj H., Klaebe A., Loret MO., Goma G., Blanc PJ., Francois J. 1999. HBiosynthetic pathway of citrinin in the filamentous fungus monascus ruber as revealed by 13C nuclear magnetic resonance. Appl Environ Microbiol. 65(1):311-314. Havel R.1999. Dietary supplement or drug? The case for cholestin. Am J Clin Nutr. 69(1):175-176. Heber D., Yip I., Ashley JM., Elashoff DA., Elashoff RM., Go VL. 1999. Cholesterol- lowering effects of a proprietary Chinese red-yeast-rice dietary supplement. Am J Clin Nutr. 69 (2): 231-236. He G. 1990. Effect of the prevention and treatment of atherosclerosis of a mixture of Hawthorn and Motherworn. Zhong Xi Yi Jie He Za Zhi. 10(6):361-326. Hsieh YT and Pan TM. 2002. The analytic methods and assays for secondary metabolites of Monascus products. J Biomass Energy Soc China 21:63–71. Hsieh PS and Tai YH. 2003. Nephrotoxic and hepatoxic effects of citrinin in mice. J. Agric. Food Chem. 51, 3945-3950. Hwang JM., Wang CJ., Chou FP., Tseng TH., Hsieh YS., Hsu JD., Chu CY. 2005. Protective effect of baicalin on tert-butyl hydroperoxide-induced rat hepatotoxicity. Arch Toxicol. 79(2): 102-109. Huang WH., Lee AR., Yang CH. 2006. Antioxidative and anti-inflammatory activities of polyhydroxyflavonoids of Scutellaria baicalensis GEORGI. Biosci Biotechnol Biochem.70(10):2371-2380. Isbrucker RA and Burdock GA. 2006. Risk and safety assessment on the consumption of Licorice root (Glycyrrhiza sp.), its extract and powder as a food ingredient, with emphasis on the pharmacology and toxicology of glycyrrhizin. Regul Toxicol Pharmacol. 46(3):167-192. Jang SI., Kim HJ., Hwang KM., Jekal SJ., Pae HO., Choi BM., Yun YG., Kwon TO., Chung HT., Kim YC. 2003. Hepatoprotective effect of baicalin, a major flavone from Scutellaria radix, on acetaminophen-induced liver injury in mice. Immunopharmacol Immunotoxicol. 25(4):585-594. Jeswal P.1996. Citrinin-induced chromosomal abnormalities in the bone marrow cells of Mus musculus. Cytobios. 86(344): 29-33. Jeong HG., You HJ., Park SJ., Moon AR., Chung YC., Kang SK., Chun HK. 2002. Hepatoprotective effects of 18beta-glycyrrhetinic acid on carbon tetrachloride-induced liver injury: inhibition of cytochrome P450 2E1 expression. Pharmacol Res. 46(3):221-227. Jialal I and Devaraj S. 1996. Low-density lipoprotein oxidation, antioxidants, and atherosclerosis: a clinical biochemistry perspective. Clin Chem. 42(4):498-506. Review Katsube T., Tabata H., Ohta Y., Yamasaki Y., Anuurad E., Shiwaku K., Yamane Y. 2004. Screening for antioxidant activity in edible plant products: comparison of low-density lipoprotein oxidation assay, DPPH radical scavenging assay, and Folin-Ciocalteu assay. J Agric Food Chem. 52(8): 2391-2396. Kaul D., Shukla AR., Sikand K., Dhawan V. 2005. Effect of herbal polypherols on atherogenic transcriptome. Mol. Cell. Biochem. 278: 177-184. Kasaoka S., Hase K., Morita T., Kiriyama S. 2002. Green tea flavonoids inhibit the LDL oxidation in osteogenic disordered rats fed a marginal ascorbic acid in diet. J. Nutr. Biochem. 13: 96–102. Keithley JK., Swanson B., Sha BE., Zeller JM., Kessler HA., Smith KY. 2002. A pilot study of the safety and efficacy of cholestin in treating HIV-related dyslipidemia. Nutrition. 18(2): 201-204. Keisuke T., Tomio I., Nobukazu T., Hiroshi O., Shirou A., Shouichi T., Yasue N. 1992. Extraction of hypotensive substance from wheat beni-koji. Nippon Shokuhin Kogyo Gakkaishi 39: 913–918. Khan SG., Katiyar SK., Agarwal R., Mukhtar H. 1992. Enhancement of antioxidant and phase II enzymes by oral feeding of green tea polyphenols in drinking water to SKH-1 hairless mice: possible role in cancer chemoprevention. Cancer Res 52: 4050-4052. Kimura K., Komagata D., Murakawa S., Endo A.1990. Biosynthesis of monacolins: conversion of monacolin J to monacolin K (mevinolin). J Antibiot (Tokyo). 43 (12): 1621-1622. Komagata D., Shimada H., Murakawa S., Endo A. 1989. Biosynthesis of monacolins: conversion of monacolin L to monacolin J by a monooxygenase of Monascus ruber. J Antibiot (Tokyo). 42(3):407-412. Knott HM., Baoutina A., Davies MJ., Dean RT. 2002. Comparative time-courses of copper-ion-mediated protein and lipid oxidation in low-density lipoprotein.Arch Biochem Biophys. 400(2):223-232. Kohama Y., Matsumoto S., Mimura T., Tanabe N., Inada A., Nakanishi T. 1987. Isolation and identification of hypotensive principles in red-mold rice. Chem. Pharm. Bull. 35 (6) 2484-2489. Kondo K., Suzuki Y., Ikeda Y., Umemura K. 2002. Genistein, an isoflavone included in soy, inhibits thrombotic vessel occlusion in the mouse femoral artery and in vitro platelet aggregation. Eur. J. Pharmacol. 455: 53-57. Kreuzer J., White AL., Knott TJ., Jien M-L., Mehrabian M., Scott J., Young SG., Haberland ME. 1997. Amino terminus of apolipiprotein B suffices to produce recognition of malondialdehyde-modified low density lipoprotein by the scavenger receptor of human monocyte- macrophages. J. Lipid Res. 38: 324-342. Kwon HJ., Hyun SH., Choung SY. 2005. Traditional Chinese medicine improves dysfunction of peroxisome proliferators-activated receptor alpha and microsomal triglyceride transfer protein on abnormalities in lipid metabolism in ethanol-fed rats. Biofactors. 23 (3): 163-176. Kwon HJ., Kim YY., Choung SY. 2005. Amelioration effects of traditional Chinese medicine on alcohol-induced fatty liver. World J. Gastroenterol. 11 (35): 5512-5516. Kumazawa N., Ohta S., Ishizuka O., Sakurai N., Kamogawa A., Shinoda M.1990. Protective effects of various methanol extracts of crude drugs on experimental hepatic injury induced by carbon tetrachloride in rats. Yakugaku Zasshi. 110(12):950-957. Kuo KL., Weng MS., Chiang CT., Tsai YJ, Lin-Shiau SY., Lin JK. 2005. Comparative studies on the hypolipidemic and growth suppressive effects of oolong, black, pu-erh, and green tea leaves in rats. J Agric Food Chem. 53(2): 480-489. Kushnerova NF., Fomenko SE., Polozhentseva MI., Bulanov AE. 1995. Effect of natural complexes of biologically active substances on liver regeneration in alcohol poisoning. Vor Med Khim. 41(2): 20-23. Leake DS and Rankin SM. 1990. The oxidative modification of low-density lipoproteins by macrophages. Biochem J. 270(3): 741-748. Lee CL., Wang JJ., Kuo SL., Pan TM. 2006. Monascus fermentation of dioscorea for increasing the production of cholesterol-lowering agent-monacolin K and antiinflammation agent-monascin. Appl. Microbiol. Biotechnol. 72(6):1254-1262. Lee CL., Tsai TY., Wang JJ., Pan TM. 2006. In vivo hypolipidemic effects and safety of low dosage Monascus powder in a hamster model of hyperlipidemia. Appl Microbiol Biotechnol. 70(5):533-540. Lee MJ., Chou FP., Tseng TH., Hsieh MH., Lin MC., Wang CJ. 2002. Hibiscus protocatechuic acid or esculetin can inhibit oxidative LDL induced by either copper ion or nitric oxide donor.J Agric Food Chem. 50(7):2130-2136. Lee TY., Wang GJ., Chiu JH., Lin HC. 2003. Long-term administration of Salvia miltiorrhiza ameliorates carbon tetrachloride-induced hepatic fibrosis in rats. J Pharm Pharmacol. 55 (11): 1561-1568. Li C., Zhu Y., Wang Y., Zhu J-S., Chang J., Kritchevsky D. 1998. Monascus purpureus-fermented rice (red yeast rice): a natural food product that lowers blood cholesterolin animal models of hypercholesterolemia. Nutr Res.18:71– 81. Li W., Hellsten A., Jacobsson SL., Blomqvist MH., Olsson GA., Yuan XM. 2004. Alpha-tocopherol and astaxanthin decrease macrophage infiltration, apoptosis and vulnerability in atheroma of hyperlipidaemic rabbits. J. Mol. Cell. Cardiol. 37: 969-978. Li YG.., Zhang F., Wang ZT., Hu ZB. 2004. Identification and chemical profiling of monacolins in red yeast rice using high-performance liquid chromatography with photodiode array detector and mass spectrometry. 2004. J. Pharm. Biomed Anal. 35 (5): 1101-1112. Li YG.., Liu H., Wang ZT. 2005. A validated stability-indicating HPLC with photodiode array detector (PDA) method for the stress tests of Monascus purpureus fermented rice, red yeast rice. J. Pharm Biomed Anal.39 (1-2): 82-90. Li S and Wan L. 2004. Experimental study on the preventive mechanism of salviae miltiorrhizae against atherosclerosis in rabbits models. J Huazhong Univ Sci Technolog Med Sci. 24 (3): 233-235. Li SY., Yu Y., Li SP. 2007. Identification of antioxidants in essential oil of radix Angelicae sinensis using HPLC coupled with DAD-MS and ABTS-based assay. J Agric Food Chem. 55(9):3358-3362. Lin CC., Li TC., Lai MM. 2005. Efficacy and safety of Monascus purpureus went rice in subjects with hyperlipidemia. Eur. J. Endocrinol. 153: 679-686. Lin CF. 1975. Studies on the Monascus isolated from the startor of Kaoliang Brandy. Zhonghua Min Guo Wei Sheng Wu Xue Za Zhi. 8(2):152-160. Lin YL., Wu CH., Luo MH., Huang YJ., Wang CN., Shiao MS., Huang YT. 2006. In vitro protective effects of salvianolic acid B on primary hepatocytes and hepatic stellate cells. J. Ethnopharmacol. 105 (1-2): 215-222. Liu BH., Wu TS., Su MC., Chung CP., Yu FY. 2005. Evaluation of citrinin occurrence and cytotoxicity in Monascus fermentation products. J Agric Food Chem. 53(1): 170-175. Liu J., Zhang J., Shi Y., Grimsgaard S., Alraek T., Fonnebo V. 2006. Chinese red yeast rice (Monascus purpureus) for primary hyperlipidemia: a meta-analysis of randomized controlled trials. Chin Med.1(4):1-13. Liu YL and Liu GT. 2002. Inhibition of human low-density lipoprotein oxidation by salvianolic acid-A. Yao Xue Xue Bao.37(2):81-85. Luper S. 1999. A review of plants used in the treatment of liver disease: part two. Altern Med Rev. 4(3): 178-188. Luo M., Kannar K., Wahlqvist ML., O''Brien RC. 1997. Inhibition of LDL oxidation by green tea extract. Lancet. 349(9048): 360-361. Lynch SM and Frei B. 1997. Physiological thiol compounds exert pro- and anti-oxidant effects, respectively, o iron- and copper-dependent oxidation of human low density lipoprotein. Biochim. Biophys. Acta. 1345: 215-221. Ma J., Li Y., Ye Q., Li J., Hua Y., Ju D., Zhang D., Cooper R., Chang M. 2000. Constituents of red yeast rice, a traditional Chinese food and medicine. Agric. Food Chem. 48: 5220-5225. Manzoni M., Bergomi S., Rollini M., Cavazzoni. 1999. Production of statins by filamentous fungi. Biotechnol Lett. 21: 253-257. Manzoni M and Rollini M. 2002. Biosynthesis and biotechnological production of statins by filamentous fungi and application of these cholesterol-lowering drugs. Appl Microbiol Biotechnol. 58 (5): 555-564. Man RYK., Lynn EG., Cheung F., Tsang PSY., Karmin O. 2002.Cholestin inhibits cholesterol synthesis and secretion in hepatic cells (HepG2). Mor Cell Biochem. 233: 153–158. Martin W., Lorkowski G., Creppy EE., Dirheimer G., Roschenthaler R.1986. Action of citrinin on bacterial chromosomal and plasmid DNA in vivo and in vitro. Appl Environ Microbiol. 52(6): 1273-1279. Martinkova L., Patakova-Juzlova P., Krent V, Kucerova Z., Havlicek V., Olsovsky P., Hovorka O., Rihova B., Vesely D., Vesela D., Ulrichova J., Prikrylova V.1999. Biological activities of oligoketide pigments of Monascus purpureus. Food Addit Contam. 6(1):15-24. McGowan MW., Artiss JD., Strandbergh DR., Zak BA.1983. Peroxidase-coupled method for the colorimetric determination of serum triglycerides. Clin Chem. 29(3): 538-542. Miyagawa C., Wu C., Kennedy DO., Nakatani T., Ohtani K., Sakanaka S., Kim M., Matsui-Yuasa I. 1997. Protective effect of green tea extract and tea polyphenols against the cytotoxicity of 1,4-naphthoquinone in isolated rat hepatocytes. Biosci Biotechnol Biochem. 61(11):1901-1905. Miller FJ., Gutterman DD., Rios CD., Heistad DD., Davidson BL. 1998. Superoxide production in vascular smooth muscle contributes to oxidative stress and impaired relaxation in atherosclerosis. Circ. Res. 82: 1298-1305. Miura Y., Chiba T., Miura S., Tomita I. I., Umegaki K., Ikeda M., Tomita T. 2000.Green tea polyphenols (flavan 3-ols) prevent oxidative modification of low density lipoproteins: an ex vivo study in humans. J. Nutr. Biochem. 11: 216–222. Miyagawa C., Wu C., Kennedy DO., Nakatani T., Ohtani K., Sakanaka S., Kim M., Matsui-Yuasa I. 1997. Protective effect of green tea extract and tea polyphenols against the cytotoxicity of 1,4- naphthoquinone in isolated rat hepatocytes. Biosci Biotechnol Biochem 61:1901-1905. Miyake T., Zhang MY., Kono I., Nozaki N., Sammoto H. 2006. Repression of secondary metabolite production by exogenous cAMP in Monascus. Biosci Biotechnol Biochem. 70(6):1521-1523. Mursu J., Voutilainen S., Nurmi T., Helleranta M., Rissanen TH., Nurmi A., Kaikkonen J., Porkkala-Sarataho E., Nyyssonen K., Virtanen JK., Salonen R., Salonen JT. 2005. Polyphenol-rich phloem enhances the resistance of total serum lipids to oxidation in men. J Agric Food Chem.53(8):3017-3022. Nasyrov KM., Chepurina LS., Kireeva RM.1995. The hepatoprotective and cholagogic action of glycyrrhizic acid derivatives. Eksp Klin Farmakol.58 (6):60-63. Nilsson J., Nordin FG., Schiopu A., Shah PK., Jansson B., Carlsson R. 2007. Oxidized LDL antibodies in treatment and risk assessment of atherosclerosis and associated cardiovascular disease. Curr Pharm Des. 13(10):1021-1030. Ntanios FY And Jones PJH. 1999. Dietary sitostanol reciprocally influences cholesterol absorption and biosynthesis in hamsters and rabbits. Atherosclerosis. 143: 341-351. Nirogi R., Mudigonda K., Kandikere V. 2007 Chromatography-mass spectrometry methods for the quantitation of statins in biological samples. J Pharm Biomed Anal. Feb 13;[Epub ahead of print] Nasyrov KM., Chepurina LS., Kireeva RM.1995. The hepatoprotective and cholagogic action of glycyrrhizic acid derivatives. Eksp Klin Farmakol. 58(6):60-63. Ohmori R., Iwamoto T., Tago M., Takeo T., Unno T., Itakura H., Kondo K. 2005. Antioxidant activity of various teas against free radicals and LDL oxidation Lipids. 40(8): 849-853. Okawa M., Kinjo J., Nohara T., Ono M. 2001. DPPH (1,1-diphenyl-2-picrylhydrazyl) radical scavenging activity of flavonoids obtained from some medicinal plants. Biol Pharm Bull. 24(10):1202-1205. Parthasarathy S., Santanam N., Ramachandran S., Meilhac O. 1999. Oxidants and antioxidants in atherosclerosis: an appraisal. J. Lipid Res. 40: 2143-2157. Park E., Kum S., Wang C., Park SY., Kim BS., Schuller-Levis G.. 2005. Anti-inflammatory activity of herbal medicines: inhibition of nitric oxide production and tumor necrosis factor-alpha secretion in an activated macrophage-like cell line. Am J Chin Med. 33(3):415-424. Pitas RE., Friera A., McGuire J., Dejager S. 1992. Further characterization of the acetyl LDL (scavenger) receptor expressed by rabbit smooth muscle cells and fibroblasts. Arterioscler. Thromb. 12: 1235-1244. Prasad K., Kalra J., Lee P. 1994. Oxygen free radicals as a mechanism of hypercholesterolemic atherosclerosis: effects of probucol. Int. J. Angio. 3: 100-112. Qiao C., Zhang K., Xia J. 2007. Influence of oxidized low density lipoprotein on the proliferation of human artery smooth muscle cells in vitro. J Huazhong Univ Sci Technolog Med Sci. 27(1):20-23. Quettier-Deleu C., Voiselle G., Fruchart JC., Duriez P., Teissier E., Bailleul F., Vasseur J., Trotin F. 2003. Hawthorn extracts inhibit LDL oxidation. Pharmazie. 58(8): 577-581. Raal FJ., Areias AJ., Waisberg R., von Arb M. 1995. Susceptibility of low density lipoprotein to oxidation in familial hypercholesterolaemia. Atherosclerosis. 115(1):9-15. Register TC., Cann JA., Kaplan JR., Williams JK., Adams MR., Morgan TM., Anthony MS., Blair RM., Wagner J D., Clarkso T B. 2005. Effect of soy isoflavones and conjugated equine estrogens on inflammatory markers in atherosclerotic, ovariectomized monkeys. J. Clin. Endocrinol. Metab. 90: 1734-1740. Regulska-Ilow B., Biernat J., Grajeta H., Ilow R., Drzewicka M. 2004. Influence of bioflavonoids from the radix extract of Scutellaria baicalensis on the level of serum lipids, and the development of laboratory rats fed with fresh and oxidized fats. Nahrung. 48(2): 123-128. Rhyu MR., Kim DK., Kim HY., Kim BK. 2000. Nitric oxide-mediated endothelium dependent relaxation of rat thoracic aorta induced by aqueous extract of red rice fermented with Monascus ruber. J Ethnopharmacol. 70(1): 29-34. Rhyu MR., Kim JH., Kim EY. 2005. Radix angelica elicits both nitric oxide-dependent and calcium influx-mediated relaxation in rat aorta. J Cardiovasc Pharmacol. 46 (1): 99-104. Ribeiro SM., Chagas GM., Campello AP., Kluppel ML. 1997. Mechanism of citrinin-induced dysfunction of mitochondria. V. Effect on the homeostasis of the reactive oxygen species. Cell Biochem Funct. 15(3):203-209. Rokitansky C. 1852. A manual of pathological anatomy. London: Sydenham Society Ross R. 1993. The pathogenesis of atherosclerosis: a perspective for the 1990s. Nature 362: 801-809. Rossi T., Fano R.A., Castelli M., Malagoli M., Ruberto A.I., Baggio G.,Zennaro R., Migaldi M., Barbolini G. 1999. Correlation between high intake of glycyrrhizin and myolysis of the papillary muscles: an experimental in vivo study. Pharmacology & Toxicology 85, 221–229. Saifer A. 1951. Photometric determination of total and free cholesterol and the cholesterol ester ratio of serum by a modified Libermann-Burchard reaction. Am J Clin Pathol. 21(1): 24-32. Sai K., Kai S., Umemura T., Tanimura A., Hasegawa R., Inoue T and Kurokawa Y. 1998. Protective effects of green tea on hepatotoxicity, oxidative DNA damage and cell proliferation in the rat liver induced by repeated oral administration of 2-nitropropane. Food Chem Toxicol. 36(12): 1043-1051. Sabater-Vilar M., Maas RF., Fink-Gremmels J. 1999. Mutagenicity of commercial Monascus fermentation products and the role of citrinin contamination. Mutat Res. 444(1):7-16. Scheek LM., Wiseman SA., Tijburg LBM., Tol A. 1995. Dialysis of isolated low density lipoprotein inducted a loss of liopophilic antioxidants and increase the susceptibility to oxidation in vitro. Atherosclerosis. 117: 139-144. Schneweis I., Meyer K., Hormansdorfer S., Bauer J. 2001. Metabolites of Monascus ruber in silages. J. Anim. Physiol. Anim. Nutr. 85: 38-44. Seeram NP., Henning SM.,
摘要: 摘要 高脂血症,尤其是高膽固醇與低密度脂蛋白膽固醇,為動脈粥狀硬化之危險因子。動脈粥狀硬化的進展涉及LDL的氧化,活血化瘀中草藥可能含有抗LDL氧化成分。紅麴產品常作為可降低血膽固醇的保健食品,先前的研究證實紅麴次級代謝物中的活性成分monacolin K與臨床降血脂藥物lovastatin相同,為紅麴產品降膽固醇之指標性化學物質,紅麴菌可產生真菌毒素citrinin,為紅麴產品應用上的一大隱憂。紅麴不具有ex vivo延緩LDL氧化的能力。本研究探討紅麴搭配具有抗LDL氧化功效的中草藥,以保肝生藥材搭配紅麴開發具調降血脂,且能延緩LDL氧化與保護紅麴不損傷肝臟之組合式產品的可行性。 本研究第一部份藉體外抗LDL氧化活性試驗,探討一些植物與中草藥中的抗氧化能力,體外模式為抑制銅離子誘導人類低密度脂蛋白氧化,以trolox 為正控制組(1 μM trolox抗氧化能力訂為1.00)做比較。SAGE是由丹參、當歸以及甘草抽出物以2:1:1比例 (w/w) 所組成,結果顯示: 丹參 (1:2000稀釋)、當歸 (1:1000稀釋) 與甘草水抽出物 (1:1000稀釋) 之相對強度 (ΔTlag)分別為3.45、0.28、1.81,故SAGE (1:1000稀釋) 之抗氧化能力 (ΔTlag為4.54倍)主要是由丹參所造成,甘草水抽出物與乙醇抽出物兩者也參與保護LDL的角色 (ΔTlag為1.81倍與2.09倍)。SALE是由丹參、黃耆、金銀花以2:1:2比例 (w/w) 所組成,結果顯示: 丹參、黃耆與金銀花水抽出物之抗氧化(ΔTlag)相對強度為分別為3.45、0.36、5.54,故SALE (1:1000稀釋) 其抗氧化能力 (ΔTlag為4.27倍),除了丹參外,其金銀花水抽出物也發揮很強的抑制LDL氧化能力。GRB由甘草、大黃、板藍根以1:2:2比例 (w/w) 所組成,結果顯示: GRB (1:1000稀釋) 其抗氧化能力 (ΔTlag為4.27倍),大黃扮演的抗氧化角色可能為主要,因大黃的水抽出物與乙醇抽出物均具有很強的抗LDL氧化活性 (水抽出物ΔTlag為6.27倍; 乙醇抽出物6.54倍)。神秘果的水抽出物與乙醇抽出物均有抑制低密度脂蛋白氧化能力 (ΔTlag為2.12與4.82倍)。辣木之水抽出物(稀釋800倍 之ΔTlag為3.3倍) 抗LDL氧化能力較乙醇抽出物 (稀釋400倍之ΔTlag為0.9倍)高,顯示辣木水抽出物的抗氧化能力較強。 本研究第二部份發展出簡易之萃取方法與逆相高效液相層析法(RP-HPLC),可同時測定紅麴產品的hydroxy acid form與lactone form monacolin K含量,並可用以推測該產品是否另以lovastatin摻雜。結果顯示: 新鮮紅麴產品中的monacolin K以hydroxy acid form為主,紅麴產品於常溫儲藏時hydroxy acid form 的monacolin K降解速度較lactone form快,lovastatin則以lactone form形式存在,且尚存在多種微量來自Aspergillus terreus代謝物質,故可作為紅麴產品是否添加lovastatin的依據。 本研究第三部份以高膽固醇飼食誘發高脂血症之倉鼠為實驗動物模式,以探討紅麴產品之降血脂功效,且搭配具保肝效果之中草藥形成複方,探討是否能避免紅麴產品所造成的肝損傷。結果顯示: 以高膽固醇飼料 (於飼料中添加0.25% 膽固醇與5%大豆油)餵食雄性倉鼠 (28~30天) 可顯著提高倉鼠血液中的TC、LDL-C 與VLDL-C,並造成膽固醇性脂肪肝,若於高膽固醇飼料中添加紅麴產品 (MK-508, 25 g/kg diet) 則能有效降低倉鼠血液中的總膽固醇值與改善脂肪肝之情形,但卻造成明顯的肝臟損傷。若以保肝藥材甘草 (10 g/kg diet) 與山楂 (10 g/kg) 搭配紅麴產品 (10 g/kg),結果顯示可減輕因紅麴所導致GOT與GPT的上升,且可延長LDL的氧化遲滯期(達33%)。倉鼠以高膽固醇飼料添加紅麴產品 (5 g / kg) 且搭配甘草 (10 g/kg) 或黃芩 (5 g/kg),於肝臟病理切片中有減輕肝損傷的趨勢,體外試驗結果顯示亦可降低LDL之氧化敏感性。綠茶 (10 g/kg) 搭配紅麴產品 (MK-508B 5 g/kg)雖有延緩LDL氧化的能力 (19%),但加重肝損傷。以丹參 (20 g/kg) 分別搭配兩種高活性紅麴產品 (MK-508B與MK-917) 混合物 (20 g/kg),並減少飼料中膽固醇的添加量 (減至0.15%, w/w),結果顯示單獨使用丹參產品有改善GOT/GPT 的趨勢 (15~30%),但搭配紅麴則功效不大,肝臟切片病理分析上也顯示相同之結果。 本研究可獲以下結論:紅麴產品之monacolin K以hydroxy acid形式為主,若紅麴產品僅含有或大部分的monacolin K為lactone form,並出現來自於A. terreus的微量代謝物質,則有可能是lovastatin摻雜其中。紅麴產品 (MK-508, 25 g/kg diet) 可降低倉鼠血液中總膽固醇值與改善脂肪肝。紅麴 (MK-508)不具有延緩LDL氧化的能力,搭配具有抗氧化功效的中草藥則能延緩LDL氧化。以保肝生藥材搭配紅麴開發具調降血脂,且能延緩LDL氧化與保護紅麴不損傷肝臟之組合式產品,為一可行之方向。
Abstrat Hypercholesterolemia, especially high plasma total cholesterol and LDL-cholesterol, is a risk factor in atherosclerosis. Recent studies have suggested that LDL oxidation is involved in the pathogenesis of atherosclerosis. Herbal medicines used in the treatment of blood stasis may contain antioxidants to inhibit LDL oxidation. Monascus rice products are used as health foods with the health claim to reduce plasma cholesterol. As a bioactive marker compound, monacolin K produced by Monascus is chemically identical to lovastatin. Monascus also produces citrinin, a mycotoxin with hepatic and renal toxicity. The presence of citrinin in the Monascus products poses a potential safety concern. Monascus products did not exhibit antioxidant potential to reduce LDL oxidation in vitro and ex vivo. The aim of this study is to search for potential herbal medicines that may reduce plasma lipids, inhibit LDL oxidation, and protect Monascus-induced hepatic injuries. As the first part of this study, LDL oxidation induced by Cu2+ was used as an in vitro system to search for antioxidants in the herbal medicines. Trolox was used as a positive control (potency of 1 microM trolox as 1.00). SAGE was a combined extract of Salvia miltiorrhiza (1:2000 dilution), Angelica sinensis (1:1000 dilution) and Glycyrrhiza uralensis (1:1000 dilution) in 2:2:1 ratio. Results showed that the antioxidant potentials of the three components of SAGE, as indicated by the prolongation of the lag phases (ΔTlag),were 3.45、0.28、1.81, respectively. Accordingly, the antioxidant potential of SAGE (1:1000 dilution) (ΔTlag 4.54 fold of trolox) was mainly contributed by S. miltiorrhiza. The contribution by Angelica sinensis, and G. uralensis was 1.81 and 2.09, respectively. SALE was a combined extract of Salvia miltiorrhiza, Astragalus membranaceus and Lonicera japonica in 2:1:2 ratio. Results showed that the antioxidant potentials of the three components of SALE, as indicated by the prolongation of the lag phases (ΔTlag), were 3.45、0.36、5.54, respectively. Accordingly, the antioxidant potential of SALE (1:1000 dilution) (ΔTlag 4.27 fold of trolox) was mainly contributed by S. miltiorrhiza and Lonicera japonica. GRB was a combined extract of Glycyrrhiza uralensis, Rheum palmatum and Radix Isatidis in 1:2:2 ratio. Results showed that the antioxidant potential of GRB (1:1000 dilution) (ΔTlag 4.27 fold of trolox) was mainly contributed by Rheum palmatum. The contribution by water extract and ethanol extract of Rheum palmatum was 6.27 and 6.54, respectively. The relative antioxidant potency of water extracts of Synsepalum dulcificum Denill was 2.12, and ethanol extracts was 4.82. The antioxidant activities of water extract of Moringa oleifera Lam (1:800 dilution) (ΔTlag 3.3 fold of trolox) was higher than which ethanol extract (1:400 dilution) (ΔTlag 0.9 fold of trolox). As the second part of the study, a simple procedure coupling the extraction with reversed-phase HPLC was developed to determine the contents of monacolin K in the Monascus products without causing the interconversion of the hydroxyl acid and lactone forms. This method was also used to determine the adulteration of Monascus products by lovastatin. Results indicated that fresh Monascus products contained monacolin K predominantly in the hydroxyl acid form. The hydroxyl acid form was decomposed more readily than the lactone form in prolonged storage. Based on the presence of lactone form in extremely high ratio and trace amount of impurities accompanying with lovastatin of Aspergillus terreus origin, adulteration by lovastatin in Monascus rice products could be identified. As the third part of this work, animal studies using high-cholesterol diet fed hamsters were conducted. It was aimed to evaluate the lipid modulatory effects of Monascus products and additional hepato-protective effects of combined treatment with herbal medicines. Results indicated that treatment with Monascus product (MK-508, 25 g/kg diet) to animals fed with a high cholesterol diet (normal diet supplemented with 0.25% cholesterol and 5% soybean oil, w/w) reduced serum TC, LDL-C, and VLDL-C values significantly as compared with the control group (high cholesterol diet). However, hepatic injury was also observed. Combination treatment of Monascus product (MK-508, 10 g/kg diet) with Glycyrrhiza uralensis (ST-GS, 10 g/kg) and Hawthorn Crataegus (ST-FC, 10 g/kg) reduced GOT and GPT and prolonged the lag phase of LDL oxidation ex vivo (33%). Treatment of animals on a high-cholesterol diet with Monascus (5 g / kg) and Glycyrrhiza uralensis (10 g/kg) or Monascus (5 g / kg) and Scutellaria baicalensis (5 g / kg) reduced hepatic injury and susceptibility of LDL to oxidation ex vivo. Combination treatment of Monascus (MK-508B 5 g/kg) with green tea (10 g/kg) prolonged the lag phase of LDL oxidation (19%). However, hepatic injury was exacerbated. Treatment with S. miltiorrhiza alone or with a mixture of two Monascus products (MK-508B and MK-917) (20 g/kg) to hamsters on a moderately high cholesterol diet (0.15% cholesterol and 5% soybean oil) reduced GOT and GPT (15-30%) was also carried out. S. miltorrhiza alone reduced GOT and GPT levels. The trend was similar to that of hepatic microscopic observation. Combination with Monascus products did not provide additional beneficial effect to a significant extent. This study concludes that the hydroxyl acid of monacolin K is dominant in the Monascus rice products. The presence of lactone form in an extremely high ratio and trace amounts of impurities of A. terreus origin strongly suggests adulteration of lovastatin. Monascus product (MK-508) reduces serum cholesterol and ameliorates fatty liver in hamsters fed with a high-cholesterol diet. Treatment of Monascus alone does not exhibit antioxidant potential to reduce LDL oxidation. Combination treatment of Monascus product with herbal medicines of antioxidant and hepato-protective potentials may effectively reduce plasma lipids, LDL oxidation, and hepatic injury. This approach may shed light on the development of an effective and safe Monascus product.
URI: http://hdl.handle.net/11455/23314
其他識別: U0005-2708200722452600
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2708200722452600
Appears in Collections:生命科學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.