Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/23372
標題: 比較來自不同棲息地的廣鹽性硬骨魚類吳郭魚和虱目魚在不同鹽度環境中腎臟Na+/K+-ATPase α-subunit isoforms的變化
Comparisons of switches of Na+/K+-ATPase α-isoform proteins between kidneys of two euryhaline teleots, tilapia (Oreochromis mossambicus) and milkfish (Chanos chanos), from different primary natural habitats in response to salinity challenge
作者: 鍾昌宏
Chung, Chang-Hung
關鍵字: tilapia
吳郭魚
milkfish
salinity
NKA
Na+, K+-ATPase
虱目魚
鹽度
滲透壓調節
離子調節
腎臟
鈉鉀幫浦
出版社: 生命科學院碩士在職專班
引用: Alava, V. R., 1998. Effect of salinity, dietary lipid source and level on growth of milkfish (Chanos chanos) fry. Aquaculture. 167, 229-236. Allen, G.R., Midgley, S.H., Allen, M., 2002. Field guide to the freshwater fishes of Australia. Western Australian Museum, Perth, Western Australia, 394, pp.335 Arjona, F.J., Vargas-Chacoff, L., Ruiz-Jarabo, I., Martín del Río, M.P., Mancera, J.M., 2007. Osmoregulatory response of Senegalese sole (Solea senegalensis) to changes in environmental salinity. Comp Biochem Physiol A Mol Integr Physiol. 148(2), 413-421. Arystarkhova, E., Sweadner, K. J., 1996. Isoform-specific monoclonal antibodies to Na,K-ATPase a subunits. Evidence for a tissue-specific post-translational modification of the a subunit. J. Biol. Chem. 271, 23407-23417. Bagrinao, T., 1994. Systematics, distribution, genetics and life history of milkfish, Chanos chanos. Environ. Biol. Fish. 39, 23-41. Ban, M., Ando, H., Urano, A., 2007. Effects of long-day on gill Na+, K+-ATPase gene expression and the development of seawater tolerance in sockeye salmon. Aquaculture. 273, 218-226. Beyenbach, K. W., 2004. Kidneys sans glomeruli. Am J Physiol Renal Physiol. 286(5), F811-27. Blaber, S.J.M., 1997. Fish and fisheries of tropical estuaries. Chapman and Hall, London. 367, pp. 50. Blanco, G.., Mercer, R.W., 1998. Isozymes of the Na-K-ATPase: heterogeneity in structure, diversity in function. Am. J. Physiol. 275, F633-650. Bond, C.E., 1999. Biology of Fishes. New York: Saunders college. Brauer, P.R., Sanmann, J.N., Petzel, D.H., 2005. Effects of warm acclimation on Na+, K+-ATPase alpha-subunit expression in chloride cells of Antarctic fish. Anat. Rec. A 285, 600-609. Broude, N.E., Modyanov, N.N., Monastyrskaya, G.S., Sverdlov, E.D., 1989. Advances in Na+, K+-ATPase studies: from protein to gene and back to protein. FEBS Lett. 257, 1 - 9. Bystriansky, J.S., Richards, J.G., Schulte, P.M., Ballantyne, J.S., 2006. Reciprocal expression of gill Na+/K+-ATPase α-subunit isoforms α1a and α1b during seawater acclimation of three salmonid fishes that vary in their salinity tolerance. J. Exp. Biol. 209, 1848-1858. Bystriansky, J.S., Frick, N.T., Richards, J.G., Schulte, P.M., Ballantyne, J.S., 2007. Wild arctic char (Salvelinus alpinus) upregulate gill Na+, K+-ATPase during freshwater migration. Physiol. Biochem. Zool. 80, 270-282. Cheng, H.C., 2004. Na+,K+-ATPase expression in kidneys of tilapia(Oreochromis mossambicus)acclimated to environments of different salinities. Master thesis. Department of Life Science, National Chung Hsing University. (in Chinese with English abstract) Chiu, Y.H., 2007. Switches of Na+/K+-ATPase α-subunit isoforms in gills of milkfish (Chanos chanos) acclimated to environments of different salinities. Master thesis. Department of Life Science, National Chung Hsing University. Choe, K.P., O'Brien, S., Evans, D.H., Toop, T., Edwards, S.L., 2004. Immunolocalization of Na+/K+-ATPase, carbonic anhydrase II, and vacuolar H+-ATPase in the gills of freshwater adult lampreys, Geotria australis. J. Exp. Zool. Part A Comp. Exp. Biol. 301, 654-665. Crear, D., 1980. Observations on the reproductive state of milkfish populations (Chanos chanos) from hypersaline ponds on Christmas Island (Pacific Ocean). Proc. World Maricul. Soc. 11, 548-556. Cutler, C.P., Sanders, I.L., Hazon, N., Cramb, G., 1995. Primary sequence, tissue specificity and expression of the Na+, K+-ATPase alpha 1 subunit in the European eel (Anguilla anguilla). Comp. Biochem. Physiol. B 111, 567-573. Efendiev, R., Bertorello, A. M., Pressley, T. A., Rousselot, M., Feraille, E., Pedemonte, C. H., 2000. Simultaneous phosphorylation of Ser11 and Ser18 in the alpha-subunit promotes the recruitment of Na+,K+-ATPase molecules to the plasma membrane. Biochemistry. 39, 9884-9892. Epstein, F.H., Katz, A.I., Pickford, G..E., 1967. Sodium- and potassium-activated adenosine triphosphatase of gills: Role in adaptation of teleosts to salt water. Science. New Series. 156, 1245-1247. Evans, D.H., 1998. Osmotic and ionic regulation. In the physiology of fishes. 2nd ed., CRC Press.Boca Raton New York, pp. 157-176. Evans, D.H., 2002. Cell signaling and ion transport across the fish gill epithelium. J Exp Zool. 293, 336-347. Fan, H.W., 2005. Na+-K+-ATPase expression in gills of milkfish (Chanos chanos) adapted environments of various salinities. Master thesis. Department of Life Science, National Chung Hsing University. (in Chinese with English abstract) Feng, S.H., Leu, J.H., Yang, C.H., Fang, M.J., Huang, C.J., Hwang, P.P., 2002. Gene expression of Na+-K+-ATPase α1 and α3 subunits in gills of the teleost Oreochromis mossambicus, adapted to different environmental salinities. Mar. Biotechnol. 4, 379-391. Ferraris, R.P., Almendras, J.M., Jazul, A.P., 1998. Changes in plasma osmolality and chloride concentration during abrupt transfer of milkfish (Chanos chanos) from seawater to different test salinities. Aquaculture. 70, 145-157. Fukusho, K., 1969. The specific difference of salinity tolerance among cichlid fishes genus Tilapia and histological comparison of their kidneys. Bull. Jap. Soc. Sci. Fish. 35, 148-155. Gallis, J. L., Bourdichon, M., 1976. Changes of (Na+-K+) dependent ATPase activity in gills and kidneys of two mullets Chelon labrosus (Risso) and Liza ramada (Risso) during fresh water adaptation. Biochem. 58, 625-627. Gharbi, K., Ferguson, M.M., Danzmann, R.G., 2005. Characterization of Na, K-ATPase genes in Atlantic salmon (Salmo salar) and comparative genomic organization with rainbow trout (Oncorhynchus mykiss). Mol. Genet. Genomics. 273, 474-483. Guynn, S.R., Scofield, M.A., Petzel, D.H., 2002. Identification of mRNA and protein expression of the Na/K-ATPase α1-, α2- and α3-subunit isoforms in Antarctic and New Zealand nototheniid fishes. J. Exp. Mar. Biol. Ecol. 273, 15-32. Hensley, C.B., Azuma, K.K., Tang, M.J., McDonough, A.A., 1992. Thyroid hormone inducing of rat myocardial Na+-K+-ATPase:α1-, α2-, and β1-mRNA and -protein levels at steady state. Am. J. Physiol. 262, 229-234. Hwang, P.P., Wu, S.M., 1987. Renal morphology of the euryhaline teleost﹐Oreochromis mossambicus. Bull. Inst. Zool. Acad. Sinica. 26, 271-277. Hwang, P.P., Lee, T.H., 2007. New insights into fish ion regulation and mitochondrion-rich cells. Comp. Biochem. Physiol. A 148, 479-497. Jewell-Motz, E.A., Lingrel, J.B., 1991. Comparison of the substrate dependence properties of the rat Na, K-ATPase α1, α2, and α3 isoforms expressed in Hela cells. J. Biol. Chem. 266, 16925-16930. Jobling, M. 1995. Osmotic and ionic regulation-water and salt balance. In Environmental biology of fishes. In: Jobling, M., Padstow, Cornwall, Great Britain: T. J. Press. pp. 211-249. Jobling, M., 1999. Environmental Biology of Fishes. New York. Jürss, K., Biottorf, T., Volker, T., 1985. Infulence of salinity and ratio of lipid to protein in diets on certain enzyme activities in rainbow trout (Salmo gairdneri Richardson). Comp. Biochem. Physiol. 81B, 73-79. Kaya, S., Yokoyama, A, Imagawa, T., Taniguchi, K., Froehlich, J.P., Albers, R.W., 1997. Cloning of the eel electroplax Na+,K+-ATPase alpha subunit. Ann N Y Acad Sci. 834, 129-31. Kent, R.B., Fallows, D.A., Geissler, E., Glaser, T., Emanuel, J.R., Lalley, P.A., Levenson, R., Housman, D.E., 1987. Genes encoding alpha and beta subunits of Na, K-ATPase are located on three different chromosomes in the mouse. Proc. Natl. Acad. Sci. U. S. A. 84, 5369- 5373. Lasserre, P., 1971. Increase of (Na+/K+)-dependent ATPase activity in gills and kidneys of two euryhaline marine teleosts, Crenimugil labrosus (Risso, 1826) and Dicentrarchus labrax (Linnaeus, 1758), during adaptation to fresh water. Life Sci. 10 (Part II), 113-119. Lee, T.H., Tsai, J.C., Fang, M.J., Yu, M.J., Hwang, P.P., 1998. Isoform expresseion of Na+-K+-ATPase α-subunit in gills of the teleost Oreochromis mossambicus. Am. J. Physiol. 275, R926-932. Lee, T.H., Feng, S.H., Lin, C.H., Hwang, Y.H., Huang, C.L., Hwang, P.P., 2003. Ambient salinity modulates the expression of sodium pumps in branchial mitochondria-rich cells of Mozambique tilapia, Oreochromis mossambicus. Zool. Sci. 20, 29-36. Levenson, R., 1994. Isoforms of the Na, K-ATPase: family members in search of function. Rev. Physiol., Biochem. Pharmacol. 123, 1-45. Lin, Y.M., Chen, C.N., Lee, T.H., 2003. The expression of gill Na, K-ATPase in milkfish, Chanos chanos, acclimated to seawater, brackish water and fresh water. Comp. Biochem. Physiol. A 135, 489-497. Lin, C.H., Tsai, R.S., Lee, T.H., 2004. Expression and distribution of Na, K-ATPase in gill and kidney of the spotted green pufferfish, Tetraodon nigroviridis, in response to salinity challenge. Comp. Biochem. Physiol. A 138, 287-295. Lin, C.H., Lee, T.H., 2005. Sodium or potassium ions activate different kinetics of gill Na, K-ATPase in three seawater- and freshwater-acclimated euryhaline teleosts. J. Exp. Zool. A 303, 57-65. Liu, Z. W., Matsukawa, T., Arai, K., Devadas, M., Nakashima, H., Tanaka, M., Mawatari, K., Kato, S., 2002. Na,K-ATPase alpha3 subunit in the goldfish retina during optic nerve regeneration. J Neurochem. 80(5):763-70. Lowery, L.A., Sive, H., 2005. Initial formation of zebrafish brain ventricles occurs independently of circulation and requires the nagie oko and snakehead/atp1a1a.1 gene products. Development. 132(9), 2057-67. Lucking, K., Nielsen, J. M., Pedersen, P.A., Jorgensen, P.L., 1996. Na-K-ATPase isoform (α3, α2, α1) abundance in rat kidney estimated by competitive RT-PCR and ouabain binding. Am. J. Physiol. 271 (Renal Fluid Electrolyte Physiol. 40), F253-260. Maclean, N., Rahman, M.A., Sohm, F., Hwang, G., Iyengar, A., Ayad, H., Smith, A., Farahmand, H., 2002. Transgenic tilapia and the tilapia genome. Gene. 295, 265-277. Madsen, S.S., McCormick, S.D., Young, G., Endersen, J.S., 1994. Physiology of seawater acclimation in the striped bass, Morone saxatilis (Walbaum). Fish Physiol. Biochem. 13, 1-11. Madsen, S.S., Jensen, M.K., Nhr, J., Kristiansen, K., 1995. Expression of Na+/K+-ATPase in the brown trout, Salmo trutta: in vivo modulation by hormones and seawater. Am. J. Physiol. 269, R1339- R1345. Marshall, W.S., 2002. Na+, Cl-, Ca2+ and Zn2+ transport by fish gills: retrospective review and prospective synthesis. J. Exp. Zool. 293, 264-283. McCormick, S.D., Moyes, D., Ballantyne, J.S., 1989. Influence of salinity on the energetics of gill and kidney of Atlantic salmon (Salmo salar). Fish Physiol. Biochem. 6, 243-254. Miyazaki, H., Kaneko, T., Uchida, S., Sasaki, S., Takei, Y., 2002. Kidney-specific chloride channel, OmClC-K, predominantly expressed in the diluting segment of freshwater-adapted tilapia kidney. PNAS. 99, 15782-15787. Morrison, J.F., Guynn, S.R., Scofield, M.A., Dowd, F.J., Petzel, D.H., 2006. Warm acclimation changes the expression of the Na+/K+-ATPase α-subunit isoforms in Antarctic fish gills. J. Exp. Mar. Biol. Ecol. 333, 129-139. Nilsen, T.O., Ebbesson, L.O.E., Madsen, S.S., McCormick, S.D., Andersson, E., Björnsson, B.T., Prunet, P., Stefansson, S.O., 2007. Differential expression of gill Na+, K+-ATPase α- and β-subunits, Na+, K+, 2Cl- cotransporter and CFTR anion channel in juvenile anadromous and landlocked Atlantic salmon, Salmo salar. J. Exp. Biol. 210, 2885-2896. Orlowski, J., Lingrel, J.B., 1988. Tissue-specific and developmental regulation of rat Na, K-ATPase catalytic alpha isoform and beta subunit mRNAs. J. Biol. Chem. 263, 10436- 10442. Pagliarani, A., Ventrella, V., Ballestrazzi, R., Trombetti, F., Pirimi, M., Trigari, G.., 1991. Salinity-dependence of the properties of gill Na+,K+-ATPase in rainbow trout (Oncorhynchus mykiss). Comp. Biochem. Physiol. 100B, 229-236. Panfili, J., Thior, D., Ecoutin, J.M., Ndiaye, P., Albaret, J.J., 2006. Influence of salinity on the size at maturity for fish species reproducing in contrasting West Africanestuaries. J Fish Biol 68, 1-19. Perry, S. F., Shahsavarani, A., Georgalis, T., Bayaa, M., Furimsky﹐M., Thomas, S.L.Y., 2003. Channels﹐pumps﹐and exchangers in gill and kidney of freshwater fishes﹕their role in ionic and acid-base regulation. J. Exp. Zool. 300A, 53-62. Piermarini, P.M., Evans, D.H., 2001. Immunochemical analysis of the vacuolar proton-ATPase B-subunit in the gills of a euryhaline stingray (Dasyatis sabina): effects of salinity and relation to Na+/K+-ATPase. J. Exp. Biol. 204, 3251-3259. Pierre, S.V., Duran, M.J., Carr, D.L., Pressley, T.A., 2002. Structure/function analysis of Na+-K+-ATPase central isoform-specific region: involvement in PKC regulation. Am. J. Physiol. 283, F1066-1074. Pressley, T.A., 1992. Phylogenetic conservation of isoform-specific regions within α-subunit of Na,K-ATPase. Am. J. Physiol. 262, C743-751. Pullin, R.S.V., 1981. Fishpens of Laguna de Bay, Philippines. ICLARM Newsletter. 44, 11-13. Richards, J.G., Semple, J.W., Bystriansky, J.S., Schulte, P.M., 2003. Na+/K+-ATPase α-isoform switching in gills of rainbow trout (Oncorhynchus mykiss) during salinity transfer. J. Exp. Biol. 206, 4475-4486. Scheiner-Bobis, G., 2002. The sodium pump- its molecular properties and mechanics of ion transport. Eur. J. Biochem. 269, 2424-2433. Schmidt-Nielsen, K., 1997. Animal Physiology-Adaptation and environment: Cambridge University Press. Schönrock, C., Morley, S.D., Okawara, Y., Lederis, K., Richter, D., 1991. Sodium and potassium ATPase of the teleost fish Catostomus commersoni. Sequence, protein structure and evolutionary conservation of the alpha-subunit. Biol. Chem. Hoppe-Seyler 372, 279-286. Scott, G.R.J., Richards, G., Forbush, B., Isenring, P.P., Schulte, M., 2004. Changes in gene expression in gills of the euryhaline killifish Fundulus heteroclitus after abrupt salinity transfer. Am. J. Physiol. 287, C300-309. Semple, J.W., Green, H.J., Schulte, P.M., 2002. Molecular cloning and characterization of two Na/K-ATPase isoforms in Fundulus heteroclitus. Mar. Biotechnol. 4, 512-519. Shamraj, O.I., Lingrel, J.B., 1994. A putative fourth Na1,K1-ATPase a subunit gene is expressed in testis. Proc. Natl. Acad. Sci. USA 91, 12952-12956. Sloman, K.A., Desforges, P.R., Gilmour K.M., 2001. Evidence for a mineralocorticoid- like receptor linked to branchial chloride cell proliferation freshwater rainbow trout. J. exp. Biol. 204, 3953-3961. Takeyasu, K., Tamkum, M.M., Renaud, K.J., Fambrough, D.M., 1988. Ouabain-sensitive (Na+/K+)-ATPase activity expressed in mouse L cells by transfection with DNA encoding the (α-subunit of an avian sodium pump). J. Biol. Chem. 263, 4347-4354. Takeyasu, K., Lemas, V., Fambrough, D.M., 1990. Stability of Na+-K+-ATPase α-subunit isoforms in evolution. Am. J. Physiol. 259, C619-630. Tipsmark, C.K., Madsen, S.S., Seidelin, M., Christensen, A.S., Cutler, C.P., Cramb, G., 2002. Dynamics of Na, K, 2Cl co-transporter and Na, K-ATPase expression in the branchial epithelium of brown trout (Salmon trutta) and Atlantic salmon (Salmon salar). J. Exp. Zool. 293, 106-118. Therien, A.G., Karlish, S.J., Blostein, R., 1999. Expression and functional role of the gamma subunit of the Na, K-ATPase in mammalian cells. J. Biol. Chem. 274, 12252-12256. Therien, A.G., Blostein, R., 2000. Mechanisms of sodium pump regulation. Am. J. Physiol. 279, C541-566. Ura, K., Soyano, K., Omoto, N., Adachi, S., Yamauchi, K., 1996. Localization of Na+,K+-ATPase in tissues of rabbit and teleosts using an antiserum directed against a partial sequence of the α-subunit. Zool. Sci. 13, 219-227. Venturini, G.., Cataldi, E., Marino, G.., Pucci, P., CGaribaldi, L., Bronzi, P., 1992. Serum ions concentration and ATPase activity in gills, kidney and oesophagus of European sea bass (Dicentrarchus labrax, Pisces, Perciformes) during acclimation trials to fresh water. Comp. biochem. physiol. 103A, 451-454. Wilson, J.M., Laurent, P., 2002. Fish gill morphology:Inside out. J. Exp. Zool. 293, 192-213. Wilson, J.M., Whiteley, N.M., Randall, D.J., 2002. Ionoregulatory changes in the gill epithelia of coho salmon during seawater acclimation. PhysiolBiochem Zool. 75, 237-249. Wu, W.Y., 2005. Na+, K+-ATPase Expression in Kidney of theMilkfish (Chanos chanos) Adapted to Environments of Various Salinities. Master thesis. Department of Life Science, National Chung Hsing University. (in Chinese with English abstract) Yang-Feng, T.L., Schneider, J.W., Lindgren, V., Shull, M.M., Benz Jr., E.J., Lingrel, J.B., Francke, U., 1988. Chromosomal localization of human Na+, K+-ATPase alpha- and beta-subunit genes. Genomics 2, 128-138.
摘要: 莫三比克吳郭魚(Oreochromis mossambicus)是一種生活於淡水的硬骨魚類,其原棲地為非洲南部的淡水水域。虱目魚(Chanos chanos)是一種海洋的硬骨魚類,廣泛分部於熱帶至亞熱帶的印度洋及太平洋。吳郭魚及虱目魚皆屬於廣鹽性硬骨魚類,無論在高張的海水環境或低張的淡水環境下皆可生存。當面臨不同鹽度環境的挑戰時,鰓上Na+/K+-ATPase (NKA)活性會不同,且NKA對鈉離子與鉀離子的親和力亦發生改變,推測可能與不同NKA α-subunit isoforms表現有關。除了以鰓進行離子調節,腎臟亦為硬骨魚滲透壓調節的重要器官。然而,過去對於腎臟離子調節機轉的研究較少,因此,為了比較來自不同棲息地的廣鹽性硬骨魚類吳郭魚和虱目魚腎臟的離子調節機轉,本實驗主要在探討腎臟在不同鹽度環境中Na+/K+-ATPase α-subunit isoforms的變化。將莫三比克吳郭魚及虱目魚長期馴養於淡水(0‰)和海水(35‰)二種不同的鹽度環境二週以上,並且利用免疫轉漬法進行蛋白質含量的比較。結果顯示,長期馴養在海水的莫三比克吳郭魚,其腎臟NKA α-subunit、α1-與α3-isoform蛋白質含量顯著高於長期馴養於淡水的莫三比克吳郭魚,相反地,NKA α2-isoform的蛋白質表現量為淡水較海水高。至於長期馴養在淡水的虱目魚,其腎臟NKA α-subunit與α1-isoform蛋白質含量顯著高於長期馴養於海水的虱目魚,但α2-與α3-isoform蛋白質含量則無顯著差異。綜合上述結果顯示:(1)莫三比克吳郭魚及虱目魚NKA在腎臟的表現受環境鹽度的影響,當面臨與原棲地不同鹽度的挑戰時,NKA α-subunit有顯著上升的現象,且α-isoforms的蛋白質表現量亦會受環境鹽度影響而改變;(2)不論是淡水轉移到海水的莫三比克吳郭魚,或是海水轉移到淡水的虱目魚,其NKA α1-isoform的蛋白質表現量皆顯著上升,故推測α1-isoform可能為腎臟中負責滲透壓調節功能最主要的α-isoform,有助於廣鹽性硬骨魚面對不同鹽度挑戰而進行離子調節的生理機轉。
Mozambique tilapia (Oreochromis mossambicus) is a kind of freshwater teleost whose natural habitats are in fresh water of southern Africa. Milkfish (Chanos chanos) is a kind of marine teleost widely distributed throughout the tropical and subtropical Indo-Pacific. Both Mozambique tilapia and milkfish are euryhaline teleosts and can survive in a broad range of salinity. Since the activity and Na+ and K+ affinities of branchial Na+/K+-ATPase (NKA) changed with environmental salinities, it is suggested that the difference may be due to the switches of NKA α-subunit isoforms. The kidney is another important organ responsible for ion-regulation in teleosts. However, few studies addressed on the mechanisms of ion-regulation in kidney. In order to compare the ion-regulation mechanism between two euryhaline teleosts from different primary natural habitats in response to salinity challenge, this study focus on the switches of renal NKA α-isoform proteins between tilapia (Oreochromis mossambicus) and milkfish (Chanos chanos). Mozambique tilapia and milkfish were acclimatized and reared in seawater (35‰) and fresh water, respectively, for more than two weeks before sampling. In Mozambique tilapia, the protein abundance of renal NKA α-subunit, α1-, and α3-isoform in seawater-acclimatized fish was significantly higher than in freshwater acclimatized group. On the other hand, the α2-isoform was significantly lower in freshwater acclimatized individuals. In freshwater acclimatized milkfish, the protein abundance of renal NKA α-subunit and α1-isoform was significantly higher than in seawater-acclimatized group. As for α2- and α3-isoform, the protein abundance reveals no significant difference between different salinity groups. In conclusion, the protein abundance of renal NKA α-subunit was significantly higher in SW-acclimatized Mozambique tilapia and FW-acclimatized milkfish, and the protein abundance of renal NKA α-isoforms was influenced by environmental different salinities. In addition, the switches of renal NKA α-isoforms, especially α1-isoform, may be involved in the mechanisms of ion regulation in FW- and SW-acclimatized Mozambique tilapia and milkfish.
URI: http://hdl.handle.net/11455/23372
其他識別: U0005-1707200818411300
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-1707200818411300
Appears in Collections:生命科學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.