Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/23423
標題: 臺灣常見被子植物葉序之研究
Studies on the phyllotaxy of the common angiosperms in Taiwan
作者: 陳柏宇
Chen, Po-Yu
關鍵字: phyllotaxis
葉序
Fibonacci sequence
golden divergence angle.
費氏序列
黃金分離角
出版社: 生命科學院碩士在職專班
引用: 呂福原、歐辰雄、呂金誠。1998。台灣樹木解說(二) 。行政院農委會出版。臺北市。107頁。 呂福原、歐辰雄、陳運造、祁豫生、呂金誠。2000。台灣樹木圖誌(第一卷),國立中興大學森林植物分類生態研究室,台中。 呂福原、歐辰雄、陳運造、祁豫生、呂金誠、曾彥學。2006。台灣樹木圖誌(第二卷),國立中興大學森林植物分類生態研究室,台中。 易希道、謝萬權、陳昇明、蕭如英、曾義雄、周惠慈、陳伯中、葉育材、張杏生。1981。斯氏植物學,192-201頁。徐氏基金會,台北。 高士軒。1999。黃金分割角在葉序模型中的普適性,2-47頁。臺灣大學物理研究所碩士論文,台北。 黃增泉。1983。高等植物分類學原理,363頁。國立編譯館,台北。 楊遠波、劉和義。2002。臺灣維管束植物簡誌,第6卷。行政院農委會,台北。 楊遠波、劉和義、呂勝由。1997。台灣維管束植物簡誌第2卷,行政院農委會,台北。 楊遠波、劉和義、林讚標。2001。臺灣維管束植物簡誌,第5卷。行政院農委會,台北。 楊遠波、劉和義、施炳霖、呂勝由。1998a。臺灣維管束植物簡誌,第3卷。行政院農委會,台北。 楊遠波、劉和義、彭鏡毅、施炳霖、呂勝由。1998b。台灣維管束植物簡誌第4卷,行政院農委會,台北。 廖志穎。2006。螺旋狀葉序之探究,10-13頁。植物標本館通訊,臺灣大學生態學與演化生物學研究所植物標本館,台北。 廖志穎。2007。螺旋狀葉序之探究(續),12-15頁。植物標本館通訊,臺灣大學生態學與演化生物學研究所植物標本館,台北。 廖思善、劉瑞堂。1999。葉序:自然之美,234-236頁。科學月刊351期,科學月刊社,台北。 劉業經、呂福原、歐辰雄。1994。台灣樹木誌,788-789頁。國立中興大學農學院叢書第七號,台中。 蔡進來。1989。植物標本製作法,18-33頁。國立中興大學教務處出版組,台中。 戴志遠。1974。植物的葉,38-40頁。國民教育科學教學資料叢書,幼獅文化事業公司,台北。 薛聰賢。2004。台灣花卉實用圖鑑,第14冊,74頁。台灣普綠出版部,員林。 謝長富。2005。台灣維管束植物的物種多樣性,250-264頁。第三屆台灣植群多樣性研討會論文集,行政院農業委員會林務局,台北。 Adler, I., Barabe, D. and Jean, R. V. 1997. A history of the study of phyllotaxis. Annals of Botany 80: 231-244. Bennett, M. J., A. Marchant, H. G. Green, S. T. May, S. P. Ward, P. A. Millner, A. R. Walker, B. Schulz, K. A. Feldmann. 1996. Arabidposis AUX1 gene:A permease-like regulatior of root gravitropism. Science 273: 948-950. Boufford, D. E., C. F. Hsieh, T. C. Huang, C. S. Kuoh, H. Ohashi, C. I. Peng, J. L. Tsai, and K. C. Yang (eds.) 2003. Flora of Taiwan, 2nd ed., vol. 6. Department of Botany, National Taiwan University, Taipei. Boufford, D. E., C. F. Hsieh, T. C. Huang, C. S. Kuoh, H. Ohashi, C. I. Peng, J. L. Tsai, and K. C. Yang (eds.) 2003. Flora of Taiwan, 2nd ed., vol. 3. Editorial Committee of the Flora of Taiwan, Taipei. Brousseau, A. 1968. On the trail of the California pine. Fibonacci Quarterly 6: 69 – 76. Callos, J. D., and Medford, J. I. 1994. Organ positions and pattern formation in the shoot apex. der Miliolinen. Gustav Fischer, Jena. Church, A. H. 1904. On the Relation of Phyllotaxis to Mechanical Laws. Williams and Norgate, London. Darwin, C. 1865. The movements and habits of climbing plants. J. Linn. Soc. 9: 1-118. Davis, T. A. 1963. The dependence of yield on asymmetry in coconut palms. J Genet 58: 186–215. Davis, T. A. and T. K. Bose. 1971. Fibonacci systems in aroids. Fibonacci Quarterly 9: 253-263. Davis, T. A and Davis B. 1987. Association of coconut foliar spirality with latitude. Mathematical Modelling 8: 730-733. Douady, S. and Couder, Y. 1992. Phyllotaxis as a physical self-organized growth process. Pysical Review Letters 68: 2098-2101. Erickson, R. O. and Meicenheimer, R. D. 1977. Photoperiod induced change in phyllotaxis in Xanthium. American Journal of Botany 64: 981-988. Fujita, T. 1938. Statistische Untersuchung uber die Zahl der Konjugierten Parastichen bei den Schraubigen Organstellungen. Bot. Mag. Tokyo 52: 425-433. Fujita, T. 1939. Statistische Untersuchungen fiber den Divergenzwinkel bei den Schraubigen Organstellungen. Bot. Mag. Tokyo 53: 194-199. Fujita, T. 1942. Zur kenntnis der organstellungen im pflanzenreich. Jpn. J. Bot. 12: 1–55. Fujita, T. 1964. Phyllotaxis of Cuscuta. Bot. Mag. Tokyo 77: 73-76. Gälweiler, L., C. Guan, A. Muller, E. Wisman, K. Mendgen, A. Yephremov, K. Palme. 1998, Regulation of polar auxin transport by AtPIN1 in Arabidopsis vascular tissue. Science 282: 2226-2230. Gregory, R. A. and Romberger, J. A., 1972. The shoot apical ontogeny of the Picea abies seedling. 2. Growth rates. Ibid. 59: 598-606. Hutchinson, J. 1973. The families of flowering plants. 3rd ed. Oxford University Press, Oxford. Iterson, G. van. 1907. Mathematische und Microscopisch-Anatomische Studien uber Blattstellungen, nebst Betraschung uber den Schalebau der Milionen. Gustav-Fischer Verlag, Jena. Jackson, D. and Hake, S. 1999. Control of phyllotaxy in maize by the ABPHYL1 gene. Development 126: 315-323. Jean, R. V. 1988. Number-theoretic properties of two-dimensional lattices. J. Number Theory 29: 206-223. Jean, R. V. 1992. Model testing in phyllotaxis. Theory of Biology 156: 41-52. Jean, R. V. 1994. Phyllotaxis:a systemic study in plant morphogenesis. Cambridge University Press. Koch, A. J., Guerreiro, J., Bernasconi G. P. and Sadik, J. 1993. An analytic model of phyllotaxis. Journal de Physique France 4: 187-207. Namboodiri, K. K., and Beck, C. 1968. A comparative study of the primary vascular system of conifers. I. Genera with helical phyllotaxis. Am. J. Bot. 55: 447-457. Pollio, V. 1912. De Architectura. Reinhardt, D. 2005. Regulation of phyllotaxis. Journal of Developmental Biology 49: 539-546. Reinhardt, D., Mandel, T., Kuhlemeier, C. 2000. Auxin regulates the initiation and radial position of lateral organs. Plant Cell 12: 501-518. Richards, F. J. 1948. The Geometry of Phyllotaxis and its Origin. Symposium of the Society for Experimental Biology 2: 217-245. Schimper, C. F. 1830. Beschreibung des Symphytgum Zeyheri und seiner zwei deutchen Verwandten der S. bulborum Schimper und S. tuberosum Jacqu. Geiger''s Magazin fur Pharmacie 29: 1-92. Schoute, J.C. 1913. Beitrage zur Blattstellungslehre I. Die Theorie. Rec. Trav. Bot. Neerl. 10: 153-339. Schoute, J.C., 1938. Early binding whorls. Rec. Trav. Bot. Neerl. 35: 416-558. Smith, R. S., Guyomarc’h, S., Mandel, T., Reinhardt, D., Kuhlemeier, C. and Prusinklewicz, P. 2006. A plausible model of phyllotaxis. PNAS 103: 1301-1306. Snow, M., and Snow, R. 1931. Experiments on phyllotaxis. I. The effect of isolating a primordium. Pilosdophical Transactions of the Royal Society of London. Series B. 221: 1-43 Snow, M., and Snow, R. 1933. Experiments on phyllotaxis. II. The effect of displacing a primordium. Pilosdophical Transactions of the Royal Society of London. Series B. 222: 353-400. Sterling, C. 1945. Growth and vascular development in the shoot apex of Sequoia sempervirens (Lamb.) Endl. II. Vascular development in relation to phyllotaxis. Am. J. Bot. 32(7): 380-386. Thompson, D''A. W. 1942. On Growth and Form, 2nd ed. Cambridge: Cambridge University Press. Cambridge, UK. Thompson, D. W. 1917. On Growth and Form. Cambridge University Press Valladares, F. and Brites, D. 2003. Leaf phyllotaxis: does it really affect light capture? Plant Ecology 174: 11-17. Vogel, H. 1979. A better way to construct the sunflower head. Mathematical Biosciences 44: 179-189 Weisse, A. 1897. Die Zahl der Randbluten an Compositen-Kopfchen. Jb. Wiss Bot. 30: 453-483. Zagorska-Marek, B. 1985. Phyllotactic patterns and transitions in Abies balsamea. Can. J. Bot. 63: 1844-1854. Zeiger, E. and Taiz, L. 1998. Plant physiology, Second edition. Sinauer Associates, Sunderland, Mass., USA. Zotz, G., Richling, P. and Valladares, F. 2002. A Simulation study on the importance of size-related changes in leaf morphology and physiology for carbon gain in an epiphytic bromeliad. Annals of Botany 90: 437-443. 網路資源 白啟光主編。2002。數學嘉年華,新竹市青草湖社區大學自然科學科普課程教材。 [引用於2009年5月10日]。取自http://xserve.math.nctu.edu.tw/people/cpai/carnival/index.htm
摘要: 台灣地處熱帶與亞熱帶,植物資源豐富。本研究調查台灣常見被子植物的葉序、數學序列及其物理模型的相關性。研究內容共記錄96科291屬405種(含種以下分類群)台灣常見的被子植物。其中以大戟科(Euphorbiaceae)的植物種類為最多,其次為桑科(Moraceae),薔薇科(Rosaceae)再次之。葉序的表現以費氏序列出現的比例最高,右旋、左旋的比例為1.01:1;分離角接近物理學家預測之137.5°,為黃金分離角。少數非費氏序列族群則利用外形特徵的比較和生育環境的比對;不易觀察之物種,可以發展多元的觀察方法。藉由葉序之序列及黃金分離角,可將觀察之物種,分為5種費氏序列類群,同時比對既有的文獻紀錄,探討不同分類群間的差異,以及分類群間的關係,並分析環境之間的差異,藉此說明影響葉序配列的因子。 本研究觀察葉序的方法可作為日後植物調查及教學上應用的工具;而序列資料庫和圖庫的建立可作為日後研究之比對。由葉序的規則性與歧異性發展,可以進一步了解植物對於環境的需求和植群演替趨勢,而在植物分類及生態保育上,增加一些輔助資源。經由這方面科學研究的發展,可以對於生物圈內,普遍存在的規則與真理有更深一層的了解。
Geological site of Taiwan include the tropical and subtropical zones. It is rich in vegetation resources. The aim of this study is to investigate the relations among phyllotaxis, number sequence, and physical model of the common angiosperms in Taiwan. There are 96 families 291 genera 405 species of plants are examined in this study. Euphorbiaceae, among others, takes the most portion, followed by Moraceace, and then Rosaceae. For the phyllotaxy, the occurrence of Fibonacci sequence has the highest rates, while the rate of dextrorotatory and levorotatory is 1.01 : 1. The divergence angle is close to 137.5, as expected by the physicist, which is called the golden divergence angle. A few non-Fibonacci sequence group employs the characteristic comparison of external form and analysing their environmental conditions; the diversified methods of observation can be developed for the species which are difficult to be observed. The species observed can be categorized into 5 kinds of Fibonacci sequence groups based on the sequence of phyllotaxy and golden divergence angle. At the same time, by comparing the existing documentation, we explore the difference and relation among different taxa, in addition, the difference between environments in order to explicate the factors influencing the sequence of phyllotaxy. The method for observing phyllotaxy employed by this study could be used as instrument in vegetation investigation and teaching in future; while the establishment of phyllotaxy database and drawing database may facilitate the advanced research. The environmental requirement for plants and the successional trend of vegetation can be further understood by means of researching the regularity and diversity of phyllotaxy, besides, some auxiliary resources would be added in respect of the plant taxonomy and ecological conservation. About this field, the scientific research and development could understand the general regularity and truth existing in the biosphere.
URI: http://hdl.handle.net/11455/23423
其他識別: U0005-1707200910585500
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-1707200910585500
Appears in Collections:生命科學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.