Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/2343
標題: 懸臂樑式卡扣之形變探討與最低應力設計
The Deformation Analysis and Minimum-Stress Design for the Cantilever Snap-Fit Hook
作者: 賴家宏
Lai, Jia-Hong
關鍵字: snap-fit
卡扣
deformation
stress
形變
應力
出版社: 機械工程學系所
引用: [Allied Signal Plastics, 1987] New Snap-Fit Design Guide, 1987, Allied Singal Plastics. [Lee, 1987] Lee, C.S., Snap-fit Design manual, 1987, BASF Plastics. [Spahr, 1991] Spahr, T., SNAP-FITS FOR ASSEMBLY AND DISASSEMBLY, 1991, Ticona Engineering Polymers. [Raucent et. al., 1998] Raucent, B., Nederlandt, C. H. and Johnson, D. A., “Plastic Snapfit Fastener Design”, The International Journal of Advanced Manufacturing Technology, Vol. 14, No. 3, Mar., 1998, pp.185-198. [Sawyer et. al., 1997] SAWYER, W. G., BLANCHET, T. A., KNAPP II, K. N. and LEE, D., “Friction Modeling and Experimentation for Integral Fasteners for Injection Molded Parts.”, Journal of Injection Molding Technology, Vol. 1, No. 4, Dec., 1997, pp.224-228. [Lewis, et. al., 1997] Lewis, Q., Wang, L. and Gabriele, G. A., “A Finete Element Investigation of the Bayonet and Finger Integral Attachment Feature,” Annual Technical Conference - ANTEC, Conference Proceedings, Vol. 1, 1997, pp.1203-1207. [Suri & Lucher, 2000] Suri, G. and Lucher, A. F., “Structural Abstraction in Snap-fit Analysis,” Journal of Mechanical Design, Vol. 122, Dec., 2000, pp.395-402. [Ruan, 2005] Ruan, T., “Selection and Optimization of Snap-Fit Feature via Web-Based Software,” 2005, Department of Mechanical Engineering, The Ohio State University. [DSM Engineering Plastics, 2005] Snap fit theory, 2005, DSM Engineering Plastics. [Bayer Material Science, 1998] Snap-Fit Joints for Plastics, 1998, Bayer Material Science. [Solvay Advanced Polymers, 2002] Snap-Fit Latch Design, 2002, Solvay Advanced Polymers. [Gere & Timoshenko, 1997] Gere, J. M. and Timoshenko, S. P., Mechanics of materials, 1997, PWS publishing company. [Bonenberger, 2005] Bonenberger, P. R., The First Snap-Fit Handbook, 2005, Hanser Gardner publications. [Wilson, 1963] Wilson R. B., A simplicial method for convex programming, 1963, Ph. D. Dissertation, Harvard University. [Fletcher & Powell, 1970] Fletcher, R. and Powell, M. J. D., “A Rapidly Convergent Method for Minimization,” Computer Journal, Vol. 6, No. 2, 1970, pp. 163-168. [Goldfarb, 1970] Goldfarb, D., “A Family of Variable Metric Methods Derived by Variational Means,” Mathenatics of Computing, Vol. 24, 1970, pp. 23-36. [Han, 1976] Han , S. P., “Superlinearly convergent variable metric algorithms for general nonlinear programming problems,” Mathematical Programming, Vol.11, 1976, pp.263-282. [Han, 1977] Han, S. P., “A Globally Convergent Method for Nonlinear Programming,” Journal of Optimization Theory and Applications, Vol.22, No.3, July, 1977, p.297-309. [Powell, 1978] Powell, M. J. D., “A fast algorithm for nonlinearly constrained optimization calculations., ”Numerical Analysis, G. A. Watson ed., Lecture Notes in Mathematics, Springer-Verlag, Vol. 630, 1978, pp.144-175. [The Math works Inc., 2001] The Math works Inc., “Optimiziation Toolbox For Use With Matlab,” June, 2001, The Math works Inc.. [Nocedal and Wright, 1999] Nocedal, J. and Wright, S. J., Numerical Optimization, 1999, Springer. [楊,2006] 楊之青, 行動電話外殼卡勾之CAE分析,2006,國立台灣科技大學機械系碩士論文。 [陳等,2007] 陳燕,李世國,宋娥, “基於ANSYS的塑料卡扣裝配力學分析方法”,江南大學學報,第6卷,第2期,2007年4月,224頁-228頁。 [紀,2008] 紀海慧, “Ansys Workbench在卡扣裝配分析上的應用”,現代製造工程,第8期,2008年,48頁-49頁。 [林,2007] 林俊成, 勾狀型塑膠卡扣設計與結構分析,2007,大同大學機械系碩士論文。 [劉與褚,2006] 劉晉奇與褚晴暉,有限元素分析與ANSYS的工程應用,2006,滄海書局,Chap. 3, 9。 [徐業良,1995] 徐業良,工程最佳化設計,1995,國立編譯館主編。 [張自南,1997] 張自南,數值最適化方法,1997,全華科技圖書股份有限公司。
摘要: 過去卡扣設計與分析往往是設計人員憑藉經驗與電腦輔助分析或參考塑膠材料供應商所提供的設計手冊設計。但因為每個設計專案的限制條件與要求不同,加上不同的設計人員對於解決問題的方式也有所差異,使得卡扣設計沒有一套標準的設計流程,使得設計經驗不易傳承。再者設計手冊中所提供的資料大部分不符合實際狀況,而其內容所附的應力與撓度公式,僅是卡扣組裝最後過程的狀態,故設計者無法透過公式來得知卡扣在組裝過程中,其撓度與應力之變化。 本論文針對上述問題,利用材料力學推導出卡扣撓度與應力公式,藉由這項發現,可讓設計者在設計初期,將關鍵尺寸代入公式,便可得知卡扣在組裝過程中,其撓度與應力之變化,藉此找出初步的構形,減少設計時間。 最後將固定件與移動件的體積總和當作目標函數,固定件的von Mise應力與移動件的von Mise應力分別除以各別的降伏應力的應力一致當作拘束條件,再根據設計經驗值決定適當的拘束條件,藉此找出關鍵的設計參數值,並將分析出的參數代入理論公式,求得固定件與移動件的最小應力。
In the past, designers rely on experience, computer aided design or design manual which is supplied by plastic supplier for designing snap-fit and its analysis. But the limitations and demands for each case are different, and different designers solve problems with different solutions. It leads to no standard design process for snap-fit, result in design experiences can't be transmitted. Moreover, Most of datas in the manual are obsolete and the formulations of stress, deflection only reflect the final state of snap-fit assembly. Therefore, designers can't understand the variations of snap-fit for the stress and deflection during assembly. In this paper, we figure out the deflection and stress formulations of snap-fit by mechanic of material. According to this research, designer can substitute the key dimensions into the formulations in the beginning. Then designers can understand the variations of deflection and stress during assembly procedure, then find out initial shape and reduce time. Finally, to minimize von Mise stress of fixed part as the objective function. The first constraints of fixed part and moving part are that the ratio of width and length should be less 1/2 and its length of second portion should be greater than first portion. The second constraint for summation of length of fixed part and moving part need to equal to 6.4. The final constraint for stress ratio is that von Mise stress of fixed part divides by its yield stress should equal to the ration of moving part. Rely on the critical parameters, we can minimize the stress of fixed part and moving part.
URI: http://hdl.handle.net/11455/2343
其他識別: U0005-2108200914561800
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2108200914561800
Appears in Collections:機械工程學系所

文件中的檔案:

取得全文請前往華藝線上圖書館

Show full item record
 
TAIR Related Article
 
Citations:


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.