請用此 Handle URI 來引用此文件: http://hdl.handle.net/11455/23464
標題: 探討汞誘發的小球藻蛋白質體變化
Mercury-induced proteomic changes in Chlorella sp. DT
作者: 邱嘉源
Chiu, Chia-Yuan
關鍵字: alternative oxidase
二維電泳
two-dimensional gel electrophoresis
Chlorella sp. DT
小球藻

蛋白質體
出版社: 生命科學院碩士在職專班
引用: 6. References Ahsan N, Lee DG, Lee SH, Kang KY, Lee JJ, Kim PJ, Yoon HS, Kim JS, Lee BH (2007) Excess copper induced physiological and proteomic changes in germinating rice seeds. Chemosphere 67: 1182-1193 Aksu Z (2002) Determination of the equilibrium, kinetic and thermodynamic parameters of the batch biosorption of nickel(II) ions onto Chlorella vulgaris. Process Biochem 38:89-99. Amiour N, Merlino M, Leroy P, Branlard G (2002) Proteomic analysis of amphiphilic proteins of hexaploid wheat kernels. Proteomics 2: 632-641 Andrade AD, Rollemberg MCE, Nóbrega JA (2005) Proton and metal binding capacity of the green freshwater alga Chaetophora elegans. Process Biochem 40:1931-1936 Asada K (2006) Production and scavenging of reactive oxygen species in chloroplast and their functions. J Plant Physiol 141:391-6. Barkay T, Miller SM, Summers AO (2003) Bacterial mercury resistance from atoms to ecosystems. FEMS Microbiol Rev 27: 355-384 Bradford M (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72: 248-254 Bringezu K, Lichtenberger O, Leopold I, Neumann D (1999) Heavy metal tolerance of Silene vulgaris. J Plant Physiol 154: 536-546 Cavallini A, Natali L, Durante M, Masertib B (1999) Mercury uptake, distribution and DNA affinity in durum wheat (Triticum durum Desf.) plants. Sci Total Environ 243/244: 119-127 Clemens S (2006) Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plants. Biochimie 88: 1707-1719 Chen PC and Lai CL (1996) Physiological adaptation during cell dehydration and rewetting of a newly-isolated Chlorella species. Physiol Plant 96: 453-457 Chen MW (2005) Functional expression of mercuric reductase in microalga Chlorella sp. DT. Master thesis of the Department of Life Science, National ChungChing University, Taiwan. Cho WK, Chen XY, Rim Y, Chu H, Kim S, Kim SW, Park ZY, Kim JY (2010) Proteome study of the phloem sap of pumpkin using multidimensional protein identification technology. J Plant Physiol 167: 771-778 Cobbett C, Goldsbrough P (2002) Phytochelatins and metallathioneins: roles in heavy metal detoxification and homeostasis. Ann Rev Plant Biol 53: 159-182 Contrerasa L, Moenneb A, Gaillardc F, Potind P, Correaa JA (2010) Proteomic analysis and identification of copper stress-regulated proteins in the marine alga Scytosiphon gracilis (Phaeophyceae). Aquat Toxicol 96: 85-89 Delhaize E, Jackson PJ, Lujan LD, Robinson NJ (1989) Poly(y-glutamylcysteinyl)glycine synthesis in Datura innoxia and binding with cadmium: role in cadmium tolerance. Plant Physiol 89: 700-706 Dong J, Wu FB, Zhang GP (2006) Influence of cadmium on antioxidant capacity and four microelement concentrations in tomato seedlings (Lycopersicon esculentum). Chemosphere 64: 1659-1666. Ge C, Ding Y, Wang Z, Wan D, Wang Y, Shang Q, Luo S (2009a) Responses of wheat seedlings to cadmium, mercury and trichlorobenzene stresses. J Environ Sci 21: 21806-813 Ge C, Wang Z, WAN D, Ding Y, Wang Y, Shang Q, Luo S (2009b) Proteomic Study for Responses to Cadmium Stress in Rice Seedlings. Rice Sci 16: 33-44 Gillet S, Decottignies P, Chardonnet S, Le Maréchal P (2006) Cadmium response and redoxin targets in Chlamydomonas reinhardtii: a proteomic approach. Photosynth Res 89:201-211 Haber F, Weiss J (1932). On the catalysis of hydroperoxide. Naturwissenschaften 20: 948-950 Hall JL (2002) Cellular mechanisms for heavy metal detoxification and tolerance. J Exp Bot 366: 1-11 Huang CC, Chen MW, Hsieh JL, Lin WH, Chen PC, Chien LF (2006) Expression of mercuric reductase from Bacillus megaterium MB1 in eukaryotic microalga Chlorella sp. DT: an approach for mercury phytoremediation. Appl Microbiol Biotechnol 72: 197-205 Zhang J, Rubio V, Lieberman MW, Shi ZZ (2009) OLA1, an Obg-like ATPase, suppresses antioxidant response via nontranscriptional mechanisms. PNAS 106: 15356-15361 Kaplan D, Christiaen D, Arad S (M) (1987) Chelating properties of extracellular polysaccharides from Chlorella spp.. Appl Environ Microbiol 53:2953-2956 Katz A, Waridel P, Shevchenko A, Pick U (2007) Salt-induced Changes in the Plasma membrane proteome of the halotolerant Alga Dunaliella salina as revealed by blue native gel electrophoresis and nano-LC-MS/MS Analysis. Mol Cell Proteomics 6: 1459-1472 Kennedy PJ, Vashisht AA, Hoe KL, Kim DU, Park HO, Hayles J, P Russell (2008) A genome-wide screen of genes involved in cadmium tolerance in Schizosaccharomyces pombe. Toxicol Sci 106: 124-139 Ko GC (2009) Analysis of mitochondrial proteins in bamboo Bambusa oldhamii and Phyllostachys edulis by two-dimensional polyacryamide gel electrophoresis. Master thesis of the Department of Life Science, National ChungChing University, Taiwan Koller A, Washburn MP, Lange BM, Andon NL, Deciu C, Haynes PA, Hays L, Schieltz D, Ulaszek R, Wei J, et al (2002) Proteomic survey of metabolic pathways in rice. Proc Natl Acad Sci USA 99: 11969-11974 Kwenang A, Krooe MJ, Koster JF, van Eijk HG (1987) Iron, femlin and copper in seminal plasma. Human Reprod Med 2:387-88 Lau PS, N Tam FY, Wong YS (1997) Wastewater nutrient (N and P) removal by carrageenan and alginate immobilized Chlorella vulgaris. Environ Technol 18:945-951 Lee K, Bae DW, Kim SH, Han HJ , Liu X, Park HC, Lim CO, Lee SY, Chung WS (2010) Comparative proteomic analysis of the short-term responses of rice roots and leaves to cadmium. J Plant Physio 167161-168 Lee K, Lee J, Kim Y, Bae D, Kang KY, Yoon SC, Lim D (2004) Defining the plant disulfide proteome. Electrophoresis 25: 532-541 Leonhäuser J, Wang W, Deckwera WD, Wagner-Döbler I (2007) Functioning of the mercury resistance operon at extremely high Hg(II) loads in a chemostat: A proteome analysis. J Biotechnol 132: 469-480 Liska AJ, Shevchenko A, Pick U, Katz A (2004) Enhanced photosynthesis and redox energy production contribute to salinity tolerance in Dunaliella as revealed by homology-based proteomics. Plant Physiol 136: 2806-2817 Matsukawa R, Hotta M, Masuda Y (2000) Antioxidants from carbon dioxide fixing Chlorella sorokiniana. J Appl Phycol12: 263-267 Maxwell DP, Wang Y, McIntosh L (1999) The alternative oxidase lowers mitochondrial reactive oxygen production in plant cells. Proc Natl Acad Sci USA 96: 8271-8276 Mayfield JA, Fiebig A, Johnstone SE, Preuss D (2001) Gene families from the Arabidopsis thaliana pollen coat proteome. Science 292: 2482-2485 Moller IM (2001) Plant mitochondria and oxidative stress: electron transport, NADPH turnover, and metabolism of reactive oxygen species. Annu Rev Plant Physiol Plant Mol Biol 52: 561-591 Panda KK, Patra J, Panda BB (1996) Induction of sister chromatid exchanges by heavy metal salts in root meristems of Allium cepa L. Biol Plant 38:555-561 Peltier JB, Friso G, Kalume DE, Roepstorff P, Nilsson F, Adamska I, van Wijk KJ (2000) Proteomics of the chloroplast: systematic identification and targeting analysis of lumenal and peripheral thylakoid proteins. Plant Cell 12: 319-341 Prévéral S, Gayet L, Moldes C, Hoffmann J, Mounicou S, Gruet A, Reynaud F, Lobinski R, Verbavatz JM, Vavasseur A, and Forestier C (2009) A common highly conserved cadmium detoxification mechanism from bacteria to humans : heavy metal tolerance conferred by the ATP-binding cassette (ABC) transporter SpHMT1 requires glutathione but not metal-chelating phytochelatin peptides. J Biol Chem 284: 4936-4943 Purvis AC (1997) Role of the alter native oxidase in limiting superoxide production by plant mitochondria. Physiol Plant 100: 165-170 Qureshia MI, Qadirb S, Zollaa L (2007) Proteomics-based dissection of stress-responsive pathways in plants. J Plant Physiol 164: 1239-1260 Robson CA, Vanlerberghe GC (2002) Transgenic plant cells lacking mitochondrial alternative oxidase have increased susceptibility to mitochondria-dependent and independent pathways of programmed cell death. Plant Physiol 129: 1908-1920 Rustichelli C, Visioli G, Kostecka D, E. Vurro, Sanità di Toppi L, Marmiroli N (2008) Proteomic analysis in the lichen Physcia adscendens exposed to cadmium stress. J Environ Pollution 156: 1121-1127 Schägger, H. and von Jagow, G. (1987) Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal Biochem 166, 368-379 Siegel BZ, Siegel SM (1973) The chemical composition of algal cell walls. CRC Critical Rev Microbiol 3:1-26 Sigaud-Kutner TCS, Leitão MAS, Okamoto OK (2003) Heavy metal-induced oxidative stress in algae. J Phycol 39: 1008-1018 Srivastava AK, Bhargava P, Thapar R., Rai LC (2008) Salinity-induced physiological and proteomic changes in Anabaena doliolum. Environmental and Experimental Botany 64: 49-57 Srivastava S, Tripathi RD, Dwivedi UN (2004) Synthesis of phytochelatins and modulation of antioxidants in response to cadmium stress in Cuscuta reflexa-an angiospermic parasite. J Plant Physi 161: 665-674 Utriainen M, Kokko H, Auriola S, Sarrazin O, Ka‥renlampi S (1998) PR-10 protein is induced by copper stress in roots and leaves of a Cu/Zn tolerant clone of birch, Betula pendula. Plant, Cell & Environment 21: 821-828. Van Assche F, Clijsters H (1990). Effects of metals on enzyme activity in plants. Plant Cell and Environ 13: 195-206 Walz C, Juenger M,Schad M, Kehr J (2002) Evidence for the presence and activity of a complete antioxidant defence system in mature sieve tubes. Plant J 31: 189-97 Wu YC (2006) Comparative analysis of mitochondrial supercomplexes from summer bamboo Bambusa oldhamii and winter bamboo Phyllostachys edulis by BN-PAGE. Master thesis of the Department of Life Science, National ChungChing University, Taiwan Zhang H, Lian C, Shen Z (2008) Proteomic identification of small, copper-responsive proteins in germinating embryos of Oryza sativa. Ann Bot 103: 923-930 Zhen Y, Qi JL, Wang SS, Su J, Xu GH, Zhang MS, Miao L, Peng XX, Tian D, Yang YH (2007) Comparative proteome analysis of differentially expressed proteins induced by Al toxicity in soybean. Physiol Plant 131: 542-554
摘要: 汞離子對細胞有毒,主要是因為汞離子與酵素中的硫醇結合,導致酵素失去活性,抑制生化反應的電子轉移,進而刺激活性氧(ROS)的產生。小球藻綠藻,可以忍受高濃度的汞,具有生物性污水處理的應用潛力。為了瞭解小球藻以汞離子處理後的變化,我們利用以蛋白質體學的方法來分析。 本研究中使用兩種小球藻株,一個是淡水小球藻Chlorella sp. DT(WT)和耐汞的小球藻轉殖株(N1)。將小球藻培養在無汞或5 μM汞離子的培養基中。利用二維電泳(2-DE)進行小球藻的蛋白質分析。根據二維電泳結果,加入汞離子培養12小時後,WT在等電點5到7及分子量20到50 kDa的蛋白質總量明顯增加,而N1則是在等電點6到7及分子量15到40 kDa的蛋白質量總量明顯增加。 再者,其中5個WT蛋白以MALDI-TOF MS分析,並利用資料庫比對,得到的結果是UPA15,替代氧化酶,核酮糖雙磷酸羧化酶/加氧酶大單元,麩胺基硫還原酶和過氧化酶。當WT生長在含汞離子的環境時,這五個蛋白質的作用可能在於減少ROS引起的氧化壓力和避免細胞攝入汞離子。當N1加入汞離子培養後,這 5種蛋白的表現量也有增加的趨勢。在汞處理後在N1共有8個蛋白質表現量與WT不同。從實驗結果推測在汞離子逆境下,WT的解毒途徑在N1也會被啟動。
Hg2+ is toxic to the cells as Hg2+ inhibits electron transfer of biochemical reaction, mainly resulting from the inactivation of enzymes whose thiols are bound, and stimulates reactive oxygen species (ROS) generation. Green algal Chlorella which can tolerate high concentration of Hg2+ may be a potential organism for wastewater treatment. To investigate the response of Chlorella to Hg2+ stress, a proteomic approach was applied to analyze the protein changes. In this study a freshwater alga Chlorella sp. DT (wild type, WT) and a Hg2+ tolerant Chlorella transgenic strain (N1) were employed. Algae were cultivated in Chlorella media without or with 5 μM Hg2+. Then the protein extracts were separated by two-dimensional gel electrophoresis (2-DE). According to the results of 2-DE, after exposure to Hg2+ for 12 h, the amount of WT total proteins with isoelectric point (pI) range of 4 to 6 and molecular weights of 20 to 50 kDa were obviously increased. Similarly, the amount of N1 total proteins with pI range of 6 to 7 and molecular weights of 15 to 40 kDa were significantly increased.Similarly, the amount of N1 total proteins with pI range of 6 to 7 and molecular weights of 15 to 40 kDa were significantly increased. Furthermore, the interested protein spots from WT were identified by MALDI-TOF MS and combined database searches for their functions. Five proteins were identified as UPA15, alternative oxidase, ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit, cytosolic-like glutathione reductase, and peroxidase C2. The possible involvement of these WT identified proteins may be in reducing oxidative stress and avoiding Hg2+ uptake upon exposure to Hg2+. Interestingly, these five proteins in N1were also increased in abundance after treated with Hg2+. Eight proteins in total from N1 total proteins exhibited different protein abundance under Hg2+ stress as compared to those from WT. The results showed that the WT detoxification pathway was also activated in N1.
URI: http://hdl.handle.net/11455/23464
其他識別: U0005-0208201010551000
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-0208201010551000
顯示於類別:生命科學系所

文件中的檔案:
沒有與此文件相關的檔案。


在 DSpace 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。