Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/23488
標題: FimX (EAL) 功能區域蛋白結合多型的c-di-GMP以及與第二型PilZ蛋白複合體晶體結構
Structural Polymorphism of c-di-GMP Bound to an EAL Domain of FimX and in Complex with a Type II PilZ domain Protein
作者: 郭威廷
Kuo, Wei-Ting
關鍵字: 環狀二鳥甘酸
cdiGMP
出版社: 生物化學研究所
引用: 參考文獻 Alm, R. A., Bodero, A. J., Free, P. D., and Mattick, J. S. (1996). Identification of a novel gene, pilZ, essential for type 4 fimbrial biogenesis in Pseudomonas aeruginosa. J Bacteriol 178, 46-53. Amikam, D., and Galperin, M. Y. (2006). PilZ domain is part of the bacterial c-di-GMP binding protein. Bioinformatics 22, 3-6. Benach, J., Swaminathan, S. S., Ramayo, R., Handelman, S. K., Folta-Stogniew, E., Ramos, J. E., Forouhar, F., Neely, H., Seetharaman, J., Camilli, A., and Hunt, J. F. (2007). The structural basis of cyclic diguanylate signal transduction by PilZ domains. EMBO J 26, 5153-5166. Boehm, A., Kaiser, M., Li, H., Spangler, C., Kasper, C. A., Ackermann, M., Kaever, V., Sourjik, V., Roth, V., and Jenal, U. (2010). Second messenger-mediated adjustment of bacterial swimming velocity. Cell 141, 107-116. Burdette, D., Monroe, K., Sotelo-Troha, K., Iwig, J., Eckert, B., Hyodo, M., Hayakawa, Y., and Vance, R. (2011). STING is a direct innate immune sensor of cyclic di-GMP. Nature 478, 515-518. Chan, C., Paul, R., Samoray, D., Amiot, N. C., Giese, B., Jenal, U., and Schirmer, T. (2004). Structural basis of activity and allosteric control of diguanylate cyclase. Proc Natl Acad Sci USA 101, 17084-17089. Chin, K.-H., Lee, Y.-C., Tu, Z.-L., Chen, C.-H., Tseng, Y.-H., Yang, J.-M., Ryan, R. P., McCarthy, Y., Dow, J. M., Wang, A. H.-J., and Chou, S.-H. (2010). The c-AMP receptor-like protein Clp is a novel c-di-GMP receptor linking cell-cell signaling to virulence gene expression in Xanthomonas campestris. J Mol Biol 396, 646-662. de La Fortelle, E., and Bricogne, G. (1997). Maximum-Likelihood Heavy-Atom Parameter Refinement for Multiple Isomorphous Replacement and Multiwavelength Anomalous Diffraction Methods. Method Enzymol 276, 472-494. De, N., Pirruccello, M., Krasteva, P. V., Bae, N., Raghavan, R. V., and Sondermann, H. (2008). Phosphorylation-independent regulation of the diguanylate cyclase WspR. PLoS Biology 6, e67. Fang, X., and Gomelsky, M. (2010). A post-translational, c-di-GMP-dependent mechanism regulating flagellar motility. Mol Microbiol 76, 1295-1305. Guzzo, C. R., Salinas, R. K., Andrade, M. O., and Farah, C. S. (2009). PilZ Protein Structure and Interactions with PilB and the FimX EAL Domain: Implications for Control of Type IV Pilus Biogenesis. J Mol Biol 393, 846-866. Habazettl, J., Allan, M. G., Jenal, U., and Grzesiek, S. (2011). Solution structure of the PilZ domain protein PA4608 complex with cyclic di-GMP identifies change clustering as molecular readout. J Biol Chem 286, 14304-14314. Hengge, R. (2009). Principles of c-di-GMP signalling in bacteria. Nat Rev Microbiol 7, 263-273. Hickman, J. W., and Harwood, C. S. (2008). Identification of FleQ from Pseudomonas aeruginosa as a c-di-GMP-responsive transcription factor. Mol Microbiol 69, 376-389. Huang, B., Whitchurch, C. B., and Mattick, J. S. (2003). FimX, a multidomain protein connecting environmental signals to twitching motility in Pseudomonas aeruginosa. J Bacteriol 185, 7068-7076. Jenal, U., and Malone, J. (2006). Mechanisms of cyclic-di-GMP signaling in bacteria. Annu Rev Genet 40, 385-407. Kazmierczak, B., Lebron, M. B., and Murray, T. S. (2006). Analysis of FimX, a phosphodiesterase that governs twitching motilioty in Pseudomonas aeruginosa. Mol Microbiol 60, 1026-1043. Klausen, M., Aaes-Jorgensen, A., Molin, S., and Tolker-Nielsen, T. (2003a). Involvment of bacterial migration in the development of complex multicellular structures in Pseudomonas aeruginosa biofilms. Mol Microbiol 50, 61-68. Klausen, M., Heydorn, A., Ragas, P., Lambertsen, L., Aaes-Jorgensen, A., Molin, S., and Tolker-Nielsen, T. (2003b). Biofilm formation by Pseudomonas aeruginosa wild type, flagella and type IV pili mutants. Mol Microbiol 48, 1511-1524. Ko, J., Ryu, K.-S., Kim, H.-J., Shin, J.-S., Lee, J.-O., Cheong, C., and Choi, B.-S. (2010). Structure of PP4397 reveals the molecular basis for different c-di-GMP binding modes by PilZ domain proteins. J Mol Biol 398, 97-110. Krasteva, P. V., Fong, J. C. N., Shikuma, N. J., Beyhan, S., Navarro, M. V. A. S., Yildiz, F. H., and Sondermann, H. (2010). Vibrio cholerae VpsT regulates matrix production and motility by directly sensing cyclic di-GMP. Science 327, 866-868. Krissinel, E., and Henrick, K. (2007). Inference of macromolecular assemblies from crystalline state. J Mol Biol 372, 774-797. Kulshina, N., Baird, N. J., and Ferre-D''Amare, A. R. (2009). Recognition of the bacterial second messenger cyclic diguanylate by its cognate riboswitch. Nat Struct Mol Biol 16, 1212–1217. Leduc, J. L., and Roberts, G. P. (2009). Cyclic di-GMP allosterically inhibits the CRP-like protein (Clp) of Xanthomonas axonopodis pv. citri. J Bacteriol 191, 7121-7122. Li, T.-N., Chin, K.-H., Fung, K.-M., Yang, M.-T., Wang, A. H.-J., and Chou, S.-H. (2011). A novel tetrameric PilZ domain structure from Xanthomonads. PLoS ONE 6, e22036. Li, T.-N., Chin, K.-H., Liu, J.-H., Wang, A. H.-J., and Chou, S.-H. (2009a). XC1028 from Xanthomonas campestris adopts a PilZ domain-like structure without a c-di-GMP switch. Proteins: Structure, Function and Bioinformatics 75, 282-288. Li, T.-N., Chin, K.-H., Shih, H.-L., Wang, A. H.-J., and Chou, S.-H. (2009b). Crystallization and preliminary X-ray diffraction characterization of an essential protein from Xanthomonas campestris that contains a noncanonical PilZ signature motif yet is critical for the Xcc pathogenicity. Acta Crystallogr F65, 1056-1059. Liao, Y.-T., Chin, K.-H., Kuo, W.-T., Chuah, M. L.-C., Liang, Z.-X., and Chou, S.-H. (2012). On the crystallization and preliminary X-ray diffraction characterization of FimXEAL-c-di-GMP and FimXEAL-c-di-GMP-PilZ complexes from Xanthomonas campestris. Acta Crystallogr F68, 301-305. Mattick, J. S. (2002). Type IV pili and twitching motility. Annu Rev Microbiol 56, 289-314. McCarthy, Y., Ryan, R. P., O''donovan, K., He, Y.-Q., Jiang, B.-L., Feng, J.-X., Tang, J.-L., and Dow, J. M. (2008). The role of PilZ domain proteins in the virulence of Xanthomonas campestrris pv. campestris. Mol Plant Path 9, 819-824. McRee, D. E. (1999). XtalView/Xfit - A versatile program for manipulating atomic coordinates and electron density. J Struct Biol 125, 156-165. Minasov, G., Padavattan, S., Shuvalova, L., Brunzelle, J. S., Miller, D. J., Basle, A., Massa, C., Collart, F. R., Schirmer, T., and Anderson, W. F. (2009). Crystal structures of YkuI and its complex with second messenger cyclic di-GMP suggest catalytic mechanism of phosphodiester bond cleavage by EAL domains. J Biol Chem 284, 13174-13184. Navarro, M. V. A. S., De, N., Bae, N., Wang, Q., and Sondermann, H. (2009). Structural analysis of the GGDEF-EAL domain-containing c-di-GMP receptor FimX. Structure 17, 1104-1116. Navarro, M. V. A. S., Newell, P. D., Krasteva, P. V., Chatterjee, D., Madden, D. R., O''Toole, G. A., and Sondermann, H. (2011). Structural Basis for c-di-GMP-Mediated Inside-Out Signaling Controlling Periplasmic Proteolysis. PLoS Biology 9, e1000588. Otwinowski, Z., and Minor, W. (1997). Processing of the X-ray diffraction data collected in oscillation mode. Methods Enzymol 276, 307-326. Passner, J. M., and Steitz, T. A. (1997). The structure of a CAP-DNA complex having two cAMP molecules bound to each monomer. Proc Natl Acad Sci USA 94, 2843-2847. Paul, K., Nieto, V., Carlquist, W. C., Blair, D. F., and Harshey, R. M. (2010). The c-di-GMP binding protein YcgR controls flagellar motor direction and speed to affect chemotaxis by a "backstop brake" mechanism. Mol Cell 38, 128-139. Qi, Y., Chuah, M. L.-C., Dong, X., Xie, K., Luo, Z., Tang, K., and Liang, Z.-X. (2011). Binding of cyclic diguanylate in the non-catalytic EAL domain of FimX induces a long-range conformational change. J Biol Chem 286, 2910-2917. Rao, F., Pasunooti, S., Ng, Y., Zhuo, W., Lim, L., Liu, A. W., and Liang, Z.-X. (2009). Enzymatic synthesis of c-di-GMP using a thermophilic diguanylate cyclase. Analytical Biochem 389, 138-142. Romling, U. (2011). Cyclic di-GMP, an established secondary messenger still speeding up. Environmental Microbiology, 14(8),1817-1829. Romling, U., and Amikam, D. (2006a). Cyclic di-GMP as a second messenger. Curr Opin Microbiology 9, 218-228. Romling, U., and Amikam, D. (2006b). Cyclic di-GMP as a second messenger. Cur Opin Microbiology 9, 218-228. Romling, U., Gomelsky, M., and Galperin, M. Y. (2005). C-di-GMP: the dawning of a novel bacterial signalling system. Mol Microbiol 57, 629-639. Ryan, R. P., Fouhy, Y., Lucey, J. F., Crossman, L. C., Spiro, S., He, Y.-W., Zhang, L.-H., Heeb, S., Camara, M., Williams, P., and Dow, J. M. (2006). Cell-cell signaling in Xanthomonas campestris involves an HD-GYP domain protein that functions in cyclic di-GMP turnover. Proc Natl Acad Sci USA 103, 6712-6717. Ryan, R. P., Tolker-Nielsen, T., and Dow, J. M. (2012). When the PilZ don''t work: effectors for cyclic di-GMP action in bacteria. Trends in Microbiol in press. Savvides, S. (2007). Secretion superfamily ATPases swing big. Structure 15, 255-257. Schirmer, T., and Jenal, U. (2009). Structural and mechanistic determinants of c-di-GMP signalling. Nat Rev Microbiol 7, 724-725. Simm, R., Morr, M., Kader, A., Nimtz, M., and Romling, U. (2004). GGDEF and EAL domains inverslely regulate cyclic di-GMP levels and transition from sessility to motility. Mol Microbiol 53, 1123-1134. Slater, H., Alvarez-Morales, A., Barber, C. E., Daniels, M. J., and Dow, J. M. (2000). A two-component system involving an HD-GYP domain protein links cell-cell signalling to pathogenicity gene expression in Xanthomonas campestris. Mol Microbiol 38, 986-1003. Smith, K. D., Lipchock, S. V., Ames, T. D., Wang, J., Breaker, R. R., and Strobel1, S. A. (2009). Structural basis of ligand binding by a c-di-GMP riboswitch. Nat Struct Mol Biol 16, 1218-1223. Smith, K. D., Shanahan, C. A., Moore, E. L., Simon, A. C., and Strobel, S. A. (2011). Structural basis of differential ligand recognition by two classes of bis-(3''-5'')-cyclic dimeric guanosine monophosphate-binding riboswitches. Proc Natl Acad Sci USA 108, 7757-7762. Sondermann, H., Shikuma, N. J., and Yildiz, F. H. (2011). You''ve come a long way: c-di-GMP signaling. Cur Opin Microbiology 15,140-146 . Sterner, R., and Hocker, B. (2005). Catalytic versatility, stability, and evolution of the(βα)8-barrel enzyme fold. Chem Rev 105, 4038-4055. Tal, R., Wong, H. C., Calhoon, R., Gelfand, D., Fear, A. L., Volman, G., Mayer, R., Ross, P., Amikam, D., Weinhouse, H., et al. (1988). Three cdg Operons Control Cellular Turnover of Cyclic Di-GMP in Acetobacter xylinum: Genetic Organization and Occurrence of Conserved Domains in Isoenzymes. J Bacteriol 180, 4416-4425. Tao, F., He, Y.-W., Wu, D.-H., Swarup, S., and Zhang, L.-H. (2010). The cyclic nucleotide monophosphate domain of Xanthomonas campestris global regulator Clp defines a new class of cyclic di-GMP effectors. J Bacteriol 192, 1020–1029. Tchigvintsev, A., Xu, X., Singer, A., Chang, C., Brown, G., Proudfoot, M., Cui, H., Flick, R., Anderson, W. F., Joachimiak, A., et al. (2010). Structural insight into the mechanism of c-di-GMP hydrolysis by EAL domain phosphodiesterases. J Mol Biol 402, 524-538. Thormann, K. M., and Paulick, A. (2010). Tuning the flagellar motor. Microbiology 156, 1275–1283. Tischler, A. D., and Camilli, A. (2004). Cyclic diguanylate (c-di-GMP) regulates Vibrio cholerae biofilm formation. Mol Microbiol 53, 857-869. Tuckerman, J. R., Gonzalez, G., and Gilles-Gonzalez, M.-A. (2011). Cyclic di-GMP activation of polynucleotide phosphorylase signal-dependent RNA processing. J Mol Biol 407, 622-639. Wallace, A. C., Laskowski, R. A., and Thornton, J. M. (1995). LIGPLOT: a program to generate schematic diagrams of protein-ligand interactions. Protein Engineering 8, 127-134. Wang, J., Zhou, J., Donaldson, G. P., Nakayama, S., Yan, L., Lam, Y. F., Lee, W. T., and Sintim, H. O. l. (2010). Conservative Change to the Phosphate Moiety of Cyclic Diguanylic Monophosphate Remarkably Affects Its Polymorphism and Ability To Bind DGC, PDE, and PilZ Proteins. J Am Chem Soc 133, 9320-9330. Wassmann, P., Chan, C., Paul, R., Beck, A., Heerklotz, H., Jenal, U., and Schirmer, T. (2007). Structure of BeF3- -modified response regulator PleD: Implications for diguanylate cyclase activation, catalysis, and feedback inhibition. Structure 15, 915-927. Winn, M. D., Isupovb, M. N., and Murshudo, G. N. (2000). Use of TLS parameters to model anisotropic displacements in macromolecular refinement. Acta Crystallogr D57, 122-133. Wu, Y.-Y., Chin, K.-H., Chou, C.-C., Lee, C.-C., Shr, H.-L., Lyu, P.-C., Wang, A. H.-J., and Chou, S.-H. (2005). The Cloning, purification, crystallization, and preliminary X-ray crystallographic analysis of XC847, a 3''-5'' oligoribonuclease from Xanthomonas campestris. Acta Crystallogr F61, 902-905. Yang, C.-Y., Chin, K.-H., Chuah, M. L.-C., Liang, Z.-X., Wang, A. H.-J., and Chou, S.-H. (2011). On the Structure and Inhibition of a GGDEF Diguanylate Cyclase Complexed with (c-di-GMP)2 at Active Site. Acta Crystallogr D67, 997-1008. Yeo, H., Savvides, S., Herr, E., Lanka, E., and Waksman, G. (2000). Crystal structure of the hexameric traffic ATPase of the Helicobacter pylori type IV secretion system. Mol Cell 6, 1461-1472. Zhang, Z., Kim, S., Gaffney, B. L., and Jones, R. A. (2006). Polymorphism of the signaling molecule c-di-GMP. J Am Chem Soc 128, 7015-7024.
摘要: c-di-GMP 是一個廣泛存在於細菌中的二級訊息傳遞分子。在結合各種不同的受器蛋白後,進而調節為數眾多的細菌生理活動。然而與c-di-GMP結合的受體蛋白是利用何種的機制來辨識結合至今仍尚未完全被瞭解。PilZ蛋白是一個對c-di-GMP具高親和力的接受體蛋白,到目前為止已有兩種類型的PilZ 蛋白被發現。而經由結合c-di-GMP後,第一型的PilZ 蛋白可參與調控鞭毛轉動的速率而影響細菌移動性。而第二型的PilZ 蛋白,細菌則利用它來調控纖毛的運動。根據先前研究中指出第四型纖毛的生合成,是由第二型的PilZ蛋白、c-di-GMP、以及一個具多個功能區域的蛋白FimX所參與的。然而目前尚未有相關的結構被解析。因此本研究以X-ray繞射技術解析出c-di-GMP與FimX(EAL)複合體結構以及第一個第二型的PilZ、FimX(EAL)及c-di-GMP之複合體結構。在解析出的結構中我們清楚的發現c-di-GMP結合在FimX蛋白複合體結構中的EAL功能區域,及位於PilZ蛋白與EAL功能區域的FimX蛋白複合體結構中的結合介面;然而在著兩個複合體結構中的c-di-GMP卻呈現不同的特殊單體構形。這些發現使我們推測c-di-GMP可能利用多種且具有彈性的構形,來辨識不同種的受器蛋白。此外利用恆溫滴定微卡計實驗與凝膠層析過濾法來檢查c-di-GMP對於形成複合體的重要性後發現。c-di-GMP對於形成XccimX(EAL)-c-di-GMP-XccPilZ的複合體結構是扮演著重要且必須的角色。這樣的結果使我們近一步瞭解第四型纖毛的生合成是如何受到c-di-GMP 控制,且c-di-GMP又是如何結合辨識多種的蛋白受器。
C-di-GMP is a novel secondary messenger molecule involved in regulating a plethora of important bacterial activities through binding to an unprecedented array of effectors. The mechanisms of c-di-GMP binding to so many distinct effectors remains poorly understood. Proteins with a canonical PilZ domain that binds c-di-GMP play crucial roles in regulating flagellum-based motility. In contrast, non-canonical type II PilZ domains that do not effectively bind c-di-GMP regulate twitching motility, which is dependent on type IV pilus (T4P).Recent data indicate that T4P biogenesis is initiated via interaction of a non-canonical type II PilZ protein with the GGDEF-EAL domain protein FimX and pilus motor protein PilB under high c-di-GMP concentration.However, the molecular details of such interactions remain to be elucidated. In this study, we report the first hetero-complex crystal structure of a type II PilZ protein and the EAL domain of FimX (FimX(EAL)) protein from Xcc(Xanthomnas campestris pv. campestris) in the presence of c-di-GMP. This work reveals two novel conformations for monomeric c-di-GMP in the XccFimX(EAL)-c-di-GMP and XccFimX(EAL)-c-di-GMP-XccPilZ complex structures and the unique interaction mode of type II PilZ domain with c-di-GMP. These findings indicate that c-di-GMP is flexible enough to adjust its conformations to match the corresponding recognition motifs of different cognate effectors. Altogether, the results represent a first step toward understanding of how T4P biogenesis is controlled by c-di-GMP at molecular level and also of the ability of c-di-GMP to bind to a wide variety of effectors.
URI: http://hdl.handle.net/11455/23488
其他識別: U0005-3107201215523500
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-3107201215523500
Appears in Collections:生物化學研究所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.