Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/23578
標題: 南台灣黃灰澤蟹和屏東澤蟹的成長、行為與背甲顏色之比較
Growth, behavior and body color comparison between Geothelphusa albogilva and G. pingtung from southern Taiwan
作者: 張幼佳
Chang, Yu-Chia
關鍵字: Geothelphusa albogilva
黃灰澤蟹
G. pingtung
growth rate
aggregation
color
屏東澤蟹
蔡氏澤蟹
脫殼
成長率
聚集行為
體色
出版社: 生命科學系所
引用: 王鑫, 1980。台灣的地形景觀。渡假出版社, 台北。 石再添, 2000。台灣地理概論。台灣中華書局, 台北。 李榮祥, 2005。龍潭、涼山與南仁山地區的淡水蟹生殖生態學。靜宜大學碩士論 文, 台中。 林朝棨、周瑞燉, 1984。台灣地質。台灣省文獻委員會, 台中。 施志昀, 1994。台灣淡水蝦、蟹類之分類、分布及幼苗變態研究。國立台灣海洋大學博士學位論文, 基隆。 施志昀、游平祥, 1999。台灣的淡水蟹。國立海洋生物博物館籌備處, 高雄。 施志昀、李伯雯, 2009。台灣淡水蟹圖鑑。晨星出版, 台中。 施習德, 2000。橫行溪流的鐵甲武士–淡水蟹, 114–119 頁。行政院農業委員會, 台北。 施習德, 2005。台灣淡水蟹研究之回顧。野生動物保育彙報及通訊 9: 26-32。 施習德, 2006。認識外來種美國螯蝦。農業世界雜誌 278(10): 10-13。 施習德, 2008a。東亞的淡水蟹。科學發展 428 期。 施習德, 2008b。琉球與日本淡水蟹的多樣性。台灣溼地 68: 2-23。 陳旻宛, 2008。從鹽度耐受性探討台灣產淡水蟹之擴散能力。國立中興大學碩士論文, 台中。 陳溫柔, 2007。台灣地區澤蟹屬蟹類親緣關係暨西南部惡地區域厚圓澤蟹之適應策略研究。國立中山大學博士論文, 高雄。 陳溫柔、林金福、鄭金華, 1999。南台灣蔡氏澤蟹生活史探討。台灣科學教育期 刊 219: 10-20。 陳溫柔、蔡森煌、徐芝敏、鄭金華, 2003。南台灣溪蟹類動物相。高雄縣政府, 高 雄。 蔡正衛, 2004。台灣集水區乾旱特性及其頻率分析之探討。國立成功大學碩士論文, 台南。 劉烘昌, 1999。拉氏清溪蟹的繁殖生物學及殼的結構與形成。國立清華大學碩士 論文, 新竹。 戴愛雲, 1999。中國動物誌, 節肢動物門, 甲殼動物亞門, 軟甲綱, 十足目, 束腹蟹科, 溪蟹科。科學出版社, 北京。 Abramowitz, A.A., 1935. Color changes in cancroid crabs of Bermuda. Proceedings of the National Academy of Sciences of the United States of America 21: 677–81. Abramowitz, A.A., 1937. The comparative physiology of pigmentary responses in the Crustacea. Journal of Experimental Zoology 76: 407–422. Adiyodi, R.G., 1988. Reproduction and development. In: W.W. Burggren and B.R. McMahon, eds., Biology of the Land Crabs, pp. 139–185. Academic Press, Cambridge. Aotsuka T., Suzuki, T., Moriya, T. & Inaba, A., 1995. Genetic differentiation in Japanese freshwater crab, Geothelphusa dehaani (White): isozyme variation among natural populations in Kanagawa prefecture and Tokyo. Zoological Science 12: 427–434. Barnwell, F.H., 1963. Observations on daily and tidal rhythms in some fiddler crabs from equatorial Brazil. The Biological Bulletin 125: 399–415. Barnwell, F.H., 1982 The prevalence of male right-handedness in the Indo-west Pacific fiddler crabs Uca vocans (Linnaeus) and U. tetragonon (Herbst) (Decapoda: Ocypodidae). Journal of Crustacean Biology 21: 70–83. Black, J.B. & Huner, J.V., 1980. Genetics of the red swamp crayfish, Procambarus clarkii (Girard): state-of-the-art. Proceedings of the World Mariculture Society 11: 535–543. Boyce, M.S., 1984. Restitution of r- and k- selection as a model of desity-dependent natural selection. Annual Review of Ecology and Systematics 15: 427–447. Brown, F.A., Fingerman, M., Sandeen, M.I. & Webb, H.M., 1953. Persistent diurnal and tidal rhythms of color change in the fiddler crab, Uca pugnax. Journal of Experimental Zoology 123: 29–60. Bueno, S.L.S. & Shimizu, R.M., 2009. Allometric growth, sexual maturity, and adult male chelae dinorphism in Aegla franca (Decapoda: Anomura: Aeglidae) Journal of Crustacea Biology 29(3): 317–328. Castigilioni, D.S. & Negreiros-Fransozo, M.L., 2004. Comparetive analysis of the relative growth of Uca rapax (Smith) (Crustacea, Ocypodidae) from two mangroves in Sao Paulo, Brazil. Revista Brasileira de Zoologia 21(1): 137–144. Carmona-Suarez, C.A., 2003. Reproductive biology and relative growth in the spider crab Maja crispata (Crustacea, Brachyura, Majidae). Scientia Marina 67(1): 75–80. Chokki, H., 1980. Notes on the colouration of freshwater crab, Geothelphusa dehaan (white), in northern districts of Japan. Researches on Crustacea 10: 57–60. (in Japanese) Chokki, H., 1976. Preliminary report of the colouration of freshwater crab, Geothelphusa dehaan (white), with special reference to its distribution. Researches on Crustacea 7: 177–184. (in Japanese) Claxton W.T., Govind C.K. & Elner, R.W., 1994. Chela function, morphometric maturity, and the mating embrace in male snow crab, Chionoecetes opilio. Canadian Journal of Fisheries and Aquatic Science 51: 1110–1118. Collins, J.P., Young, C., Howell, J. & Minckley, W.L., 1981. Impact of flooding in a sonoran stream, including elimination of an endangered fish population (Poeciliopsis o. occidentalis, Poeciliidae). Southwestern Naturalist 26: 415–423. Detto, T., Hemmi, J.M. & Backwell, P.R.Y., 2008. Colouration and colour changes of the fiddler crab, Uca capricornis: a descriptive study. PLoS ONE 3(2): e1629. Elner, R.W., 1980. The influence of temperature, sex and chela size in the foraging strategy of the shore crabs, Carcinnus maenas (L.). Marine Behaviour and Physiology 7: 15–24. Fingerman, M., 1970. Comparative physiology: chromatophores. Annual Review of Physiology 32: 345–72. Fingerman, M., 1956. Phase difference in the tidal rhythms of color change of two species of fiddler crab. Biological Bulletin 110: 274–290. Figerman, M., Lowe, M.E., Mobberly, W.C., 1958 Environmental factors involved in setting the phases of tidal rhythm of color change in the fiddler crabs Uca pugilator and Uca minaxl. Limnology and Oceanography 3: 271–282. Fitzsimons, M.J. & Nishimoto, R.T., 1995. Use of fish behavior in assessing the effects of hurricane Iniki on the Hawaiian island of Kaua’i. Environmental Biology of Fishes 43: 39–50. Fox, D.L., 1953. Animal biochromes and structural colours. Cambridge University Press, London and New York. Gamble, F.W. & Keeble, F., 1903. The bionomics of convoluta roscoffensis, with special reference to its green cells. Proceedings of the Royal Society of London 72: 93–98. Gamble, F.W. & Keeble, F., 1904. The color physiology of higher crustacea. Philosophical Transactions of the Royal Society of London 196: 187–223. Garland, T. & Adolph, S.C., 1994. Why not to do two-species comparative studies: limitations on inferring adaptation. Physiological Zoology 67: 797–828. Hartnoll, R.G. 1985. Growth, sexual maturity and reproductive output. In: A.M. Wenner, ed., Factors in Adult Growth, Crustacean Issues 3, pp. 101–128. Academic Press, Rotterdam. Hines, A.H., 1989. Geographic variation in size at maturity in brachyuran crabs. Bulletin of Marine Science 45(2): 256–368. Kent, W.J., 1901. The colors of the crayfish. The American Naturalist 35: 933–936. Ladle R.J. & Todd, P.A., 2006 A developmental model for predicting handedness frequencies in crabs. Acta Oecologica International Journal of Ecology 30: 283–287. Lamberti, G.A., Gregory, S.V., Ashkenas, L.R., Wildman, R.C. & Moore, K.M.S., 1991. Stream ecosystem recovery following a catastrophic debris flow. Canadian Journal of Fisheries and Aquatic Sciences 48: 196–208. Lee S.Y. & Seed, R., 1992. Ecological implications of cheliped size in crabs: some data from Carcinus maenas and Liocarcinus holsatus. Marine Ecology Progress Series 84: 151–160. Liu, H.C. &. Li, C.W., 2000. Reproduction in the fresh-water crab Candidiopotamon rathbunae (Brachyura: Potamidae) in Taiwan. Journal of Crustacean Biology 20: 89–99. Mariappan P., Balasundaran, C. & Scmitz, B., 2000. Decapod crustacean chelipeds: an overview. Journal of Bioscience 25: 301–313. Matthews, W.J., Marsh-Matthews, E., 2003. Effects of drought on fish across axes of space, time and ecological complexity. Freshwater Biology 48: 1232–1253. Micheli, F., Gherardi F. & Vannini M., 1990. Growth and reproduction in the freshwater crab, Potamon fluviatile (Decapoda, Brachyura). Freshwater Biology 23: 491–503. Momot, W.T. & Gall J.E., 1971. Some ecological notes on the blue color phase of the crayfish Orconectes virilis, in two lakes. Ohio Journal of Science 71: 363–370. Morrill, W.L., 1974. Dispersal of red imported fire ants by water. The Florida Entomologist 57: 39–42. Nakajima, K. & Masuda, T., 1985. Identification of local populations of freshwater crab Geothelphusa dehaani (White). Bulletin of the Japanese of the Society Scientific Fisheries 51(2): 175–181. Negreiros-Fransozo, M.L., Colpo, K.D. & Costa, T.M., 2003. Allometric growth in the fiddler crab Uca thayeri (Brachyura, Ocypodidae) from a subtropical mangrove. Journal of Crustacean Biology 23(2): 273–279. Ng, P.K.L., 1988. The freshwater crabs of Peninsular Malaysia and Singapore. Shinglee Press, Singapore. Ng, P.K.L. & Rodriguez, G., 1995. Freshwater crabs as poor zoogeographical indicators: a critique of Bǎnǎrescu (1990). Crustaceana 68: 636–645. Ng P.K.L. & Tan, L.W.H., 1985. “Right handedness” in the heterochelous calappoid and Xanthid crabs, suggestion for functional advantages. Crustaceana 49: 98–100. Ng, P.K.L., Wang, C.H., Ho, P.H. & Shih, H.T., 2001. An annotated checklist of brachyuran crabs from Taiwan (Crustacea: Decapoda). National Taiwan Museum Special Publication Series 11: 1–86. Oliviera, R.F. & Custodio, M.R., 1998. Claw size, waving display and female choice in the European fiddler crab, Uca tangeri. Ethology Ecology and Evolution 10: 241–251. Pearsons, T.N., Li, H.W. & Lamberti, G.A., 1992. Influence of habitat complexity on resistance to flooding and resilience of stream fish assemblages.Transactions of the American Fisheries Society 121: 427–436. Pillai, C. K. and T. Subramoniam. 1984. Monsoon-dependent breeding in the field crab Parathelphusa hydrodromus (Herbst). Hydrobiologia 119: 7–14. Pinheiro, H.A.A. & Fransozo, A., 1999. Reproduction behavior of the swimming crab Arenaeus cribrarius (Lamarck, 1818) (Crustacea, Brachyura, Portunidae) in captivity. Bulletin of Marine Science 64(2): 243-253. Quackenbush, L.S. & Milton, F., 1984. Regulation of the release of chromatophorotropic neurohormones from the isolated eyestalk of the fiddler crab, Uca pugilator. The Biological Bulletin 166: 237-250. Rayner, T.S., Jenkins, K.M. & Kingsford, R.T., 2009. Small environmental flows, drought and the role of refugia for freshwater fish in the Macquarie Marshes, arid Australia. Ecohydrology 440–453. Rebach, S. & Wowor, D., 1997. Latitudinal variation of claw attributes in last coast crabs. Journal of rustaean Biology 17(2): 227–235. Reddy, P.S. & Fingerman, M., 1995. Effect of cadmium chloride on physiological color changes of the fiddler crab, Uca pugilator. Ecotoxicology and Environmental Safety 31: 69–75. Rosenberg, M.S., 1997. Evolution of shape differences between the major and minor chelipeds of Uca pugnax (Decapoda: Ocypodidae). Jounal of Crustacean Biology 17(1): 52–59. Santos, S. & Negreiros-Fransozo, M.L., 1995. Morphometric relationships and maturation in Portunus spinimanus Latreille, 1819 (Crustacea, Brachyura, Portunidae). Revista Brasileira de Biologia 55(4): 545–553. Scalici, M. & Gherardi, F., 2008. Heterochely and handness in the river crab Potamon potamios (Olivier, 1804) (Decapoda, Brachyura). Crustaceana 81(4): 507–511. Shih, H.T., Chen, G.X. & Wang, L.M., 2005. A new species of freshwater crab (Decapoda: Brachyura: Potamidae) from Dongyin Island, Matsu, Taiwan, defined by morphological and molecular characters, with notes on its biogeography. Journal of Natural History 39: 2901–2911. Shih, H.T., Naruse, T. & Yeo, D.C.J., 2008. A new species of Geothelphusa Stimpson, 1857, from Taiwan (Crustacea : Brachyura : Potamidae) based on morphological and molecular evidence, with notes on species from western Taiwan. Zootaxa 1877: 37–48. Shih, H.T., & Ng, P.K.L., 2011. Diversity and biogeography of freshwater crabs (Crustacea: Brachyura: Potamidae, Gecarcinucidae) from East Asia. Systematics and Biodiversity 9: 1–16. Shih, H.T., Ng, P.K.L. & Chang, H.W., 2004. Systematics of the genus Geothelphusa (Crustacea, Decapoda, Brachyura, Potamidae) from southern Taiwan: amolecular appraisal. Zoological Studies 43: 561–570. Shih, H.T., Ng, P.K.L., Schubart, C.D. & Chang, H.W., 2007. Phylogeny and phylogeography of the genus Geothelphusa (Crustacea: Decapoda, Brachyura, Potamidae) in southwestern Taiwan based on two mitochondrial genes. Zoological Science 24: 57–66. Shih, H.T. & Shy J.Y., 2009. Geothelphusa makatao sp. nov. (Crustacea: Brachyura: Potamidae), a new freshwater crab from an uplifted Pleistocene reef in Taiwan. Zootaxa 2106: 51–60. Shih, H.T., Shy, J.Y. & Lee, J.H., 2010. A new freshwater crab of the genus Geothelphusa (Brachyura, Potamidae) from southwestern Taiwan. Crustaceana Monographs 14: 661–675. Shih, H.T., Zhou, X.M., Chen, G.X., Chien, I.C. & Ng, P.K.L., 2011. Recent vicariant and dispersal events affecting the phylogeny and biogeography of East Asia freshwater crab genus Nanhaipotamon (Decapoda: Potamidae). Molecular Phylogenetics and Evolution 58: 427–438. Shy, J.Y., 2005. A new species of freshwater crab of the genus Geothelphusa Stimpson, 1858 (Crustacea, Decapoda, Brachyura, Potamidae) from Taiwan. The Raffles Bulletin of Zoology 53: 99–102. Shy, J.Y. & Ng, P.K.L., 1998. On two new species of Geothelphusa Stimpson, 1858 (Decapoda, Brachyura, Potamidae) from the Ryukyu Islands, Japan. Crustaceana 71: 778–784. Shy, J.Y., Ng, P.K.L. & Yu, H.P., 1994. Crabs of the genus Geothelphusa Stimpson. 1858 (Crustacea; Decapoda: Braehyura: Poiamidae) from Taiwan, with descriptionsof 25 new species. The Raffles Bulletin of Zoology 42: 781–846. Somerton, D.A., 1980. A Computer technique for estimating the size of sexual maturity in crabs. Canadian Journal of Fisheries and Aquatic Sciences 37: 1488–1494. Tan, S.H. & Liu, H.C., 1998. Two new species of Geothelphusa (Decapoda: Brachyura: Potamidae) from Taiwan. Zoological Science 37: 286 290. Tew, K.S., Han, C.C., Chou, W.R. & Fang, L.S., 2002. Habitat and fish fauna structure in a subtropical mountain stream in Taiwan before and after a catastrophic typhoon. Environmental Biology of Fishes 65: 457–462. Thacker, R.W., Hazlett, B.A., Esman, L.A., Stafford, .C.P. & Keller, T., 1993. Color morphs of the crayfish Orconectes virilis. American Midland Naturalist 129: 182–199. Walker, M.L., Austin, C.M. & Meewan, M., 2000. Evidence for the inheritance of a blue variant of the Australian fresh-water crayfish Cherax destructor (Decapoda: Parastacidae) as an autosomal recessive. Journal of Crustacean Biology 20: 25–30. Warner, G.F., 1970. Behavior of two species of grapsid crabs during intra-specific encounters. Behaviour 36: 9–19. Williams, M.J. & Heng, P.K., 1981. Handedness in males of Uca vocans (Linnaeus, 1758) (Decapoda, Ocypodidae). Crustaceana 40: 215–216. Wu, C.C.& Kuo, Y.H., 1999. Typhoons affecting Taiwan – current understanding and future challenges. Bulletin of the American Meteorological Society 80: 67–80. Yeo, D.C.J., Ng, P.K.L., Cumberlidge, N., Magalhaes, C., Daniels, S.R. & Campos, M.R., 2008. Global diversity of crabs (Crustacea: Decapoda: Brachyura) in freshwater. Hydrobiologia 595: 275–286.
摘要: 本研究比較南台灣兩種大型澤蟹: 黃灰澤蟹 (Geothelphusa albogilva) 和屏東澤蟹 (G. pingtung) 之體型、水流沖擊實驗與體色。成蟹方面, 黃灰澤蟹每次脫殼成長幅度大於屏東澤蟹 (平均 3.01 mm vs. 1.97 mm); 稚蟹方面, 黃灰澤蟹每次脫殼成長幅度也大於屏東澤蟹 (平均 2.31 mm vs. 2.09 mm), 而兩種澤蟹的稚蟹個體脫殼比例和頻率都高於成蟹 (黃灰澤蟹: 96 % vs. 4 %,; 屏東澤蟹: 83 % vs. 17 %), 可能由於成蟹成長幅度較大, 脫殼間隔時間較長, 也可能還需將能量投注於生殖, 因此脫殼次數無稚蟹頻繁。此外, 黃灰澤蟹脫殼比例較屏東澤蟹高 (40% vs. 30%), 且屏東澤蟹較容易脫殼失敗。成長率不同除了本身因素外, 也推測可能與棲地水文有關。黃灰澤蟹棲地終年有水, 屏東澤蟹棲地冬季乾涸, 因此成長策略不同; 終年有水的溪流環境導致黃灰澤蟹脫殼個體的比例較高, 脫殼時間也較為頻繁。水流衝擊實驗加入蔡氏澤蟹 (G. tsayae) 作比較, 在 2.6 m/s 的流速下, 黃灰澤蟹開始聚集時間短於屏東澤蟹和蔡氏澤蟹 (平均分別為 7.3秒, 9.6秒, 14.5 秒); 聚集隻數比例, 黃灰澤蟹高於屏東澤蟹和蔡氏澤蟹 (平均分別為 80%, 72%, 72%); 水停後的散開時間, 黃灰澤蟹晚於屏東澤蟹和蔡氏澤蟹 (平均分別為 20.34秒, 6.68秒, 5.08 秒), 顯示黃灰澤蟹較容易因水流而聚集, 且水流流速越高, 聚集行為越明顯。推論其原因為屏東澤蟹之棲地易受洪水影響, 演化出聚集行為可增加生存機率, 在棲地環境中若遇到洪水或大雨, 螃蟹藉由抓攫其他外物或彼此抓聚以避免單一個體被水流沖往下游。終年有水的棲地可能導致黃灰澤蟹脫殼較屏東澤蟹頻繁, 且聚集行為也比較明顯。以三原色 RGB 量化背甲體色, 結果顯示兩種澤蟹呈現類似的體色變化趨勢: 體色與體型大小有關 (p < 0.05), 與性別無關 (p > 0.05)。且將兩種澤蟹體色用群聚分析各區分出五群, 了解體色變異的程度, 和每群在族群中所佔的比例。由於小個體需躲避捕食者, 暗淡的體色具保護作用; 大個體體色多變化可能與生殖求偶或其他環境因子有關。 關鍵字: 黃灰澤蟹、屏東澤蟹、蔡氏澤蟹、脫殼、成長率、聚集行為、體色。
This study compared the growth, water impact behavior and color of two large-sized Geothelphusa (G. albogilva and G. pingtung) from southern Taiwan. Adult G. albogilva grew larger than G. pingtung (mean 3.01 mm vs. 1.97 mm); juvenile G. albogilva also grew larger than G. pingtung (mean 2.31 mm vs. 2.09 mm); juvenile percentage and frequence of molt were higher than adult (G. albogilva: 96 % vs. 4 %; G. pingtung: 83 % vs. 17 %), it could be adult growth rate higher than juvenile, therefore molting interval were longer, it also could be adult have to pay more energy on reproduction, result in frequence of molt. Moreover, G. albogilva molting frequence higher than G. pingtung (40% vs. 30%,), G. pingtung difficult to molt, and easy to fail. The differen growth rate may be due to there were different species or the hydrology of habitat. G. albogilva habitat with year-round water make it molt frequently, G. pingtung habitat was dry in winter, which eventually affect the different growth strategies. In the water impact behavior, compared with G. tsayae. Flow rate 2.6 m/s, the beginning of aggregating time of G. albogilva was faster than G. pingtung and G. tsayae (mean 7.3 s, 9.6 s, 14.5 s, respectively); percentage of aggregation of G. albogilva was higher than G. pingtung and G. tsayae (mean 80%, 72%, 72%, respectively); dispersal time after flow stops of G. albogilva was faster than G. pingtung and G. tsayae (mean 20.34 s, 6.68 s, 5.08 s, respectively). It is suggested G. albogilva are easily aggregated when they meet the water flow, which may help the surviorship of G. albogilva because its habitat is easily affected by floods. Crabs may grab objects or hold each other together to avoid the possibility to wash downstream by floods. Habitat with year-round water could increase the molt frequency and degree of aggregation of G. albogilva compared to G. pingtung. Three primary colors RGB were used to quantify color. Both two crabs showed similar patterns in color variation: color and body size are related significantly (p < 0.05), but not related with the sex (p > 0.05). Use cluster analysis to classify body color, and two species were divided into five groups, distintegrated of the degree of color variation and every group in proportion. The dark color of juveniles is suggested to avoid predators, and the variable color of adult may be related with courtship or other environment factors. Keywords: Geothelphusa albogilva, G. pingtung, growth rate, aggregation, color
URI: http://hdl.handle.net/11455/23578
其他識別: U0005-0202201220170400
Appears in Collections:生命科學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.