Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/23579
標題: 擬南芥中具有演化保留性的葉綠體蛋白質AtCISD2之探討與分析
Characterization of Arabidopsis AtCISD2, an evolutionarily conserved chloroplast protein
作者: 蘇俐文
Su, Li-Wen
關鍵字: 阿拉伯芥
Arabidopsis
硫鐵蛋白
Iron-sulfur protein
出版社: 生物化學研究所
引用: 張書恆 (2011) 擬南芥新穎硫鐵蛋白AtCISD22功能性分析。中興大學生物化學研 究所碩士論文。 Balk, J., and Lobreaux, S. (2005). Biogenesis of iron-sulfur proteins in plants. Trends Plant Sci 10, 324-331. Balk, J., and Pilon, M. (2011). Ancient and essential: the assembly of iron-sulfur clusters in plants. Trends in Plant Science 16, 218-226. Beinert, H., Holm, R.H., and Munck, E. (1997). Iron-sulfur clusters: nature''s modular, multipurpose structures. Science 277, 653-659. Buchanan-Wollaston, V., Page, T., Harrison, E., Breeze, E., Lim, P.O., Nam, H.G., Lin, J.F., Wu, S.H., Swidzinski, J., Ishizaki, K., and Leaver, C.J. (2005). Comparative transcriptome analysis reveals significant differences in gene expression and signalling pathways between developmental and dark/starvation-induced senescence in Arabidopsis. Plant J 42, 567-585. Chan, M.K., Kim, J., and Rees, D.C. (1993). The nitrogenase FeMo-cofactor and P-cluster pair: 2.2 A resolution structures. Science 260, 792-794. Chang, N.C., Nguyen, M., Germain, M., and Shore, G.C. (2010). Antagonism of Beclin 1-dependent autophagy by BCL-2 at the endoplasmic reticulum requires NAF-1. Embo J 29, 606-618. Chen, Y.F., Kao, C.H., Kirby, R., and Tsai, T.F. (2009a). Cisd2 mediates mitochondrial integrity and life span in mammals. Autophagy 5, 1043-1045. Chen, Y.F., Wu, C.Y., Kirby, R., Kao, C.H., and Tsai, T.F. (2010). A role for the CISD2 gene in lifespan control and human disease. Ann Ny Acad Sci 1201, 58-64. Chen, Y.F., Kao, C.H., Chen, Y.T., Wang, C.H., Wu, C.Y., Tsai, C.Y., Liu, F.C., Yang, C.W., Wei, Y.H., Hsu, M.T., Tsai, S.F., and Tsai, T.F. (2009b). Cisd2 deficiency drives premature aging and causes mitochondria-mediated defects in mice. Gene Dev 23, 1183-1194. Choi, Y.H., Gehring, M., Johnson, L., Hannon, M., Harada, J.J., Goldberg, R.B., Jacobsen, S.E., and Fischer, R.L. (2002). DEMETER, a DNA glycosylase domain protein, is required for endosperm gene imprinting and seed viability in Arabidopsis. Cell 110, 33-42. Colca, J.R., McDonald, W.G., Waldon, D.J., Leone, J.W., Lull, J.M., Bannow, C.A., Lund, E.T., and Mathews, W.R. (2004). Identification of a novel mitochondrial protein (&quot;mitoNEET&quot;) cross-linked specifically by a thiazolidinedione photoprobe. Am J Physiol-Endoc M 286, E252-E260. Conlan, A.R., Axelrod, H.L., Cohen, A.E., Abresch, E.C., Zuris, J., Yee, D., Nechushtai, R., Jennings, P.A., and Paddock, M.L. (2009). Crystal Structure of Miner1: The Redox-active 2Fe-2S Protein Causative in Wolfram Syndrome 2. Journal of Molecular Biology 392, 143-153. Emanuelsson, O., and von Heijne, G. (2001). Prediction of organellar targeting signals. Biochim Biophys Acta 1541, 114-119. Espinoza, C., Medina, C., Somerville, S., and Arce-Johnson, P. (2007). Senescence-associated genes induced during compatible viral interactions with grapevine and Arabidopsis. J Exp Bot 58, 3197-3212. Freskos, J.N., Fobian, Y.M., Benson, T.E., Moon, J.B., Bienkowski, M.J., Brown, D.L., Emmons, T.L., Heintz, R., Laborde, A., McDonald, J.J., Mischke, B.V., Molyneaux, J.M., Mullins, P.B., Prince, D.B., Paddock, D.J., Tomasselli, A.G., and Winterrowd, G. (2007). Design of potent inhibitors of human beta-secretase. Part 2. Bioorg Med Chem Lett 17, 78-81. Fujiki, Y., Yoshikawa, Y., Sato, T., Inada, N., Ito, M., Nishida, I., and Watanabe, A. (2001). Dark-inducible genes from Arabidopsis thaliana are associated with leaf senescence and repressed by sugars. Physiol Plantarum 111, 345-352. Gloeckner, C.J., Boldt, K., Schumacher, A., Roepman, R., and Ueffing, M. (2007). A novel tandem affinity purification strategy for the efficient isolation and characterisation of native protein complexes. Proteomics 7, 4228-4234. Grieshaber, M.K., and Volkel, S. (1998). Animal adaptations for tolerance and exploitation of poisonous sulfide. Annual Review of Physiology 60, 33-53. Halliwell, B., and Gutteridge, J.M. (1984). Oxygen toxicity, oxygen radicals, transition metals and disease. Biochemical Journal 219, 1-14. Huang, H.E., Ger, M.J., Yip, M.K., Chen, C.Y., Pandey, A.K., and Feng, T.Y. (2004). A hypersensitive response was induced by virulent bacteria in transgenic tobacco plants overexpressing a plant ferredoxin-like protein (PFLP). Physiol Mol Plant P 64, 103-110. Jaganaman, S., Pinto, A., Tarasev, M., and Ballou, D.P. (2007). High levels of expression of the iron-sulfur proteins phthalate dioxygenase and phthalate dioxygenase reductase in Escherichia coli. Protein Expr Purif 52, 273-279. Kim, C.Y., Bove, J., and Assmann, S.M. (2008). Overexpression of wound-responsive RNA-binding proteins induces leaf senescence and hypersensitive-like cell death. New Phytologist 180, 57-70. Lill, R. (2009). Function and biogenesis of iron-sulphur proteins. Nature 460, 831-838. Lill, R., and Muhlenhoff, U. (2006). Iron-sulfur protein biogenesis in eukaryotes: components and mechanisms. Annu Rev Cell Dev Biol 22, 457-486. Lill, R., and Muhlenhoff, U. (2008). Maturation of iron-sulfur proteins in eukaryotes: mechanisms, connected processes, and diseases. Annu Rev Biochem 77, 669-700. Lim, P.O., Kim, H.J., and Nam, H.G. (2007). Leaf senescence. Annu Rev Plant Biol 58, 115-136. Lin, J.Z., Zhang, L.M., Lai, S.M., and Ye, K.Q. (2011). Structure and Molecular Evolution of CDGSH Iron-Sulfur Domains. Plos One 6. Maiuri, M.C., Criollo, A., and Kroemer, G. (2010). Crosstalk between apoptosis and autophagy within the Beclin 1 interactome. Embo J 29, 515-516. Mardis, E.R. (2008). Next-generation DNA sequencing methods. Annu Rev Genom Hum G 9, 387-402. Meyer, J. (2008). Iron-sulfur protein folds, iron-sulfur chemistry, and evolution. J Biol Inorg Chem 13, 157-170. Miller, J., and Meyer, N. (2008). Transforming a Curriculum Center for the 21<sup>st</sup> Century at Eastern Washington University Libraries. Education Libraries 31, 19-30. Miller, J.D., Arteca, R.N., and Pell, E.J. (1999). Senescence-associated gene expression during ozone-induced leaf senescence in Arabidopsis. Plant Physiol 120, 1015-1023. Munne-Bosch, S., and Alegre, L. (2004). Die and let live: leaf senescence contributes to plant survival under drought stress. Funct Plant Biol 31, 203-216. Nakamura, M., Saeki, K., and Takahashi, Y. (1999). Hyperproduction of recombinant ferredoxins in Escherichia coli by coexpression of the ORF1-ORF2-iscS-iscU-iscA-hscB-hscA-fdx-ORF3 gene cluster. J Biochem-Tokyo 126, 10-18. Paddock, M.L., Wiley, S.E., Axelrod, H.L., Cohen, A.E., Roy, M., Abresch, E.C., Capraro, D., Murphy, A.N., Nechushtai, R., Dixon, J.E., and Jennings, P.A. (2007). MitoNEET is a uniquely folded 2Fe-2S outer mitochondrial membrane protein stabilized by pioglitazone. P Natl Acad Sci USA 104, 14342-14347. Puca, A.A., Daly, M.J., Brewster, S.J., Matise, T.C., Barrett, J., Shea-Drinkwater, M., Kang, S., Joyce, E., Nicoli, J., Benson, E., Kunkel, L.M., and Perls, T. (2001). A genome-wide scan for linkage to human exceptional longevity identifies a locus on chromosome 4. P Natl Acad Sci USA 98, 10505-10508. Rensink, W.A., Schnell, D.J., and Weisbeek, P.J. (2000). The transit sequence of ferredoxin contains different domains for translocation across the outer and inner membrane of the chloroplast envelope. J Biol Chem 275, 10265-10271. Rigaut, G., Shevchenko, A., Rutz, B., Wilm, M., Mann, M., and Seraphin, B. (1999). A generic protein purification method for protein complex characterization and proteome exploration. Nat Biotechnol 17, 1030-1032. Rubio, V., Shen, Y.P., Saijo, Y., Liu, Y.L., Gusmaroli, G., Dinesh-Kumar, S.P., and Deng, X.W. (2005). An alternative tandem affinity purification strategy applied to Arabidopsis protein complex isolation. Plant J 41, 767-778. Schenk, P.M., Kazan, K., Rusu, A.G., Manners, J.M., and Maclean, D.J. (2005). The SEN1 gene of Arabidopsis is regulated by signals that link plant defence responses and senescence. Plant Physiol Bioch 43, 997-1005. Sheftel, A., Stehling, O., and Lill, R. (2010). Iron-sulfur proteins in health and disease. Trends Endocrinol Metab 21, 302-314. Shendure, J., and Ji, H.L. (2008). Next-generation DNA sequencing. Nat Biotechnol 26, 1135-1145. Shethna, Y.I., Wilson, P.W., Hansen, R.E., and Beinert, H. (1964). Identification by Isotopic Substitution of the Epr Signal at G = 1.94 in a Non-Heme Iron Protein from Azotobacter. Proc Natl Acad Sci U S A 52, 1263-1271. Wiley, S.E., Murphy, A.N., Ross, S.A., van der Geer, P., and Dixon, J.E. (2007a). MitoNEET is an iron-containing outer mitochondrial membrane protein that regulates oxidative capacity. P Natl Acad Sci USA 104, 5318-5323. Wiley, S.E., Paddock, M.L., Abresch, E.C., Gross, L., van der Geer, P., Nechushtai, R., Murphy, A.N., Jennings, P.A., and Dixon, J.E. (2007b). The outer mitochondrial membrane protein mitoNEET contains a novel redox-active 2Fe-2S cluster. J Biol Chem 282, 23745-23749.
摘要: 硫鐵蛋白是一種廣泛存在的蛋白,會與Fe-S簇合物結合,並參與各種不同的生理反應。近來在人類與哺乳動物的研究中,發現含有保留性區域CDGSH domain 的蛋白具有與Fe-S 簇合物結合的能力,稱為CISD蛋白。目前,在模式植物擬南芥中只有一個CDGSH domain蛋白,命名為AtCISD2。本篇研究發現AtCISD2與其他硫鐵蛋白一樣在大腸桿菌中不易大量表現,因此利用SUMO的蛋白融合技術 提高AtCISD2重組蛋白的產量,並透過ICP-MS證實AtCISD2具有結合Fe-S簇合物的能力。實驗室先前研究已知AtCISD2會座落於植物葉綠體中。本篇研究進一步建構帶有親和性純化標籤的35S:: AtCISD2-SFP轉殖株,並透過親和性純化技術分離出植物內生性的AtCISD2蛋白質。經由蛋白電泳分析可知內生性的AtCISD2蛋白質分子量小於預期。而藉由ESI-MS/MS的質譜分析與蛋白質N 端定序的交叉比對,證實AtCISD2蛋白質在N端具有葉綠體定位訊號胜肽,且在植物細胞中被剪切,此結果與動物的CISD 蛋白質截然不同。另一方面,藉由蛋白銀染以及LC-MS/MS可發現AtCISD2可能與植物葉綠體內的glyceraldehyde 3-phosphate dehydrogenase B subunit (GAPB)和葉綠體前驅物ATP synthase gamma chain等蛋白質交互作用,並且可能參與在碳固定的機制中。最後,利用實驗室已建構之35S::AtCISD2-Ri轉殖株,並透過Illumina的次世代定序技術,初步獲得具有表現差異的基因,顯示出AtCISD2可能與植物老化以及逆境反應有關。
Iron-sulfur clusters are important cofactors for protein functions involved in many cellular processes. Recently, a conserved CDGSH domain with unusual Cys3-His1 ligand was identified as 2Fe-2S cluster binding domain. In mammalians, CDGSH domain containing proteins were named as CISD (CDGSH iron-sulfur domain) proteins. In Arabidopsis, only one CDGSH domain protein (AtCISD2) was found. Like other iron-sulfur binding proteins, AtCISD2 recombinant protein was difficult to overexpress in E. coli. In this study, SUMO-tagged expression technology was used to overcome the expression problem. After purification, AtCISD2 recombinant proteins found to contain Fe via ICP-MS analysis. To further identify the function of AtCISD2 in plant, a tandem affinity-tagged AtCISD2 transgenic line was generated and endogenous AtCISD2 was purified by strept-tactin resin. After LC-MS/MS and Edman degradation, a chloroplast transit peptide and cleavage site was found in the N-terminal region of AtCISD2. In addition, AtCISD2 interacting proteins were also identified by sliver staining and LC-MS/MS analysis. Finally, using RNA samples collected from 35S::AtCISD2-Ri and wild-type, the trsnscriptome analysis was done by Illumina next generation sequencing, and the differential expression genes were obtained. These preliminary results suggest that AtCISD2 is involved in plant senescence and stress responses.
URI: http://hdl.handle.net/11455/23579
其他識別: U0005-2008201212240300
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2008201212240300
Appears in Collections:生物化學研究所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.