Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/23590
標題: 探討腎臟近曲小管細胞的TonEBP於高張環境下調控AAD表現與多巴胺產生所扮演的角色
The Role of TonEBP in Regulation of AAD Expression and Dopamine Production in Renal Proximal Tubule Cells upon Hypertonic Challenge
作者: 辛宜鴻
Hsin, Yi-Hong
關鍵字: 高滲透壓
TonEBP
多巴胺
轉錄作用
Dopamine
AAD
出版社: 生命科學系所
引用: [1] K. Thurau, H. Valtin, J. Schnermann, Kidney, Annu. Rev. Physiol 30 (1968) pp. 441-524. [2] M. Taub, J.E. Springate, F. Cutuli, Targeting of renal proximal tubule Na,K-ATPase by salt-inducible kinase, Biochem. Biophys. Res. Commun. 393 (2010) pp. 339-344. [3] F. Wehner, H. Olsen, H. Tinel, E. Kinne-Saffran, R.K. Kinne, Cell volume regulation: osmolytes, osmolyte transport, and signal transduction, Rev. Physiol Biochem. Pharmacol. 148 (2003) pp. 1-80. [4] N.I. Dmitrieva, Q. Cai, M.B. Burg, Cells adapted to high NaCl have many DNA breaks and impaired DNA repair both in cell culture and in vivo, Proc. Natl. Acad. Sci. U. S. A 101 (2004) pp. 2317-2322. [5] L. Michea, D.R. Ferguson, E.M. Peters, P.M. Andrews, M.R. Kirby, M.B. Burg, Cell cycle delay and apoptosis are induced by high salt and urea in renal medullary cells, Am. J. Physiol Renal Physiol 278 (2000) p.F209-F218. [6] A. Galvez, M.P. Morales, J.M. Eltit, P. Ocaranza, L. Carrasco, X. Campos, M. Sapag-Hagar, G. az-Araya, S. Lavandero, A rapid and strong apoptotic process is triggered by hyperosmotic stress in cultured rat cardiac myocytes, Cell Tissue Res. 304 (2001) pp. 279-285. [7] E. Robbins, T. Pederson, P. Klein, Comparison of mitotic phenomena and effects induced by hypertonic solutions in HeLa cells, J. Cell Biol. 44 (1970) pp. 400-416. [8] T. Pederson and E. Robbins, RNA synthesis in HeLa cells. Pattern in hypertonic medium and its similarity to synthesis during G2-prophase, J. Cell Biol. 47 (1970) pp. 734-744. [9] J.L. Saborio, S.S. Pong, G. Koch, Selective and reversible inhibition of initiation of protein synthesis in mammalian cells, J. Mol. Biol. 85 (1974) pp. 195-211. [10] P.G. Petronini, M. Tramacere, J.E. Kay, A.F. Borghetti, Adaptive response of cultured fibroblasts to hyperosmolarity, Exp. Cell Res. 165 (1986) pp. 180-190. [11] H. Miyakawa, S.K. Woo, S.C. Dahl, J.S. Handler, H.M. Kwon, Tonicity-responsive enhancer binding protein, a rel-like protein that stimulates transcription in response to hypertonicity, Proc. Natl. Acad. Sci. U. S. A 96 (1999) pp. 2538-2542. [12] C. Lopez-Rodriguez, J. Aramburu, A.S. Rakeman, A. Rao, NFAT5, a constitutively nuclear NFAT protein that does not cooperate with Fos and Jun, Proc. Natl. Acad. Sci. U. S. A 96 (1999) pp. 7214-7219. [13] J.C. Stroud, C. Lopez-Rodriguez, A. Rao, L. Chen, Structure of a TonEBP-DNA complex reveals DNA encircled by a transcription factor, Nat. Struct. Biol. 9 (2002) pp. 90-94. [14] E.H. Tong, J.J. Guo, A.L. Huang, H. Liu, C.D. Hu, S.S. Chung, B.C. Ko, Regulation of nucleocytoplasmic trafficking of transcription factor OREBP/TonEBP/NFAT5, J. Biol. Chem. 281 (2006) pp. 23870-23879. [15] C. Lopez-Rodriguez, J. Aramburu, L. Jin, A.S. Rakeman, M. Michino, A. Rao, Bridging the NFAT and NF-kappaB families: NFAT5 dimerization regulates cytokine gene transcription in response to osmotic stress, Immunity. 15 (2001) pp. 47-58. [16] M.S. Kwon, S.D. Lee, J.A. Kim, E. Colla, Y.J. Choi, P.G. Suh, H.M. Kwon, Novel nuclear localization signal regulated by ambient tonicity in vertebrates, J. Biol. Chem. 283 (2008) pp. 22400-22409. [17] S.D. Lee, E. Colla, M.R. Sheen, K.Y. Na, H.M. Kwon, Multiple domains of TonEBP cooperate to stimulate transcription in response to hypertonicity, J. Biol. Chem. 278 (2003) pp. 47571-47577. [18] C.E. Irarrazabal, J.C. Liu, M.B. Burg, J.D. Ferraris, ATM, a DNA damage-inducible kinase, contributes to activation by high NaCl of the transcription factor TonEBP/OREBP, Proc. Natl. Acad. Sci. U. S. A 101 (2004) pp. 8809-8814. [19] S.C. Dahl, J.S. Handler, H.M. Kwon, Hypertonicity-induced phosphorylation and nuclear localization of the transcription factor TonEBP, Am. J. Physiol Cell Physiol 280 (2001) p.C248-C253. [20] B.C. Ko, A.K. Lam, A. Kapus, L. Fan, S.K. Chung, S.S. Chung, Fyn and p38 signaling are both required for maximal hypertonic activation of the osmotic response element-binding protein/tonicity-responsive enhancer-binding protein (OREBP/TonEBP), J. Biol. Chem. 277 (2002) pp. 46085-46092. [21] J.D. Ferraris, P. Persaud, C.K. Williams, Y. Chen, M.B. Burg, cAMP-independent role of PKA in tonicity-induced transactivation of tonicity-responsive enhancer/ osmotic response element-binding protein, Proc. Natl. Acad. Sci. U. S. A 99 (2002) pp. 16800-16805. [22] Q. Cai, J.D. Ferraris, M.B. Burg, High NaCl increases TonEBP/OREBP mRNA and protein by stabilizing its mRNA, Am. J. Physiol Renal Physiol 289 (2005) p.F803-F807. [23] S.K. Woo, S.C. Dahl, J.S. Handler, H.M. Kwon, Bidirectional regulation of tonicity-responsive enhancer binding protein in response to changes in tonicity, Am. J. Physiol Renal Physiol 278 (2000) p.F1006-F1012. [24] H. Miyakawa, S.K. Woo, C.P. Chen, S.C. Dahl, J.S. Handler, H.M. Kwon, Cis- and trans-acting factors regulating transcription of the BGT1 gene in response to hypertonicity, Am. J. Physiol 274 (1998) p.F753-F761. [25] J.S. Handler and H.M. Kwon, Cell and molecular biology of organic osmolyte accumulation in hypertonic renal cells, Nephron 87 (2001) pp. 106-110. [26] J.S. Rim, M.G. Atta, S.C. Dahl, G.T. Berry, J.S. Handler, H.M. Kwon, Transcription of the sodium/myo-inositol cotransporter gene is regulated by multiple tonicity-responsive enhancers spread over 50 kilobase pairs in the 5''-flanking region, J. Biol. Chem. 273 (1998) pp. 20615-20621. [27] M. Pestana, H. Jardim, F. Correia, M.A. Vieira-Coelho, P. Soares-da-Silva, Renal dopaminergic mechanisms in renal parenchymal diseases and hypertension, Nephrol. Dial. Transplant. 16 Suppl 1 (2001) pp. 53-59. [28] T. Hussain and M.F. Lokhandwala, Renal dopamine receptors and hypertension, Exp. Biol. Med. (Maywood. ) 228 (2003) pp. 134-142. [29] C. Zeng, H. Sanada, H. Watanabe, G.M. Eisner, R.A. Felder, P.A. Jose, Functional genomics of the dopaminergic system in hypertension, Physiol Genomics 19 (2004) pp. 233-246. [30] R.H. Alper and K.E. Moore, Injection of hypertonic saline or mannitol accelerates the dehydration-induced activation of dopamine synthesis in the neurointermediate lobe of the rat hypophysis, Neuroendocrinology 35 (1982) pp. 469-474. [31] M. Sakai, T. Fujii, N. Karasawa, R. Arai, I. Nagatsu, Enhanced expression of tyrosine hydroxylase and aromatic L-amino acid decarboxylase in cerebellar Purkinje cells of mouse after hyperosmotic stimuli, Neurosci. Lett. 194 (1995) pp. 142-144. [32] M. Hayashi, Y. Yamaji, W. Kitajima, T. Saruta, Effects of high salt intake on dopamine production in rat kidney, Am. J. Physiol 260 (1991) p.E675-E679. [33] C.H. Tang, L.Y. Hwang, T.H. Lee, Chloride channel ClC-3 in gills of the euryhaline teleost, Tetraodon nigroviridis: expression, localization and the possible role of chloride absorption, J. Exp. Biol. 213 (2010) pp. 683-693. [34] Y. Nakayama, T. Peng, J.M. Sands, S.M. Bagnasco, The TonE/TonEBP pathway mediates tonicity-responsive regulation of UT-A urea transporter expression, J. Biol. Chem. 275 (2000) pp. 38275-38280. [35] C.H. Tang, W.Y. Wu, S.C. Tsai, T. Yoshinaga, T.H. Lee, Elevated Na+/K+-ATPase responses and its potential role in triggering ion reabsorption in kidneys for homeostasis of marine euryhaline milkfish (Chanos chanos) when acclimated to hypotonic fresh water, J. Comp Physiol B 180 (2010) pp. 813-824. [36] V. Balasubramaniyan, R. Shukla, G. Murugaiyan, R.R. Bhonde, N. Nalini, Mouse recombinant leptin protects human hepatoma HepG2 against apoptosis, TNF-alpha response and oxidative stress induced by the hepatotoxin-ethanol, Biochim. Biophys. Acta 1770 (2007) pp. 1136-1144. [37] Z. Zhang and D.M. Cohen, NaCl but not urea activates p38 and jun kinase in mIMCD3 murine inner medullary cells, Am. J. Physiol 271 (1996) p.F1234-F1238. [38] M. Gallazzini, Z. Karim, M. Bichara, Regulation of ROMK (Kir 1.1) channel expression in kidney thick ascending limb by hypertonicity: role of TonEBP and MAPK pathways, Nephron Physiol 104 (2006) pp. 126-135. [39] R. Kojima, H. Taniguchi, A. Tsuzuki, K. Nakamura, Y. Sakakura, M. Ito, Hypertonicity-induced expression of monocyte chemoattractant protein-1 through a novel cis-acting element and MAPK signaling pathways, J. Immunol. 184 (2010) pp. 5253-5262. [40] R.M. Carey, Theodore Cooper Lecture: Renal dopamine system: paracrine regulator of sodium homeostasis and blood pressure, Hypertension 38 (2001) pp. 297-302. [41] K. Christoph, F.X. Beck, W. Neuhofer, Osmoadaptation of Mammalian cells - an orchestrated network of protective genes, Curr. Genomics 8 (2007) pp. 209-218. [42] L. Michea, C. Combs, P. Andrews, N. Dmitrieva, M.B. Burg, Mitochondrial dysfunction is an early event in high-NaCl-induced apoptosis of mIMCD3 cells, Am. J. Physiol Renal Physiol 282 (2002) p.F981-F990. [43] X. Zhou, J.D. Ferraris, Q. Cai, A. Agarwal, M.B. Burg, Increased reactive oxygen species contribute to high NaCl-induced activation of the osmoregulatory transcription factor TonEBP/OREBP, Am. J. Physiol Renal Physiol 289 (2005) p.F377-F385. [44] D. Kultz and D. Chakravarty, Hyperosmolality in the form of elevated NaCl but not urea causes DNA damage in murine kidney cells, Proc. Natl. Acad. Sci. U. S. A 98 (2001) pp. 1999-2004. [45] T. Ito, Y. Fujio, M. Hirata, T. Takatani, T. Matsuda, S. Muraoka, K. Takahashi, J. Azuma, Expression of taurine transporter is regulated through the TonE (tonicity-responsive element)/TonEBP (TonE-binding protein) pathway and contributes to cytoprotection in HepG2 cells, Biochem. J. 382 (2004) pp. 177-182. [46] S.K. Woo, S.D. Lee, H.M. Kwon, TonEBP transcriptional activator in the cellular response to increased osmolality, Pflugers Arch. 444 (2002) pp. 579-585. [47] U.S. Jeon, J.A. Kim, M.R. Sheen, H.M. Kwon, How tonicity regulates genes: story of TonEBP transcriptional activator, Acta Physiol (Oxf) 187 (2006) pp. 241-247. [48] M.A. Vieira-Coelho, P. Serrao, T. Hussain, M.F. Lokhandwala, P. Soares-da-Silva, Salt intake and intestinal dopaminergic activity in adult and old Fischer 344 rats, Life Sci. 69 (2001) pp. 1957-1968. [49] R. Dawson, Jr., R. Felheim, M.I. Phillips, Characterization of the synthesis and release of dopamine in LLC-PK1 cells, Ren Physiol Biochem. 17 (1994) pp. 85-100. [50] M.A. Vieira-Coelho, T. Hussain, V. Kansra, M.P. Serrao, J.T. Guimaraes, M. Pestana, P. Soares-Da-Silva, M.F. Lokhandwala, Aging, high salt intake, and renal dopaminergic activity in Fischer 344 rats, Hypertension 34 (1999) pp. 666-672. [51] C.E. Irarrazabal, C.K. Williams, M.A. Ely, M.J. Birrer, A. Garcia-Perez, M.B. Burg, J.D. Ferraris, Activator protein-1 contributes to high NaCl-induced increase in tonicity-responsive enhancer/osmotic response element-binding protein transactivating activity, J. Biol. Chem. 283 (2008) pp. 2554-2563. [52] M.L. Loyher, M. Mutin, S.K. Woo, H.M. Kwon, M.L. Tappaz, Transcription factor tonicity-responsive enhancer-binding protein (TonEBP) which transactivates osmoprotective genes is expressed and upregulated following acute systemic hypertonicity in neurons in brain, Neuroscience 124 (2004) pp. 89-104. [53] S. Maallem, A. Berod, M. Mutin, H.M. Kwon, M.L. Tappaz, Large discrepancies in cellular distribution of the tonicity-induced expression of osmoprotective genes and their regulatory transcription factor TonEBP in rat brain, Neuroscience 142 (2006) pp. 355-368. [54] W. Tian and D.M. Cohen, Urea inhibits hypertonicity-inducible TonEBP expression and action, Am. J. Physiol Renal Physiol 280 (2001) p.F904-F912. [55] H. Zhao, W. Tian, D.M. Cohen, Rottlerin inhibits tonicity-dependent expression and action of TonEBP in a PKCdelta-independent fashion, Am. J. Physiol Renal Physiol 282 (2002) p.F710-F717. [56] J.A. Kim, U.S. Jeon, M.S. Kwon, S.W. Lim, H.M. Kwon, Transcriptional activator TonE-binding protein in cellular protection and differentiation, Methods Enzymol. 428 (2007) pp. 253-267. [57] J.I. Heo, M.S. Lee, J.H. Kim, J.S. Lee, J. Kim, J.B. Park, J.Y. Lee, J.A. Han, J.I. Kim, The role of tonicity responsive enhancer sites in the transcriptional regulation of human hsp70-2 in response to hypertonic stress, Exp. Mol. Med. 38 (2006) pp. 295-301. [58] R. Kojima, J.D. Randall, E. Ito, H. Manshio, Y. Suzuki, S.R. Gullans, Regulation of expression of the stress response gene, Osp94: identification of the tonicity response element and intracellular signalling pathways, Biochem. J. 380 (2004) pp. 783-794. [59] B.C. Ko, B. Ruepp, K.M. Bohren, K.H. Gabbay, S.S. Chung, Identification and characterization of multiple osmotic response sequences in the human aldose reductase gene, J. Biol. Chem. 272 (1997) pp. 16431-16437. [60] V. Nadkarni, K.H. Gabbay, K.M. Bohren, D. Sheikh-Hamad, Osmotic response element enhancer activity. Regulation through p38 kinase and mitogen-activated extracellular signal-regulated kinase kinase, J. Biol. Chem. 274 (1999) pp. 20185-20190. [61] D. Sheikh-Hamad, M.J. Di, W.N. Suki, R. Safirstein, B.A. Watts, III, D. Rouse, p38 kinase activity is essential for osmotic induction of mRNAs for HSP70 and transporter for organic solute betaine in Madin-Darby canine kidney cells, J. Biol. Chem. 273 (1998) pp. 1832-1837. [62] K. Racz, O. Kuchel, N.T. Buu, S. Tenneson, Peripheral dopamine synthesis and metabolism in spontaneously hypertensive rats, Circ. Res. 57 (1985) pp. 889-897. [63] C. Odlind, I. Reenila, P.T. Mannisto, R. Juvonen, S. Uhlen, J.A. Gogos, M. Karayiorgou, P. Hansell, Reduced natriuretic response to acute sodium loading in COMT gene deleted mice, BMC. Physiol 2 (2002) p.14. [64] M.J. Pinho, P. Gomes, M.P. Serrao, M.J. Bonifacio, P. Soares-da-Silva, Organ-specific overexpression of renal LAT2 and enhanced tubular L-DOPA uptake precede the onset of hypertension, Hypertension 42 (2003) pp. 613-618. [65] A.V. Chibalin, G. Ogimoto, C.H. Pedemonte, T.A. Pressley, A.I. Katz, E. Feraille, P.O. Berggren, A.M. Bertorello, Dopamine-induced endocytosis of Na+,K+-ATPase is initiated by phosphorylation of Ser-18 in the rat alpha subunit and Is responsible for the decreased activity in epithelial cells, J. Biol. Chem. 274 (1999) pp. 1920-1927. [66] G. Ogimoto, G.A. Yudowski, C.J. Barker, M. Kohler, A.I. Katz, E. Feraille, C.H. Pedemonte, P.O. Berggren, A.M. Bertorello, G protein-coupled receptors regulate Na+,K+-ATPase activity and endocytosis by modulating the recruitment of adaptor protein 2 and clathrin, Proc. Natl. Acad. Sci. U. S. A 97 (2000) pp. 3242-3247. [67] A.V. Chibalin, C.H. Pedemonte, A.I. Katz, E. Feraille, P.O. Berggren, A.M. Bertorello, Phosphorylation of the catalyic alpha-subunit constitutes a triggering signal for Na+,K+-ATPase endocytosis, J. Biol. Chem. 273 (1998) pp. 8814-8819. [68] C.H. Pedemonte, R. Efendiev, A.M. Bertorello, Inhibition of Na,K-ATPase by dopamine in proximal tubule epithelial cells, Semin. Nephrol. 25 (2005) pp. 322-327. [69] F. Lang, K.S. Lang, P.A. Lang, S.M. Huber, T. Wieder, Osmotic shock-induced suicidal death of erythrocytes, Acta Physiol (Oxf) 187 (2006) pp. 191-198. [70] M.B. Burg, J.D. Ferraris, N.I. Dmitrieva, Cellular response to hyperosmotic stresses, Physiol Rev. 87 (2007) pp. 1441-1474. [71] J. Li, S. Zelenin, A. Aperia, O. Aizman, Low doses of ouabain protect from serum deprivation-triggered apoptosis and stimulate kidney cell proliferation via activation of NF-kappaB, J. Am. Soc. Nephrol. 17 (2006) pp. 1848-1857. [72] X. Zhou, G. Jiang, A. Zhao, T. Bondeva, P. Hirszel, T. Balla, Inhibition of Na,K-ATPase activates PI3 kinase and inhibits apoptosis in LLC-PK1 cells, Biochem. Biophys. Res. Commun. 285 (2001) pp. 46-51.
摘要: 先前研究已知高張環境會促使TonEBP(TonE binding protein)活化進而增強下游基因的表現。腎臟近曲小管細胞藉由過度表現AAD (aromatic L-amino acid decarboxylase)來合成多巴胺達到抑制腎臟對鹽類的吸收。本篇研究利用人類近曲小管細胞,HK-2 (Human renal proximal tubule cell)來探討TonEBP對於AAD表現的調控機制。利用共軛焦螢光顯微鏡觀察到2小時的高張刺激下TonEBP會大量的堆積在細胞核中,且已知的下游調控基因如SMIT與TauT mRNA亦會大量表現。此外,隨著TonEBP的活化會造成AAD蛋白質的表現量增加。EMSA與luciferase reporter assay的實驗結果顯示TonEBP參與在AAD的轉錄作用中。利用p38抑制劑SB203580或專一性shRNA干擾TonEBP的活化均會減少AAD的蛋白質表現。除此之外,利用Myc-TonEBP重新表現在TonEBP shRNA的細胞中會再度提高AAD的表現。高張刺激下AAD的大量表現確實會增加多巴胺的合成進而抑制NKA的活性使得細胞的存活率增加。由上述結果推測,在腎臟近曲小管面臨高張環境下TonEBP可能扮演著抑制鹽類吸收的主要調控者,同時對細胞產生保護的角色。
Hypertonic environment induces TonE binding protein (TonEBP) activation and enhances expression of downstream genes. Renal proximal tubule cells overexpress aromatic L-amino acid decarboxylase (AAD) to produce dopamine, which inhibits salt absorption in the hypertonic environment. We examined the effect of TonEBP on AAD expression in human proximal tubule epithelial cells, HK-2 cell line. Confocal microscopy showed that after 2 h of exposure to the hypertonic medium, TonEBP accumulation in nuclei increased as compared to the isotonic control group. The activated TonEBP enhanced the mRNA expression of the representative downstream genes (i.e., SMIT and TauT). Meanwhile, AAD protein abundance also increased with TonEBP activation. EMSA and luciferase reporter assay showed that TonEBP was involved in transcriptional regulation of AAD upon hypertonic stress. Inactivation of TonEBP by the p38 inhibitor SB203580, or TonEBP silencing with specific shRNA significantly reduced AAD expression, which was rescued by re-expressing Myc-tagged TonEBP. Up-regulation of AAD increased dopamine synthesis, and dopamine inhibited NKA activity in hypertonic condition. Furthermore, the effects of dopamine on inhibition of NKA activity would increase cell viability upon hypertonic stress. These results suggested that TonEBP played a cytoprotective role in the epithelial cells of renal proximal tubule upon hypertonic stress by enhancing AAD expression, which could promote dopamine secretion to rescue cell viability. The elucidation of a new mechanism described in this study combined with previous findings provides more insights into this issue.
URI: http://hdl.handle.net/11455/23590
其他識別: U0005-0211201111534100
Appears in Collections:生命科學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.