Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/23626
標題: 翠菊黃萎病菌質體分泌蛋白在擬南芥中的致病機制探討
Molecular characterization of pathogenesis of AY-WB phytoplasma secreted protein
作者: 鄭凱丹
Cheng, Kai-Tan
關鍵字: 植物菌質體
phytoplasma
翠菊黃萎病
阿拉伯芥
缺磷反應
Arabidopsis
phosphate starvation
出版社: 生物化學研究所
引用: Agrios, G.N. (2005). Plant diseases caused by mollicutes: phytoplasmas and spiroplasmas. Plant Pathology. (San Diego, CA.: Academic Press). Aung, K., Lin, S.I., Wu, C.C., Huang, Y.T., Su, C.L., and Chiou, T.J. (2006). pho2, a phosphate overaccumulator, is caused by a nonsense mutation in a microRNA399 target gene. Plant physiology 141, 1000-1011. Bai, X., Correa, V.R., Toruno, T.Y., Ammar el, D., Kamoun, S., and Hogenhout, S.A. (2009). AY-WB phytoplasma secretes a protein that targets plant cell nuclei. Molecular plant-microbe interactions : MPMI 22, 18-30. Bai, X., Zhang, J., Ewing, A., Miller, S.A., Jancso Radek, A., Shevchenko, D.V., Tsukerman, K., Walunas, T., Lapidus, A., Campbell, J.W., and Hogenhout, S.A. (2006). Living with genome instability: the adaptation of phytoplasmas to diverse environments of their insect and plant hosts. Journal of bacteriology 188, 3682-3696. Barbara, D.J., Morton, A., Clark, M.F., and Davies, D.L. (2002). Immunodominant membrane proteins from two phytoplasmas in the aster yellows clade (chlorante aster yellows and clover phyllody) are highly divergent in the major hydrophilic region. Microbiology 148, 157-167. Bari, R., Datt Pant, B., Stitt, M., and Scheible, W.R. (2006). PHO2, microRNA399, and PHR1 define a phosphate-signaling pathway in plants. Plant physiology 141, 988-999. Bennett, W.F. (1993). Nutrient Deficiencies & Toxocotoes in Crop Plants. . APS Press; St. Paul, MN, USA. Bertaccini, A., and Duduk, B. (2009). Phytoplasma and phytoplasma diseases: a review of recent research. Phytopathol Mediterr 48, 355-378. Bieleski, R.L. (1973). PHOSPHATE POOLS, PHOSPHATE TRANSPORT, AND PHOSPHATE AVAILABILITY. Annual review of plant physiology and plant molecular biology 24, 225-252. Branscheid, A., Sieh, D., Pant, B.D., May, P., Devers, E.A., Elkrog, A., Schauser, L., Scheible, W.R., and Krajinski, F. (2010). Expression pattern suggests a role of MiR399 in the regulation of the cellular response to local Pi increase during arbuscular mycorrhizal symbiosis. Molecular plant-microbe interactions : MPMI 23, 915-926. Chatterjee, S.S., Hossain, H., Otten, S., Kuenne, C., Kuchmina, K., Machata, S., Domann, E., Chakraborty, T., and Hain, T. (2006). Intracellular gene expression profile of Listeria monocytogenes. Infection and immunity 74, 1323-1338. Chen, C.C., Leu, T. D., Lin, C. P., and Kuo, K. C. (2001). Comments on the disease that similar to pear decline in Taiwan. Plant Prot Bull. 42, 1-5. Chen, L.Q., Hou, B.H., Lalonde, S., Takanaga, H., Hartung, M.L., Qu, X.Q., Guo, W.J., Kim, J.G., Underwood, W., Chaudhuri, B., Chermak, D., Antony, G., White, F.F., Somerville, S.C., Mudgett, M.B., and Frommer, W.B. (2010). Sugar transporters for intercellular exchange and nutrition of pathogens. Nature 468, 527-532. Chiou, T.J., Aung, K., Lin, S.I., Wu, C.C., Chiang, S.F., and Su, C.L. (2006). Regulation of phosphate homeostasis by MicroRNA in Arabidopsis. The Plant cell 18, 412-421. Chung, W.C., Chen, L.L., Lo, W.S., Lin, C.P., and Kuo, C.H. (2013). Comparative analysis of the peanut witches''-broom phytoplasma genome reveals horizontal transfer of potential mobile units and effectors. PloS one 8, e62770. Ciereszko, I., Johansson, H., and Kleczkowski, L.A. (2005). Interactive effects of phosphate deficiency, sucrose and light/dark conditions on gene expression of UDP-glucose pyrophosphorylase in Arabidopsis. Journal of plant physiology 162, 343-353. Dordas, C. (2008). Role of nutrients in controlling plant diseases in sustainable agriculture. A review. Agron. Sustain. Dev. 28, 33-46. Duduk B., A.C., S. Paltrinieri, N. Duduk and A. Bertaccini. . (2009). Multi-gene analysis for differentiation of aster yellows phytoplasmas infecting carrots in Serbia. .Annals of Applied Biology 154, 219-229. Efroni, I., Blum, E., Goldshmidt, A., and Eshed, Y. (2008). A protracted and dynamic maturation schedule underlies Arabidopsis leaf development. The Plant cell 20, 2293-2306. Franco-Zorrilla, J.M., Martin, A.C., Leyva, A., and Paz-Ares, J. (2005). Interaction between phosphate-starvation, sugar, and cytokinin signaling in Arabidopsis and the roles of cytokinin receptors CRE1/AHK4 and AHK3. Plant physiology 138, 847-857. Franco-Zorrilla, J.M., Valli, A., Todesco, M., Mateos, I., Puga, M.I., Rubio-Somoza, I., Leyva, A., Weigel, D., Garcia, J.A., and Paz-Ares, J. (2007). Target mimicry provides a new mechanism for regulation of microRNA activity. Nature genetics 39, 1033-1037. Fujii, H., Chiou, T.J., Lin, S.I., Aung, K., and Zhu, J.K. (2005). A miRNA involved in phosphate-starvation response in Arabidopsis. Current biology : CB 15, 2038-2043. Gu, M., Chen, A., Dai, X., Liu, W., and Xu, G. (2011). How does phosphate status influence the development of the arbuscular mycorrhizal symbiosis? Plant signaling & behavior 6, 1300-1304. Guerriero, G., Giorno, F., Ciccotti, A.M., Schmidt, S., and Baric, S. (2012). A gene expression analysis of cell wall biosynthetic genes in Malus x domestica infected by ''Candidatus Phytoplasma mali''. Tree physiology 32, 1365-1377. Hoffland, E., Jeger, M., and van Beusichem, M. (2000). Effect of nitrogen supply rate on disease resistance in tomato depends on the pathogen. Plant and Soil 218, 239-247. Hogenhout, S.A., Oshima, K., Ammar, E.D., Kakizawa, S., Kingdom, H.N., and Namba, S. (2008). Phytoplasmas: bacteria that manipulate plants and insects. Mol Plant Pathol 9, 403-423. Hood, M.I., and Skaar, E.P. (2012). Nutritional immunity: transition metals at the pathogen-host interface. Nature reviews. Microbiology 10, 525-537. Hoshi, A., Oshima, K., Kakizawa, S., Ishii, Y., Ozeki, J., Hashimoto, M., Komatsu, K., Kagiwada, S., Yamaji, Y., and Namba, S. (2009). A unique virulence factor for proliferation and dwarfism in plants identified from a phytopathogenic bacterium. Proceedings of the National Academy of Sciences of the United States of America 106, 6416-6421. Imlau, A., Truernit, E., and Sauer, N. (1999). Cell-to-cell and long-distance trafficking of the green fluorescent protein in the phloem and symplastic unloading of the protein into sink tissues. The Plant cell 11, 309-322. IRPCM, I.P.S.W.T.-.-P.T.G. (2004). ''Candidatus Phytoplasma'', a taxon for the wall-less, non-helical prokaryotes that colonize plant phloem and insects. International journal of systematic and evolutionary microbiology 54, 1243-1255. Jansen, A., and Yu, J. (2006). Differential gene expression of pathogens inside infected hosts. Current opinion in microbiology 9, 138-142. Jomantiene. (2007). Sequence-variable mosaics: Composites of recurrent transposition characterizing the genomes of phylogenetically diverse phytoplasmas (vol 26, pg 557, 2007). DNA Cell Biol 26, 695-695. Jomantiene, R., and Davis, R.E. (2006). Clusters of diverse genes existing as multiple, sequence-variable mosaics in a phytoplasma genome. Fems Microbiol Lett 255, 59-65. Kakizawa, S., Oshima, K., Kuboyama, T., Nishigawa, H., Jung, H.-y., Sawayanagi, T., Tsuchizaki, T., Miyata, S.-i., Ugaki, M., and Namba, S. (2001). Cloning and Expression Analysis of Phytoplasma Protein Translocation Genes. Molecular Plant-Microbe Interactions 14, 1043-1050. Kakizawa, S., Oshima, K., Nighigawa, H., Jung, H.Y., Wei, W., Suzuki, S., Tanaka, M., Miyata, S., Ugaki, M., and Namba, S. (2004). Secretion of immunodominant membrane protein from onion yellows phytoplasma through the Sec protein-translocation system in Escherichia coli. Microbiology-Sgm 150, 135-142. Karandashov, V., and Bucher, M. (2005). Symbiotic phosphate transport in arbuscular mycorrhizas. Trends in plant science 10, 22-29. Katiyar-Agarwal, S., and Jin, H. (2010). Role of small RNAs in host-microbe interactions. Annual review of phytopathology 48, 225-246. Kube, M., Schneider, B., Kuhl, H., Dandekar, T., Heitmann, K., Migdoll, A.M., Reinhardt, R., and Seemuller, E. (2008). The linear chromosome of the plant-pathogenic mycoplasma ''Candidatus Phytoplasma mali''. BMC genomics 9, 306. Lee, I.M., Davis, R.E., and Gundersen-Rindal, D.E. (2000). Phytoplasma: phytopathogenic mollicutes. Annual review of microbiology 54, 221-255. Lei, M., Liu, Y., Zhang, B., Zhao, Y., Wang, X., Zhou, Y., Raghothama, K.G., and Liu, D. (2011). Genetic and genomic evidence that sucrose is a global regulator of plant responses to phosphate starvation in Arabidopsis. Plant physiology 156, 1116-1130. Lim, P.O., and Sears, B.B. (1989). 16S rRNA sequence indicates that plant-pathogenic mycoplasmalike organisms are evolutionarily distinct from animal mycoplasmas. Journal of bacteriology 171, 5901-5906. Lynch, J. (1995). Root Architecture and Plant Productivity. Plant physiology 109, 7-13. MacLean, A.M., Sugio, A., Makarova, O.V., Findlay, K.C., Grieve, V.M., Toth, R., Nicolaisen, M., and Hogenhout, S.A. (2011). Phytoplasma effector SAP54 induces indeterminate leaf-like flower development in Arabidopsis plants. Plant physiology 157, 831-841. Markham, P.G. (1983). Spiroplasmas in Leafhoppers - a Review. Yale J Biol Med 56, 745-751. Mimura, T. (1999). Regulation of Phosphate Transport and Homeostasis in Plant Cells. In International Review of Cytology, W.J. Kwang, ed (Academic Press), pp. 149-200. Miura, K., Lee, J., Gong, Q., Ma, S., Jin, J.B., Yoo, C.Y., Miura, T., Sato, A., Bohnert, H.J., and Hasegawa, P.M. (2011). SIZ1 regulation of phosphate starvation-induced root architecture remodeling involves the control of auxin accumulation. Plant physiology 155, 1000-1012. Morcuende, R., Bari, R., Gibon, Y., Zheng, W., Pant, B.D., Blasing, O., Usadel, B., Czechowski, T., Udvardi, M.K., Stitt, M., and Scheible, W.R. (2007). Genome-wide reprogramming of metabolism and regulatory networks of Arabidopsis in response to phosphorus. Plant, cell & environment 30, 85-112. Muller, R., Morant, M., Jarmer, H., Nilsson, L., and Nielsen, T.H. (2007). Genome-wide analysis of the Arabidopsis leaf transcriptome reveals interaction of phosphate and sugar metabolism. Plant physiology 143, 156-171. Nacry, P., Canivenc, G., Muller, B., Azmi, A., Van Onckelen, H., Rossignol, M., and Doumas, P. (2005). A role for auxin redistribution in the responses of the root system architecture to phosphate starvation in Arabidopsis. Plant physiology 138, 2061-2074. Nag, A., King, S., and Jack, T. (2009). miR319a targeting of TCP4 is critical for petal growth and development in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America 106, 22534-22539. Nath, U., Crawford, B.C., Carpenter, R., and Coen, E. (2003). Genetic control of surface curvature. Science 299, 1404-1407. Navarro, L., Dunoyer, P., Jay, F., Arnold, B., Dharmasiri, N., Estelle, M., Voinnet, O., and Jones, J.D. (2006). A plant miRNA contributes to antibacterial resistance by repressing auxin signaling. Science 312, 436-439. Nilsson, L., Muller, R., and Nielsen, T.H. (2007). Increased expression of the MYB-related transcription factor, PHR1, leads to enhanced phosphate uptake in Arabidopsis thaliana. Plant, cell & environment 30, 1499-1512. Oshima, K., Kakizawa, S., Nishigawa, H., Jung, H.Y., Wei, W., Suzuki, S., Arashida, R., Nakata, D., Miyata, S., Ugaki, M., and Namba, S. (2004). Reductive evolution suggested from the complete genome sequence of a plant-pathogenic phytoplasma. Nature genetics 36, 27-29. Ozbek, E., Miller, S.A., Meulia, T., and Hogenhout, S.A. (2003). Infection and replication sites of Spiroplasma kunkelii (Class : Mollicutes) in midgut and Malpighian tubules of the leafhopper Dalbulus maidis. Journal of invertebrate pathology 82, 167-175. Pant, B.D., Buhtz, A., Kehr, J., and Scheible, W.R. (2008). MicroRNA399 is a long-distance signal for the regulation of plant phosphate homeostasis. The Plant journal : for cell and molecular biology 53, 731-738. Pracros, P., Renaudin, J., Eveillard, S., Mouras, A., and Hernould, M. (2006). Tomato flower abnormalities induced by stolbur phytoplasma infection are associated with changes of expression of floral development genes. Molecular plant-microbe interactions : MPMI 19, 62-68. Radtke, A.L., and O''Riordan, M.X. (2006). Intracellular innate resistance to bacterial pathogens. Cellular microbiology 8, 1720-1729. Raghothama, K.G. (1999). PHOSPHATE ACQUISITION. Annual review of plant physiology and plant molecular biology 50, 665-693. Raghothama, K.G. (2000). Phosphate transport and signaling. Current opinion in plant biology 3, 182-187. Romanazzi, G., musetti, r., marzachi, c., and casati, p. (2009). InductIon of resIstance In the control of phytoplasma dIseases. Petria 19 3, 113-129 Rouached, H., Arpat, A.B., and Poirier, Y. (2010). Regulation of phosphate starvation responses in plants: signaling players and cross-talks. Molecular plant 3, 288-299. Schommer, C., Palatnik, J.F., Aggarwal, P., Chetelat, A., Cubas, P., Farmer, E.E., Nath, U., and Weigel, D. (2008). Control of jasmonate biosynthesis and senescence by miR319 targets. PLoS biology 6, e230. Seemu‥ller, E., Jatinder, K., Hriday, S.C., Uma, S.S., and Amar, N.M. (1992). Pear decline. (Prentice Hall, Englewood Cliffs, N.J.). Serrone, P.D., Marazachi, C., Bragaloni, M., and Patrizia, a.G. ( 2001). Phytoplasma infection of tomato in central Italy. Phytopathol. Mediterr. 40, 137-142. Sharma, S., Duveiller, E., Basnet, R., Karki, C.B., and Sharma, R.C. (2005). Effect of potash fertilization on Helminthosporium leaf blight severity in wheat, and associated increases in grain yield and kernel weight. Field Crops Research 93, 142-150. Shin, H., Shin, H.S., Chen, R., and Harrison, M.J. (2006). Loss of At4 function impacts phosphate distribution between the roots and the shoots during phosphate starvation. The Plant journal : for cell and molecular biology 45, 712-726. Solomon, P.S., Tan, K.C., and Oliver, R.P. (2003). The nutrient supply of pathogenic fungi; a fertile field for study. Mol Plant Pathol 4, 203-210. Sugio, A., MacLean, A.M., Kingdom, H.N., Grieve, V.M., Manimekalai, R., and Hogenhout, S.A. (2011). Diverse targets of phytoplasma effectors: from plant development to defense against insects. Annual review of phytopathology 49, 175-195. Tran-Nguyen, L.T., Kube, M., Schneider, B., Reinhardt, R., and Gibb, K.S. (2008). Comparative genome analysis of "Candidatus Phytoplasma australiense" (subgroup tuf-Australia I; rp-A) and "Ca. Phytoplasma asteris" Strains OY-M and AY-WB. Journal of bacteriology 190, 3979-3991. Volpe, V., Dell''Aglio, E., Giovannetti, M., Ruberti, C., Costa, A., Genre, A., Guether, M., and Bonfante, P. (2013). An AM-induced, MYB-family gene of Lotus japonicus (LjMAMI) affects root growth in an AM-independent manner. The Plant journal : for cell and molecular biology 73, 442-455. Wei, W., Davis, R.E., Lee, I.M., and Zhao, Y. (2007). Computer-simulated RFLP analysis of 16S rRNA genes: identification of ten new phytoplasma groups. International journal of systematic and evolutionary microbiology 57, 1855-1867. Weintraub, P.G., and Beanland, L. (2006). Insect vectors of phytoplasmas. Annu Rev Entomol 51, 91-111. Yoji Doi, M.T., Kiyoshi Yora, Hidefumi Asuyama. (1967). Mycoplasma- or PLT Group-like Microorganisms Found in the Phloem Elements of Plants Infected with Mulberry Dwarf, Potato Witches'' Broom, Aster Yellows, or Paulownia Witches'' Broom. Japanese Journal of Phytopathology 33, 259-266. Yuan, J., Henry, R., McCaffery, M., and Cline, K. (1994). SecA homolog in protein transport within chloroplasts: evidence for endosymbiont-derived sorting. Science 266, 796-798. Zhang, J., Hogenhout, S.A., Nault, L.R., Hoy, C.W., and Miller, S.A. (2004). Molecular and symptom analyses of phytoplasma strains from lettuce reveal a diverse population. Phytopathology 94, 842-849. Zhao, H., Sun, R., Albrecht, U., Padmanabhan, C., Wang, A., Coffey, M.D., Girke, T., Wang, Z., Close, T.J., Roose, M., Yokomi, R.K., Folimonova, S., Vidalakis, G., Rouse, R., Bowman, K.D., and Jin, H. (2013). Small RNA profiling reveals phosphorus deficiency as a contributing factor in symptom expression for citrus huanglongbing disease. Molecular plant 6, 301-310. 洪挺軒, 林長平. (2011). 台灣農作物重要植物菌質體病害研究現況. 農作物害蟲及其媒介病害整合防治技術研討會專刊, 63-72. 黃耀徵, 林長平. (2009). 日日春葉片黃化病之病原植物菌植體與其媒介昆蟲之探討. 台灣大學植物病理學研究所碩士論文.
摘要: 植物菌質體(Phytoplasma),存在於植物韌皮部篩管細胞中,目前無法被人工培養,是一種絕對寄生的植物病原菌,主要藉由昆蟲傳播至其他植物宿主,造成許多農業上重要經濟作物的嚴重損失。其中翠菊黃萎病菌質體 ( AY-WB phytoplasma ),在先前的研究中可以藉由生物資訊等方法,預測出56個致病分泌型蛋白(secreted AY-WB proteins, SAPs)。本論文研究的SAP11會進入宿主細胞核中降解轉錄因子TCPs,造成葉片皺縮並減低茉莉酸JA合成,進而幫助昆蟲媒介的繁殖及生存。本篇論文利用35S::SAP11轉基因植物做進一步探討,觀察到轉基因植物具有較多的不定根且側根較長的外表型。經由次世代定序分析轉基因植物的基因表現情形,發現轉基因植物中的缺磷反應相關基因IPS1、PS2、SPX3等表現量明顯增加且免疫相關基因PR1、ELI3-1等明顯下降;同時偵測microRNA表現量差異觀察到調控磷恆定的miR399表現量增加,而免疫相關的miR393則減少。進一步利用比色定量法測量到轉基因植物中具有較高的無機磷含量而瞭解SAP11可能誘導缺磷反應產生。在生物體內,磷是合成ATP與phospholipid的重要元素,因此翠菊黃萎病菌質體可能藉由分泌SAP11誘發宿主植物產生缺磷反應,以增加宿主對磷的攝取進而幫助菌質體在植物中的生長,未來可以找出其作用目標以釐清SAP11在植物中的作用路徑及致病機制,可用於幫助減緩植物菌質體所引發的植物病害,降低高經濟作物的損失,並進行抗病育種以增加植物的抵抗力。
Phytoplasmas are unculturable bacterial pathogens and restricted to the cytoplasm of plant phloem sieve cells. Phytoplasmas depend on leafhoppers, planthoppers and psyllids for transmission. The infections by phytoplasmas cause severe disease symptoms and dramatic losses worldwide. So far, 56 candidate effectors have been identified in Aster Yellows phtoplasma strain Witches’ Broom (AY-WB). Among them, secreted AY-WB protein 11 (SAP11) has been shown to target plant cell nucleus and destabilize Arabidopsis CIN-related TCP transcription factors which are able to control plant development and promote the expression of lipoxygenase (LOX) genes. Here, we generated Arabidopsis 35S::SAP11 transgenic lines, and observed interesting phenotypes with fibrous roots and anthocyanin-accumulated leaves. With small RNA analysis, a significant induction of miR399 and a decrease of miR393 were detected in the 35S::SAP11 transgenic plants. These results are consistant with the RNA-seq analysis, in which Pi starvation-induced genes are highly expressed and the defense related gene are suppressed. Finally, we showed that SAP11AYWB-overexpressing plants accumulated higher amount of Pi in plant cells. Taken together, these results suggest that SAP11AYWB has the ability to modulate Pi homeostasis through regulating Pi starvation responses, and reduce host resistance against phytoplasmas through suppressing plant defense responses.
URI: http://hdl.handle.net/11455/23626
其他識別: U0005-2208201315531200
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2208201315531200
Appears in Collections:生物化學研究所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.