Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/2364
標題: 射出成型聚碳酸酯之光學性質之模擬分析
A Computer Modeling of Optical Characteristics for Injection Molded Polycarbonate
作者: 劉任翔
Liu, Ren-Xiang
關鍵字: polycarbonate
聚碳酸酯
injection molding
birefringence
mold flow analysis
residual shear stress
射出成型
雙折射
模流分析
剪切應力
出版社: 機械工程學系所
引用: 1. 查立豫,鄭武城,顧秀明,薛翠秀,光學材料與輔材,兵器工業出版社,64-65頁,民國八十四年。 2. J.W. Dally and W.F. Riley, Experimental Stress Analysis 3rd Edition, McGraw-Hill, pp. 424-452, 1999. 3. 邱聖文,射出成型條件對PC薄成型品雙折射效應之影 響,碩士論文,國立中興大學機械工程研究所,民國九十五年。 4. 陳進都,多段射出在導光板的應用與分析,碩士論文,國立中興大學機械工程研究所,民國九十四年。 5. T. Nagai, Y. Kimizuka, K. Nito, J. Seto, “Melt viscosity and flow birefringence of polycarbonate”, Journal of Applied Polymer Science, Vol. 44, pp. 1171-1177, 1992 6. R. Wimberger-Friedl, R.D.H.M. Hendriks, “The measure- ment and calculation of birefringence in quenched polycarbonate specimens”, Polymer, Vol. 30, pp. 1143-1149, 1989. 7. G.D. Shyu, A.J. Isayey, H.S. Lee, “Numerical simulation of flow-induced birefringence in injection molded disk”, Korea-Australia Rheology Journal, Vol. 15, No. 4, pp. 159-166, 2003. 8. G.D. Shyu, A.J. Isayey, C.T. Li, “Residual stress and birefringence in injection molding of amorphous polymers : simulation and comparison with experiment”, Journal of Polymer Science - Part B Polymer Physics, Vol. 44, pp. 622-639, 2006. 9. Y.B. Lee, T.H. Kwon, K. Yoon, “Numerical prediction of residual stress and birefringence in injection / compression molded center-gated disk. Part I : Basic modeling and results for injection molding”, Polymer Engineering and Science, Vol. 42, pp. 2246-2272, 2002. 10. Y.B. Lee, T.H. Kwon, K. Yoon, “Numerical prediction of residual stress and birefringence in injection / compression molded center-gated disk. Part II : Effects of processing conditions”, Polymer Engineering and Science, Vol. 42, pp. 2273-2292, 2002. 11. 鄭穎聰,鏡片射出成型分析與模具設計,碩士論文,高雄應用科技大學模具工程研究所,民國九十三年。 12. 黃東鴻,薄殼射出件翹曲變形與殘留應力研究,碩士論文,國立成功大學航空太空工程研究所,民國九十一年。 13. R. Pantani, “Validation of a model to predict birefringence in molding”, European Polymer Journal, Vol. 41, pp. 1484-1492, 2004. 14. R. Pantani, A. Sorrentino, V. Speranza, G. Titomanlio, “Molecular orientation in injection molding : experiments and analysis”, Rheologica Acta, Vol. 43, pp. 109-118, 2004. 15. R. Wimberger-Friedl, “The assessment of orientation, stress and density distribution in injection-molded amorphous polymers by optical techniques”, Progress In Polymer Science, Vol. 20, pp. 369-401, 1995. 16. K. Yoon, K.K. Wang, “The effect of holding pressure on frozen-in birefringence in injection-molded disks”, ANTEC, pp. 2221-2224, 1992. 17. S.H. Chang, J.R. Hwang, J.L. Doong, “Optimization of the injection molding process of short glass fiber reinforced polycarbonate composites using grey relational analysis”, Journal of Material Processing Technology, Vol. 97, pp.186-193, 2000. 18. A.A.M. Flaman, “Buildup and relaxation of molecular orientation in injection molding. Part II : Experimental verification ” Polymer Engineering and Science, Vol.33, pp. 208-210, 1993. 19. 林啟湶,一般成用最佳化方法在塑膠射出成型之應用,碩士論文,國立台灣科技大學機械工程學系,民國九十四年。 20. C.P. Chen, M.T. Chuang, Y.H. Hsiao, Y.K. Yang, C.H. Tsai, “Simulation and experimental study in determining injection molding process parameters for thin-shell plastic parts via design of experiments analysis”, Journal Expert System with Applications, Vol. 36, pp. 10752-10759, 2009. 21. C. Weng, W.B. Lee, S. To, “Birefringence techniques for the characterization of residual stress in injection molded micro-lens arrays”, Polymer Testing, In Press, Accepted Manuscript, 2009 22. C. Weng, W.B. Lee, B.Y. Jiang, “Numerical simulation of residual stress and birefringence in the precision injection molding of plastic microlens arrays”, International Communications in Heat and Mass Transfer, Vol. 36, pp. 213-219, 2009. 23 Y. Koike, K. Yamazaki, H. Ohkita, A. Tagaya, “Zero- birefringence optical polymer by birefringent crystal and analysis of the compensation mechanism”, Macromolecular Symposia, Vol. 235, pp. 64-70, 2006. 24. T.H. Wang, W.B. Young, “Study on residual stresses of thin-walled injection molding”, European Polymer Journal, Vol. 41, pp. 2511-2517, 2005. 25. X. Lu, L.S. Khim, ”A statistical experimental study of the injection molding of optical lenses”, Journal of Materials Processing Technology, Vol. 113, pp. 189-195, 2001. 26. L.P. Tan, S.C. Joshi, C.Y. Yue, Y.C. Lam, X. Hu, K.C. Tam, “Effect of shear heating during injection molding on the morphology of PC/LCP blends”, Acta Meterialia, Vol. 51, pp. 6269-6276, 2003 27. A.D. Francesco, R.A. Duckett, “Effects of orientation on mechanical properties of uniaxially oriented polystyrene films”, Polymer, Vol. 45, pp. 8005-8011, 2004. 28. F.M. Mirabella, J.J. Strebel, T.N. Pham, “Injection molded automotive orientation TPOs: A multi-layer composite structure of varied orientation”, Polymer Engineering Science, Vol. 44, pp. 1588-1593, August 2004. 29 J.G. Delly, “The Michel-Levy interference color chart – microscopy’s magical color key”, Modern Microscopy Journal, 2003.
摘要: 本論文以電腦模流分析軟體(Simpoe-Mold)探討射出成型條件對一個長寬高尺寸分別為6.25 mm 25 mm 2 mm之射出成型薄件的光學性質之影響,塑料材質為一種光學級聚碳酸酯(日本出光LC-1500),所考慮之射出成型條件包括模具溫度、射出速度與保壓壓力。模擬分析之結果與文獻中偏光顯微照片比較後發現,影響聚碳酸酯射出成型品內雙折射率分佈與強度大小的主因,乃為充填與保壓過程中所產生之剪切應力。當保壓壓力低於37MPa (15%)以下時,殘留剪應力的大小主要與充填時的射出速度有關,射速越高所產生之剪應力會越大;而保壓壓力超過15%後,保壓壓力會嚴重影響成型品內部之剪應力分佈,且由剖面分析結果得知,殘留剪應力最高的位置在靠近成型品之表面處,並且隨著保壓壓力之增加而越趨嚴重。本論文也利用剪應力模擬分析結果,與文獻中保壓壓力為112MPa (45%)之雙折射照片比對,而求得LC-1500塑料之光應力係數約介於2.0e-010至1.1e-009 之間。
The effect of injection molding conditions on the optical characteristics of a thin product, with dimensions of 62.5252 mm, was investigated using a software (Simpoe-Mold). An optical-class polycarbonate (Idemitsu LC-1500) was the injection material. Mold temperature, injection speed and packing pressure were the variables. The simulation result was compared with the polarized microscope photos. The result reveals that, the birefringence mainly results from the shear stress building up during the filling and packing stages. At the packing pressures less than 37 MPa (15%), the residual shear stress is mainly related to the injection speed. At the packing pressures greater than 37 MPa, the residual shear stress would significantly affected by the packing pressure. The result also reveals that the near-surface region has the highest residual shear stress. As the packing pressure increase, the residual shear stress and the birefringence also increases. The optical stress coefficient of the LC-1500 material was evaluated by comparing the simulation result to the polarized microscope photo at the packing pressure of 112 MPa (45%). The optical stress coefficient was found to be in the range 2.0e-010 to 1.1e-009 .
URI: http://hdl.handle.net/11455/2364
其他識別: U0005-2601201013312800
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2601201013312800
Appears in Collections:機械工程學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.