Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/23672
標題: 以蛋白質交互作用分析在農桿菌感染過程中AtRTNLB1-8與AtRab8B之功能
Protein interaction study of AtRTNLB1-8 and AtRab8B functions during Agrobacterium infection process
作者: 黃凡真
Huang, Fan-Chen
關鍵字: Arabidopsis
阿拉伯芥
Agrobacterium
RTNLB
農桿菌
RTNLB
出版社: 生命科學系所
引用: 1. 張耀仁。(2008)。阿拉伯芥RTNLB2與RTNLB4蛋白質於土壤農桿菌感染植物過程之功能分析。國立中興大學生命科學所 碩士論文 2. 盧毓。(2010)。阿拉伯芥AtRab8蛋白質家族於土壤農桿菌感染植物過程之功能分析。國立中興大學生命科學所 碩士論文 3. 傅碧汝。(2010)。阿拉伯芥AtRTNLB1至AtRTNLB7基因家族於土壤農桿菌感染植物過程之功能分析。國立中興大學生命科學所 碩士論文 4. Ausubel, F.M. (2003). Current Protocols in Molecular Biology, F.M. Ausubel, R. Brent, R.E. Kingston, D.D.Moore, J.G. Seidman, J.A. Smith, and K. Struhl, eds (New York: John Wiley & Sons). 5. Golemis, E., Gyuris, J., and Brent, R. (1994). In Current Protocols in Molecular Biology, F.M. Ausubel, R. Brent, R.E. Kingston, D.D.Moore, J.G. Seidman, J.A. Smith, and K. Struhl, eds (New York: John Wiley & Sons). 6. Matthysse, A.G., Kijne, J.W. (1998). Attachment of Rhizobiaceae to plant cells. The Rhizobiaceae: Molecular biology of model plant-associated bacteria, H.P. Spaink, A. Kondorosi, P.J.J. Hooykaas, eds (Dordrecht/Boston: Kluwer Academic Publishers), pp 235-249. 7. Sambrook, J. and Russell, D.W. (2001). In Molecular cloning : a laboratory manual, 3rd ed., N. Irwin, and K.A. Janssen, eds (New York, USA: Cold spring harbor laboratory press). 8. Strober, W. (2001). Monitoring cell growth. In Current protocols in immunology. Appendix 3A, J.E. Coligan, B.E. Bierer, D.H. Margulies, E.M. Sherach, and W. Strober, eds (Maryland, USA: John Wiley and Sons), pp. 3A.1-3A.2. 9. Akiyoshi, D.E., Klee, H., Amasino, R.M., Nester, E.W., and Gordon, M.P. (1984). T-DNA of Agrobacterium tumefaciens encodes an enzyme of cytokinin biosynthesis. Proc Natl Acad Sci U S A 81, 5994-5998. 10. Alexander, D., Goodman, R.M., Gut-Rella, M., Glascock, C., Weymann, K., Friedrich, L., Maddox, D., Ahl-Goy, P., Luntz, T., Ward, E.,and Ryals, J. (1993). Increased tolerance to two oomycete pathogens in transgenic tobacco expressing pathogenesis-related protein 1a. Proc Natl Acad Sci U S A 90, 7327-7331. 11. Alonso, J.M., Stepanova, A.N., Leisse, T.J., Kim, C.J., Chen, H., Shinn, P., Stevenson, D.K., Zimmerman, J., Barajas, P., Cheuk, R., Gadrinab, C., Heller, C., Jeske, A., Koesema, E., Meyers, C.C., Parker, H., Prednis, L., Ansari, Y., Choy, N., Deen, H., Geralt, M., Hazari, N., Hom, E., Karnes, M., Mulholland, C., Ndubaku, R., Schmidt, I., Guzman, P., Aguilar-Henonin, L., Schmid, M., Weigel, D., Carter, D.E., Marchand, T., Risseeuw, E., Brogden, D., Zeko, A., Crosby, W.L., Berry, C.C., and Ecker, J.R. (2003). Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science 301, 653-657. 12. Alvarez-Martinez, C.E., and Christie, P.J. (2009). Biological diversity of prokaryotic type IV secretion systems. Microbiol Mol Biol Rev 73, 775-808. 13. Aly, K.A., and Baron, C. (2007). The VirB5 protein localizes to the T-pilus tips in Agrobacterium tumefaciens. Microbiology 153, 3766-3775. 14. Anand, A., Uppalapati, S.R., Ryu, C.M., Allen, S.N., Kang, L., Tang, Y., and Mysore, K.S. (2008). Salicylic acid and systemic acquired resistance play a role in attenuating crown gall disease caused by Agrobacterium tumefaciens. Plant Physiol 146, 703-715. 15. Ananiadou, S., Sullivan, D., Black, W., Levow, G.A., Gillespie, J.J., Mao, C., Pyysalo, S., Kolluru, B., Tsujii, J., and Sobral, B. (2011). Named entity recognition for bacterial Type IV secretion systems. PLoS One 6, e14780. 16. Anderson, L.B., Hertzel, A.V., and Das, A. (1996). Agrobacterium tumefaciens VirB7 and VirB9 form a disulfide-linked protein complex. Proc Natl Acad Sci U S A 93, 8889-8894. 17. Atmakuri, K., Cascales, E., and Christie, P.J. (2004). Energetic components VirD4, VirB11 and VirB4 mediate early DNA transfer reactions required for bacterial type IV secretion. Mol Microbiol 54, 1199-1211. 18. Atmakuri, K., Ding, Z., and Christie, P.J. (2003). VirE2, a Type IV secretion substrate, interacts with the VirD4 transfer protein at cell poles of Agrobacterium tumefaciens. Molecular Microbiology 49, 1699-1713. 19. Ausubel, F.M. (2005). Are innate immune signaling pathways in plants and animals conserved? Nat Immunol 6, 973-979. 20. Balbi, V., and Devoto, A. (2008). Jasmonate signalling network in Arabidopsis thaliana: crucial regulatory nodes and new physiological scenarios. New Phytol 177, 301-318. 21. Bako, L., Umeda, M., Tiburcio, A.F., Schell, J., and Koncz, C. (2003). The VirD2 pilot protein of Agrobacterium-transferred DNA interacts with the TATA box-binding protein and a nuclear protein kinase in plants. Proc Natl Acad Sci U S A 100, 10108-10113. 22. Baldini, G., Hohl, T., Lin, H.Y., and Lodish, H.F. (1992). Cloning of a Rab3 isotype predominantly expressed in adipocytes. Proc Natl Acad Sci U S A 89, 5049-5052. 23. Ballas, N., and Citovsky, V. (1997). Nuclear localization signal binding protein from Arabidopsis mediates nuclear import of Agrobacterium VirD2 protein. Proc Natl Acad Sci U S A 94, 10723-10728. 24. Bailey, S., Ward, D., Middleton, R., Grossmann, J.G., and Zambryski, P.C. (2006). Agrobacterium tumefaciens VirB8 structure reveals potential protein-protein interaction sites. Proc Natl Acad Sci U S A 103, 2582-2587. 25. Baron, C., Llosa, M., Zhou, S., and Zambryski, P.C. (1997a). VirB1, a component of the T-complex transfer machinery of Agrobacterium tumefaciens, is processed to a C-terminal secreted product, VirB1. J Bacteriol 179, 1203-1210. 26. Baron, C., Thorstenson, Y.R., and Zambryski, P.C. (1997b). The lipoprotein VirB7 interacts with VirB9 in the membranes of Agrobacterium tumefaciens. J Bacteriol 179, 1211-1218. 27. Baron, C., and Zambryski, P.C. (1995). The plant response in pathogenesis, symbiosis, and wounding: variations on a common theme? Annu Rev Genet 29, 107-129. 28. Bayliss, R., Harris, R., Coutte, L., Monier, A., Fronzes, R., Christie, P.J., Driscoll, P.C., and Waksman, G. (2007). NMR structure of a complex between the VirB9/VirB7 interaction domains of the pKM101 type IV secretion system. Proc Natl Acad Sci U S A 104, 1673-1678. 29. Beaupre, C.E., Bohne, J., Dale, E.M., and Binns, A.N. (1997). Interactions between VirB9 and VirB10 membrane proteins involved in movement of DNA from Agrobacterium tumefaciens into plant cells. J Bacteriol 179, 78-89. 30. Berger, B.R., and Christie, P.J. (1994). Genetic complementation analysis of the Agrobacterium tumefaciens virB operon: virB2 through virB11 are essential virulence genes. J Bacteriol 176, 3646-3660. 31. Bertani, G. (1951). Studies on lysogenesis. I. The mode of phage liberation by lysogenic Escherichia coli. J Bacteriol 62, 293-300. 32. Bertani, G. (2004). Lysogeny at mid-twentieth century: P1, P2, and other experimental systems. J Bacteriol 186, 595-600. 33. Bhattacharjee, S., Lee, L.Y., Oltmanns, H., Cao, H., Veena, Cuperus, J., and Gelvin, S.B. (2008). IMPa-4, an Arabidopsis importin alpha isoform, is preferentially involved in Agrobacterium-mediated plant transformation. Plant Cell 20, 2661-2680. 34. Bi, Y.M., Kenton, P., Mur, L., Darby, R., and Draper, J. (1995). Hydrogen peroxide does not function downstream of salicylic acid in the induction of PR protein expression. Plant J 8, 235-245. 35. Bittel, P., and Robatzek, S. (2007). Microbe-associated molecular patterns (MAMPs) probe plant immunity. Curr Opin Plant Biol 10, 335-341. 36. Bogdanove, A.J., and Martin, G.B. (2000). AvrPto-dependent Pto-interacting proteins and AvrPto-interacting proteins in tomato. Proc Natl Acad Sci U S A 97, 8836-8840. 37. Boller, T., and Felix, G. (2009). A renaissance of elicitors: perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors. Annu Rev Plant Biol 60, 379-406. 38. Boller, T., and He, S.Y. (2009). Innate immunity in plants: an arms race between pattern recognition receptors in plants and effectors in microbial pathogens. Science 324, 742-744. 39. Bourne, H.R., Sanders, D.A., and McCormick, F. (1990). The GTPase superfamily: a conserved switch for diverse cell functions. Nature 348, 125-132. 40. Brencic, A., and Winans, S.C. (2005). Detection of and response to signals involved in host-microbe interactions by plant-associated bacteria. Microbiol Mol Biol Rev 69, 155-194. 41. Broekaert, W.F., Delaure, S.L., De Bolle, M.F., and Cammue, B.P. (2006). The role of ethylene in host-pathogen interactions. Annu Rev Phytopathol 44, 393-416. 42. Broekaert, W.F., Terras, F.R., Cammue, B.P., and Osborn, R.W. (1995). Plant defensins: novel antimicrobial peptides as components of the host defense system. Plant Physiol 108, 1353-1358. 43. Browse, J., and Howe, G.A. (2008). New weapons and a rapid response against insect attack. Plant Physiol 146, 832-838. 44. Brunaud, V., Balzergue, S., Dubreucq, B., Aubourg, S., Samson, F., Chauvin, S., Bechtold, N., Cruaud, C., DeRose, R., Pelletier, G., Lepiniec, L., Caboche, M., and Lecharny, A. (2002). T-DNA integration into the Arabidopsis genome depends on sequences of pre-insertion sites. EMBO Rep 3, 1152-1157. 45. Bulgakov, V.P., Kiselev, K.V., Yakovlev, K.V., Zhuravlev, Y.N., Gontcharov, A.A., and Odintsova, N.A. (2006). Agrobacterium-mediated transformation of sea urchin embryos. Biotechnol J 1, 454-461. 46. Cao, H., Bowling, S.A., Gordon, A.S., and Dong, X. (1994). Characterization of an Arabidopsis mutant that is nonresponsive to inducers of systemic acquired resistance. Plant Cell 6, 1583-1592. 47. Cao, H., Glazebrook, J., Clarke, J.D., Volko, S., and Dong, X. (1997). The Arabidopsis NPR1 gene that controls systemic acquired resistance encodes a novel protein containing ankyrin repeats. Cell 88, 57-63. 48. Caplan, A.B., Van Montagu, M., and Schell, J. (1985). Genetic analysis of integration mediated by single T-DNA borders. J Bacteriol 161, 655-664. 49. Caporale, C., Di Berardino, I., Leonardi, L., Bertini, L., Cascone, A., Buonocore, V., and Caruso, C. (2004). Wheat pathogenesis-related proteins of class 4 have ribonuclease activity. FEBS Lett 575, 71-76. 50. Cascales, E., and Christie, P.J. (2004a). Agrobacterium VirB10, an ATP energy sensor required for type IV secretion. Proc Natl Acad Sci U S A 101, 17228-17233. 51. Cascales, E., and Christie, P.J. (2004b). Definition of a bacterial type IV secretion pathway for a DNA substrate. Science 304, 1170-1173. 52. Chandran, V., Fronzes, R., Duquerroy, S., Cronin, N., Navaza, J., and Waksman, G. (2009). Structure of the outer membrane complex of a type IV secretion system. Nature 462, 1011-1015. 53. Chang, C.H., and Winans, S.C. (1992). Functional roles assigned to the periplasmic, linker, and receiver domains of the Agrobacterium tumefaciens VirA protein. J Bacteriol 174, 7033-7039. 54. Chardin, P. (1991). Small GTP-binding proteins of the ras family: a conserved functional mechanism? Cancer Cells 3, 117-126. 55. Chen, M.S., Huber, A.B., van der Haar, M.E., Frank, M., Schnell, L., Spillmann, A.A., Christ, F., and Schwab, M.E. (2000). Nogo-A is a myelin-associated neurite outgrowth inhibitor and an antigen for monoclonal antibody IN-1. Nature 403, 434-439. 56. Chen, Y.T., Holcomb, C., and Moore, H.P. (1993). Expression and localization of two low molecular weight GTP-binding proteins, Rab8 and Rab10, by epitope tag. Proc Natl Acad Sci U S A 90, 6508-6512. 57. Chen, Z., Malamy, J., Henning, J., Conrath, U., Sanchez-Casas, P., Silva, H., Ricigliano, J., and Klessig, D.K. (1995). Induction, modification, and transduction of the salicylic acid signal in plant defense responses. Proc Natl Acad Sci U S A 92, 4134-4137. 58. Chen, Z., Silva, H., and Klessig, D.F. (1993). Active oxygen species in the induction of plant systemic acquired resistance by salicylic acid. Science 262, 1883-1886. 59. Chinchilla, D., Bauer, Z., Regenass, M., Boller, T., and Felix, G. (2006). The Arabidopsis receptor kinase FLS2 binds flg22 and determines the specificity of flagellin perception. Plant Cell 18, 465-476. 60. Chinchilla, D., Zipfel, C., Robatzek, S., Kemmerling, B., Nurnberger, T., Jones, J.D., Felix, G., and Boller, T. (2007). A flagellin-induced complex of the receptor FLS2 and BAK1 initiates plant defence. Nature 448, 497-500. 61. Chini, A., Fonseca, S., Fernandez, G., Adie, B., Chico, J.M., Lorenzo, O., Garcia-Casado, G., Lopez-Vidriero, I., Lozano, F.M., Ponce, M.R., Micol, J. L., and Solano, R. (2007). The JAZ family of repressors is the missing link in jasmonate signalling. Nature 448, 666-671. 62. Christie, P.J. (1997). Agrobacterium tumefaciens T-complex transport apparatus: a paradigm for a new family of multifunctional transporters in eubacteria. J Bacteriol 179, 3085-3094. 63. Christie, P.J. (2004). Type IV secretion: the Agrobacterium VirB/D4 and related conjugation systems. Biochim Biophys Acta 1694, 219-234. 64. Christie, P.J., Atmakuri, K., Krishnamoorthy, V., Jakubowski, S., and Cascales, E. (2005). Biogenesis, architecture, and function of bacterial type IV secretion systems. Annu Rev Microbiol 59, 451-485. 65. Christie, P.J., and Cascales, E. (2005). Structural and dynamic properties of bacterial type IV secretion systems. Mol Membr Biol 22, 51-61. 66. Christie, P.J., Ward, J.E., Jr., Gordon, M.P., and Nester, E.W. (1989). A gene required for transfer of T-DNA to plants encodes an ATPase with autophosphorylating activity. Proc Natl Acad Sci U S A 86, 9677-9681. 67. Citovsky, V., Guralnick, B., Simon, M.N., and Wall, J.S. (1997). The molecular structure of Agrobacterium VirE2-single stranded DNA complexes involved in nuclear import. J Mol Biol 271, 718-727. 68. Citovsky, V., Kapelnikov, A., Oliel, S., Zakai, N., Rojas, M.R., Gilbertson, R.L., Tzfira, T., and Loyter, A. (2004). Protein interactions involved in nuclear import of the Agrobacterium VirE2 protein in vivo and in vitro. J Biol Chem 279, 29528-29533. 69. Citovsky, V., Kozlovsky, S.V., Lacroix, B., Zaltsman, A., Dafny-Yelin, M., Vyas, S., Tovkach, A., and Tzfira, T. (2007). Biological systems of the host cell involved in Agrobacterium infection. Cellular Microbiology 9, 9-20. 70. Citovsky, V., Lee, L.Y., Vyas, S., Glick, E., Chen, M.H., Vainstein, A., Gafni, Y., Gelvin, S.B., and Tzfira, T. (2006). Subcellular localization of interacting proteins by bimolecular fluorescence complementation in planta. J Mol Biol 362, 1120-1131. 71. Citovsky, V., Wong, M.L., and Zambryski, P. (1989). Cooperative interaction of Agrobacterium VirE2 protein with single-stranded DNA: implications for the T-DNA transfer process. Proc Natl Acad Sci U S A 86, 1193-1197. 72. Citovsky, V., Zaltsman, A., Kozlovsky, S.V., Gafni, Y., and Krichevsky, A. (2009). Proteasomal degradation in plant-pathogen interactions. Semin Cell Dev Biol 20, 1048-1054. 73. Clarke, J.D., Volko, S.M., Ledford, H., Ausubel, F.M., and Dong, X. (2000). Roles of salicylic acid, jasmonic acid, and ethylene in cpr-induced resistance in Arabidopsis. Plant Cell 12, 2175-2190. 74. Close, T.J., Tait, R.C., Rempel, H.C., Hirooka, T., Kim, L., and Kado, C.I. (1987). Molecular characterization of the virC genes of the Ti plasmid. J Bacteriol 169, 2336-2344. 75. Dang, T.A., and Christie, P.J. (1997). The VirB4 ATPase of Agrobacterium tumefaciens is a cytoplasmic membrane protein exposed at the periplasmic surface. J Bacteriol 179, 453-462. 76. Danhorn, T., and Fuqua, C. (2007). Biofilm formation by plant-associated bacteria. Annu Rev Microbiol 61, 401-422. 77. Das, A., and Xie, Y.H. (2000). The Agrobacterium T-DNA transport pore proteins VirB8, VirB9, and VirB10 interact with one another. J Bacteriol 182, 758-763. 78. De Buck, S., Jacobs, A., Van Montagu, M., and Depicker, A. (1999). The DNA sequences of T-DNA junctions suggest that complex T-DNA loci are formed by a recombination process resembling T-DNA integration. Plant J 20, 295-304. 79. de Groot, M.J., Bundock, P., Hooykaas, P.J., and Beijersbergen, A.G. (1998). Agrobacterium tumefaciens-mediated transformation of filamentous fungi. Nat Biotechnol 16, 839-842. 80. De Neve, M., De Buck, S., Jacobs, A., Van Montagu, M., and Depicker, A. (1997). T-DNA integration patterns in co-transformed plant cells suggest that T-DNA repeats originate from co-integration of separate T-DNAs. Plant J 11, 15-29. 81. De Vos, M., Van Oosten, V.R., Van Poecke, R.M., Van Pelt, J.A., Pozo, M.J., Mueller, M.J., Buchala, A.J., Metraux, J.P., Van Loon, L.C., Dicke, M., and Pieterse, C. M. (2005). Signal signature and transcriptome changes of Arabidopsis during pathogen and insect attack. Mol Plant Microbe Interact 18, 923-937. 82. DeCleene, M., and DelLey, J. (1976). The host range of crown gall. Bot Rev 42, 389-466. 83. Delaney, T.P., Friedrich, L., and Ryals, J.A. (1995). Arabidopsis signal transduction mutant defective in chemically and biologically induced disease resistance. Proc Natl Acad Sci U S A 92, 6602-6606. 84. Delaney, T.P., Uknes, S., Vernooij, B., Friedrich, L., Weymann, K., Negrotto, D., Gaffney, T., Gut-Rella, M., Kessmann, H., Ward, E., and Ryals, J. (1994). A central role of salicylic acid in plant disease resistance. Science 266, 1247-1250. 85. Deng, W., Chen, L., Peng, W.T., Liang, X., Sekiguchi, S., Gordon, M.P., Comai, L., and Nester, E.W. (1999). VirE1 is a specific molecular chaperone for the exported single-stranded-DNA-binding protein VirE2 in Agrobacterium. Mol Microbiol 31, 1795-1807. 86. Devoto, A., Nieto-Rostro, M., Xie, D., Ellis, C., Harmston, R., Patrick, E., Davis, J., Sherratt, L., Coleman, M., and Turner, J.G. (2002). COI1 links jasmonate signalling and fertility to the SCF ubiquitin-ligase complex in Arabidopsis. Plant J 32, 457-466. 87. Diekmann, H., Klinger, M., Oertle, T., Heinz, D., Pogoda, H.M., Schwab, M.E., and Stuermer, C.A. (2005). Analysis of the reticulon gene family demonstrates the absence of the neurite growth inhibitor Nogo-A in fish. Mol Biol Evol 22, 1635-1648. 88. Ding, Z., Zhao, Z., Jakubowski, S.J., Krishnamohan, A., Margolin, W., and Christie, P.J. (2002). A novel cytology-based, two-hybrid screen for bacteria applied to protein-protein interaction studies of a type IV secretion system. J Bacteriol 184, 5572-5582. 89. Ditt, R.F., Nester, E.W., and Comai, L. (2001). Plant gene expression response to Agrobacterium tumefaciens. Proc Natl Acad Sci U S A 98, 10954-10959. 90. Djamei, A., Pitzschke, A., Nakagami, H., Rajh, I., and Hirt, H. (2007). Trojan horse strategy in Agrobacterium transformation: abusing MAPK defense signaling. Science 318, 453-456. 91. Dong, X. (2001). Genetic dissection of systemic acquired resistance. Curr Opin Plant Biol 4, 309-314. 92. Dong, X. (2004). NPR1, all things considered. Curr Opin Plant Biol 7, 547-552. 93. Dong, X., Li, X., Zhang, Y., Fan, W., Kinkema, M., and Clarke, J. (2001). Regulation of systemic acquired resistance by NPR1 and its partners. Novartis Found Symp 236, 165-173; discussion 173-165. 94. Duckely, M., and Hohn, B. (2003). The VirE2 protein of Agrobacterium tumefaciens: the Yin and Yang of T-DNA transfer. FEMS Microbiol Lett 223, 1-6. 95. Duckely, M., Oomen, C., Axthelm, F., Van Gelder, P., Waksman, G., and Engel, A. (2005). The VirE1/VirE2 complex of Agrobacterium tumefaciens interacts with single-stranded DNA and forms channels. Mol Microbiol 58, 1130-1142. 96. Dumas, F., Duckely, M., Pelczar, P., Van Gelder, P., and Hohn B. (2001). An Agrobacterium VirE2 channel for transferred-DNA transport into plant cells. Proc Natl Acad Sci U S A 98, 485-490. 97. Durrant, W.E., and Dong, X. (2004). Systemic acquired resistance. Annu Rev Phytopathol 42, 185-209. 98. Durrenberger, F., Crameri, A., Hohn, B., and Koukolikova-Nicola, Z. (1989). Covalently bound VirD2 protein of Agrobacterium tumefaciens protects the T-DNA from exonucleolytic degradation. Proc Natl Acad Sci U S A 86, 9154-9158. 99. Eisenbrandt, R., Kalkum, M., Lai, E.M., Lurz, R., Kado, C.I., and Lanka, E. (1999). Conjugative pili of IncP plasmids, and the Ti plasmid T pilus are composed of cyclic subunits. J Biol Chem 274, 22548-22555. 100. Elferink, L.A., Anzai, K., and Scheller, R.H. (1992). Rab15, a novel low molecular weight GTP-binding protein specifically expressed in rat brain. J Biol Chem 267, 5768-5775. 101. Engstrom, P., Zambryski, P., Van Montagu, M., and Stachel, S. (1987). Characterization of Agrobacterium tumefaciens virulence proteins induced by the plant factor acetosyringone. J Mol Biol 197, 635-645. 102. Fan, W., and Dong, X. (2002). In vivo interaction between NPR1 and transcription factor TGA2 leads to salicylic acid-mediated gene activation in Arabidopsis. Plant Cell 14, 1377-1389. 103. Felix, G., and Boller, T. (2003). Molecular sensing of bacteria in plants. The highly conserved RNA-binding motif RNP-1 of bacterial cold shock proteins is recognized as an elicitor signal in tobacco. J Biol Chem 278, 6201-6208. 104. Felix, G., Duran, J.D., Volko, S., and Boller, T. (1999). Plants have a sensitive perception system for the most conserved domain of bacterial flagellin. Plant J 18, 265-276. 105. Fernandez, D., Dang, T.A., Spudich, G.M., Zhou, X.R., Berger, B.R., and Christie, P.J. (1996a). The Agrobacterium tumefaciens virB7 gene product, a proposed component of the T-complex transport apparatus, is a membrane-associated lipoprotein exposed at the periplasmic surface. J Bacteriol 178, 3156-3167. 106. Fernandez, D., Spudich, G.M., Zhou, X.R., and Christie, P.J. (1996b). The Agrobacterium tumefaciens VirB7 lipoprotein is required for stabilization of VirB proteins during assembly of the T-complex transport apparatus. J Bacteriol 178, 3168-3176. 107. Finberg, K.E., Muth, T.R., Young, S.P., Maken, J.B., Heitritter, S.M., Binns, A.N., and Banta, L.M. (1995). Interactions of VirB9, -10, and -11 with the membrane fraction of Agrobacterium tumefaciens: solubility studies provide evidence for tight associations. J Bacteriol 177, 4881-4889. 108. Fonseca, S., Chico, J.M., and Solano, R. (2009). The jasmonate pathway: the ligand, the receptor and the core signalling module. Curr Opin Plant Biol 12, 539-547. 109. Friesner, J., and Britt, A.B. (2003). Ku80- and DNA ligase IV-deficient plants are sensitive to ionizing radiation and defective in T-DNA integration. Plant J 34, 427-440. 110. Fronzes, R., Christie, P.J., and Waksman, G. (2009a). The structural biology of type IV secretion systems. Nat Rev Microbiol 7, 703-714. 111. Fronzes, R., Schafer, E., Wang, L., Saibil, H.R., Orlova, E.V., and Waksman, G. (2009b). Structure of a type IV secretion system core complex. Science 323, 266-268. 112. Fullner, K.J. (1998). Role of Agrobacterium virB genes in transfer of T complexes and RSF1010. J Bacteriol 180, 430-434. 113. Gaffney, T., Friedrich, L., Vernooij, B., Negrotto, D., Nye, G., Uknes, S., Ward, E., Kessmann, H., and Ryals, J. (1993). Requirement of salicylic acid for the induction of systemic acquired resistance. Science 261, 754-756. 114. Gallego, M.E., Bleuyard, J.Y., Daoudal-Cotterell, S., Jallut, N., and White, C.I. (2003). Ku80 plays a role in non-homologous recombination but is not required for T-DNA integration in Arabidopsis. Plant J 35, 557-565. 115. Gamborg, O.L., Miller, R.A., and Ojima, K. (1968). Nutrient requirements of suspension cultures of soybean root cells. Exp Cell Res 50, 151-158. 116. Gao, R., Mukhopadhyay, A., Fang, F., and Lynn, D.G. (2006). Constitutive activation of two-component response regulators: characterization of VirG activation in agrobacterium tumefaciens. J Bacteriol 188, 5204-5211. 117. Garcia-Rodriguez, F.M., Schrammeijer, B., and Hooykaas, P.J.J. (2006). The Agrobacterium VirE3 effector protein: a potential plant transcriptional activator. Nucleic Acids Res 34, 6496-6504. 118. Gaspar, Y.M., Nam, J., Schultz, C.J., Lee, L.Y., Gilson, P.R., Gelvin, S.B., and Bacic, A. (2004). Characterization of the Arabidopsis lysine-rich arabinogalactan-protein AtAGP17 mutant (rat1) that results in a decreased efficiency of Agrobacterium transformation. Plant Physiol 135, 2162-2171. 119. Gelvin, S.B. (2000). Agrobacterium and plant genes involved in T-DNA transfer and integration. Annu Rev Plant Physiol Plant Mol Biol 51, 223-256. 120. Gelvin, S.B. (2010). Plant proteins involved in Agrobacterium-mediated genetic transformation. Annu Rev Phytopathol 48, 45-68. 121. Ghomashchi, F., Zhang, X., Liu, L., and Gelb, M.H. (1995). Binding of prenylated and polybasic peptides to membranes: affinities and intervesicle exchange. Biochemistry 34, 11910-11918. 122. Glazebrook, J. (2005). Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu Rev Phytopathol 43, 205-227. 123. Glazebrook, J., Rogers, E.E., and Ausubel, F.M. (1996). Isolation of Arabidopsis mutants with enhanced disease susceptibility by direct screening. Genetics 143, 973-982. 124. Gietl, C., Koukolikova-Nicola, Z., and Hohn, B. (1987). Mobilization of T-DNA from Agrobacterium to plant cells involves a protein that binds single-stranded DNA. Proc Natl Acad Sci U S A 84, 9006-9010. 125. Gomez-Gomez, L., and Boller, T. (2000). FLS2: an LRR receptor-like kinase involved in the perception of the bacterial elicitor flagellin in Arabidopsis. Mol Cell 5, 1003-1011. 126. Gomez-Gomez, L., Bauer, Z., and Boller, T. (2001). Both the extracellular leucine-rich repeat domain and the kinase activity of FSL2 are required for flagellin binding and signaling in Arabidopsis. Plant Cell 13, 1155-1163. 127. Gomez-Gomez, L., Felix, G., and Boller, T. (1999). A single locus determines sensitivity to bacterial flagellin in Arabidopsis thaliana. Plant J 18, 277-284. 128. Goodner, B., Hinkle, G., Gattung, S., Miller, N., Blanchard, M., Qurollo, B., Goldman, B.S., Cao, Y., Askenazi, M., Halling, C., Mullin, L., Houmiel, K., Gordon, J., Vaudin, M., Iartchouk, O., Epp, A., Liu, F., Wollam, C., Allinger, M., Doughty, D., Scott, C., Lappas, C., Markelz, B., Flanagan, C., Crowell, C., Gurson, J., Lomo, C., Sear, C., Strub, G., Cielo, C., and Slater, S. (2001). Genome sequence of the plant pathogen and biotechnology agent Agrobacterium tumefaciens C58. Science 294, 2323-2328. 129. Gouka, R.J., Gerk, C., Hooykaas, P.J., Bundock, P., Musters, W., Verrips, C.T., and de Groot, M.J. (1999). Transformation of Aspergillus awamori by Agrobacterium tumefaciens-mediated homologous recombination. Nat Biotechnol 17, 598-601. 130. GrandPre, T., Li, S., and Strittmatter, S.M. (2002). Nogo-66 receptor antagonist peptide promotes axonal regeneration. Nature 417, 547-551. 131. GrandPre, T., Nakamura, F., Vartanian, T., and Strittmatter, S.M. (2000). Identification of the Nogo inhibitor of axon regeneration as a reticulon protein. Nature 403, 439-444. 132. Gray, W.M. (2002). Plant defence: a new weapon in the arsenal. Curr Biol 12, 352-354. 133. Gu, Y.Q., Yang, C., Thara, V.K., Zhou, J., and Martin, G.B. (2000). Pti4 is induced by ethylene and salicylic acid, and its product is phosphorylated by the Pto kinase. Plant Cell 12, 771-786. 134. Hall-Stoodley, L., Costerton, J.W., and Stoodley, P. (2004). Bacterial biofilms: from the natural environment to infectious diseases. Nat Rev Microbiol 2, 95-108. 135. Hammond-Kosack, K.E., and Jones, J.D. (1996). Resistance gene-dependent plant defense responses. Plant Cell 8, 1773-1791. 136. Hamilton, C.M., Lee, H., Li, P.L., Cook, D.M., Piper, K.R., von Bodman, S.B., Lanka, E., Ream, W., and Farrand, S.K. (2000). TraG from RP4 and TraG and VirD4 from Ti plasmids confer relaxosome specificity to the conjugal transfer system of pTiC58. J Bacteriol 182, 1541-1548. 137. Heese, A., Hann, D.R., Gimenez-Ibanez, S., Jones, A.M., He, K., Li, J., Schroeder, J.I., Peck, S.C., and Rathjen, J.P. (2007). The receptor-like kinase SERK3/BAK1 is a central regulator of innate immunity in plants. Proc Natl Acad Sci U S A 104, 12217-12222. 138. Hapfelmeier, S., Domke, N., Zambryski, P.C., and Baron, C. (2000). VirB6 is required for stabilization of VirB5 and VirB3 and formation of VirB7 homodimers in Agrobacterium tumefaciens. J Bacteriol 182, 4505-4511. 139. Hepburn, A.G., White, J., Pearson, L., Maunders, M.J., Clarke, L.E., Prescott, A.G., and Blundy, K.S. (1985). The use of pNJ5000 as an intermediate vector for the genetic manipulation of Agrobacterium Ti-plasmids. J Gen Microbiol 131, 2961-2969. 140. Herrera-Estrella, A., Chen, Z.M., Van Montagu, M., and Wang, K. (1988). VirD proteins of Agrobacterium tumefaciens are required for the formation of a covalent DNA--protein complex at the 5'' terminus of T-strand molecules. EMBO J 7, 4055-4062. 141. Howard, E.A., Winsor, B.A., De Vos, G., and Zambryski, P. (1989). Activation of the T-DNA transfer process in Agrobacterium results in the generation of a T-strand-protein complex: Tight association of VirD2 with the 5'' ends of T-strands. Proc Natl Acad Sci U S A 86, 4017-4021. 142. Howard, E.A., Zupan, J.R., Citovsky, V., and Zambryski, P.C. (1992). The VirD2 protein of A. tumefaciens contains a C-terminal bipartite nuclear localization signal: implications for nuclear uptake of DNA in plant cells. Cell 68, 109-118. 143. Huang, Y., Morel, P., Powell, B., and Kado, C.I. (1990). VirA, a coregulator of Ti-specified virulence genes, is phosphorylated in vitro. J Bacteriol 172, 1142-1144. 144. Huber, L.A., de Hoop, M.J., Dupree, P., Zerial, M., Simons, K., and Dotti, C. (1993a). Protein transport to the dendritic plasma membrane of cultured neurons is regulated by Rab8p. J Cell Biol 123, 47-55. 145. Huber, L.A., Pimplikar, S., Parton, R.G., Virta, H., Zerial, M., and Simons, K. (1993b). Rab8, a small GTPase involved in vesicular traffic between the TGN and the basolateral plasma membrane. J Cell Biol 123, 35-45. 146. Huber, A.B., and Schwab, M.E. (2000). Nogo-A, a potent inhibitor of neurite outgrowth and regeneration. Biol Chem 381, 407-419. 147. Hwang, H.H., and Gelvin, S.B. (2004). Plant proteins that interact with VirB2, the Agrobacterium tumefaciens pilin protein, mediate plant transformation. Plant Cell 16, 3148-3167. 148. Jakubowski, S.J., Cascales, E., Krishnamoorthy, V., and Christie, P.J. (2005). Agrobacterium tumefaciens VirB9, an outer-membrane-associated component of a type IV secretion system, regulates substrate selection and T-pilus biogenesis. J Bacteriol 187, 3486-3495. 149. Jakubowski, S.J., Kerr, J.E., Garza, I., Krishnamoorthy, V., Bayliss, R., Waksman, G., and Christie, P.J. (2009). Agrobacterium VirB10 domain requirements for type IV secretion and T pilus biogenesis. Mol Microbiol 71, 779-794. 150. Jakubowski, S.J., Krishnamoorthy, V., Cascales, E., and Christie, P.J. (2004). Agrobacterium tumefaciens VirB6 domains direct the ordered export of a DNA substrate through a type IV secretion System. J Mol Biol 341, 961-977. 151. Jarchow, E., Grimsley, N.H., and Hohn, B. (1991). virF, the host-range-determining virulence gene of Agrobacterium tumefaciens, affects T-DNA transfer to Zea mays. Proc Natl Acad Sci U S A 88, 10426-10430. 152. Jayaswal, R.K., Veluthambi, K., Gelvin, S.B., and Slightom, J.L. (1987). Double-stranded cleavage of T-DNA and generation of single-stranded T-DNA molecules in Escherichia coli by a virD-encoded border-specific endonuclease from Agrobacterium tumefaciens. J Bacteriol 169, 5035-5045. 153. Jin, S., Roitsch, T., Ankenbauer, R.G., Gordon, M.P., and Nester, E.W. (1990a). The VirA protein of Agrobacterium tumefaciens is autophosphorylated and is essential for vir gene regulation. J Bacteriol 172, 525-530. 154. Jin, S.G., Prusti, R.K., Roitsch, T., Ankenbauer, R.G., and Nester, E.W. (1990b). Phosphorylation of the VirG protein of Agrobacterium tumefaciens by the autophosphorylated VirA protein: essential role in biological activity of VirG. J Bacteriol 172, 4945-4950. 155. Jin, S.G., Roitsch, T., Christie, P.J., and Nester, E.W. (1990c). The regulatory VirG protein specifically binds to a cis-acting regulatory sequence involved in transcriptional activation of Agrobacterium tumefaciens virulence genes. J Bacteriol 172, 531-537. 156. Johnson, C., Boden, E., and Arias, J. (2003). Salicylic acid and NPR1 induce the recruitment of trans-activating TGA factors to a defense gene promoter in Arabidopsis. Plant Cell 15, 1846-1858. 157. Jones, A.L., Shirasu, K., and Kado, C.I. (1994). The product of the virB4 gene of Agrobacterium tumefaciens promotes accumulation of VirB3 protein. J Bacteriol 176, 5255-5261. 158. Jones, J.D., and Dangl, J.L. (2006). The plant immune system. Nature 444, 323-329. 159. Judd, P.K., Mahli, D., and Das, A. (2005). Molecular characterization of the Agrobacterium tumefaciens DNA transfer protein VirB6. Microbiology 151, 3483-3492. 160. Kachroo, P., Yoshioka, K., Shah, J., Dooner, H.K., and Klessig, D.F. (2000). Resistance to turnip crinkle virus in Arabidopsis is regulated by two host genes and is salicylic acid dependent but NPR1, ethylene, and jasmonate independent. Plant Cell 12, 677-690. 161. Kahl, J., Siemens, D.H., Aerts, R.J., Gabler, R., Kuhnemann, F., Preston, C.A., and Baldwin, I.T. (2000). Herbivore-induced ethylene suppresses a direct defense but not a putative indirect defense against an adapted herbivore. Planta 210, 336-342. 162. Kang, L., Tang, X., and Mysore, K.S. (2004). Pseudomonas Type III effector AvrPto suppresses the programmed cell dea
摘要: 農桿菌(Agrobacterium tumefaciens)是一種可跨”界”(kingdom)轉移自身遺傳物質至真核生物中之植物病原菌,其基因體組成除了一線狀及環狀染色體外,尚有pAtC58與pTiC58兩個質體。Ti質體(tumor-inducing plasmid)上含有一段T-DNA (transfer DNA),可藉由第四型分泌系統(type IV secretion system,T4SS)輸出進入植物細胞中。T4SS是由農桿菌的致病蛋白質(virulence protein,Vir)VirB1-11及VirD4所組成,因此又稱為VirB/D4輸出系統。另外,在Ti質體上的致病基因表現區(vir region)中,包含了感染植物過程所需的致病基因,分別參與了植物訊息的辨認、T-DNA的產生、轉移、進入植物細胞及到達植物細胞核的過程,使得T-DNA可成功地嵌入植物染色體中及表現。而在T-DNA由農桿菌轉移至植物細胞的過程中,T4SS扮演了非常重要的角色,而其中的T線毛構造雖有研究指出並非T-DNA轉移的必要條件,但組成T線毛(T-pilus)的VirB2、VirB5與VirB7若缺乏,則造成農桿菌喪失致病力。而在農桿菌感染植物的過程中,植物中的蛋白質可被農桿菌利用,目前已知阿拉伯芥中的AtRTNLB1、2、4及AtRab8B皆可與農桿菌的VirB2相互結合,故本研究利用雙分子螢光互補(bimolecular fluorescence complementation,BiFC)實驗檢測蛋白質間的交互關係,檢測結果顯示AtRTNLB1、2、4與AtRab8B可於原生質體中相互結合,可知此四個蛋白質應可在植物細胞形成一複合體,在植物細胞中共同作用。並且已知在大量表現AtRTNLB1、2或4轉殖株中其被農桿菌感染的效率顯著提升。因此進一步以反轉錄聚合酶連鎖反應(reverse transcription polymerase chain reaction,RT-PCR)檢測病原菌相關基因(pathogen-related genes 1-5,PR1-5)與植物防禦基因(plant defensin 1.2,PDF1.2) 在上述轉殖株中的基因表現量有無改變。在大量表現AtRTNLB1、2或4之轉殖株中,PR1-5及PDF1.2基因的表現量整體有下降的趨勢。另外,為了檢測AtRTNLB家族其他成員是否亦參與農桿菌的感染過程,因此利用酵母菌雙雜合實驗檢測AtRTNLB3、5-8與農桿菌致病蛋白質或AtRab8B的交互作用,結果顯示只有AtRTNLB8可與VirB2或AtRab8B相互結合,因此推測AtRTNLB8較可能參與農菌感染植物的過程。此外針對AtRTNLB8、9、10及13突變株進行農桿菌感染分析實驗,實驗結果顯示上述突變株其短暫表現T-DNA的能力或被野生種農桿菌感染後產生腫瘤的效率,與野生株相較降低的幅度僅限於10-30%,亦或無明顯差異;可知當突變株中只有AtRTNLB8、9、10或13基因功能缺失時,可能不會對農桿菌感染此植株能力造成顯著影響。
Agrobacterium tumefaciens is a plant pathogen that can transfer its own genetic material into eukaryotic cells. The A. tumefaciens genome consists of a linear and a circular chromosomes, and two plasmids, pAtC58 and pTiC58. The tumor-inducing (Ti) plasmid contains a specific DNA region, transfer DNA (T-DNA), which can be export and transfer into plant cells by a type IV secretion system (T4SS). The A. tumefaciens T4SS, also called the VirB/D4 transport system, is composed of VirB1-11 and VirD4 proteins. The Ti plasmid also contains several virulence (vir) genes that are responsible for T-DNA processing, transferring from bacteria into plant cells, nuclear targeting, and finally integration into plant chromosome. During A. tumefaciens infections, the T4SS mediates T-DNA and Vir proteins export. Although the T-pilus has been reported that might not be necessary for T-DNA transfers, the components of T-pilus, VirB2, VirB5, and VirB7, are essential for A. tumefaciens virulence. A previous study showed that Arabidopsis proteins, AtRTNLB1, 2, 4, and AtRab8B, interact with VirB2 in yeast and in vitro. In order to understand further the interactions between AtRTNLB1, 2, 4, and AtRab8B in plant cells, bimolecular fluorescence complementation (BiFC) tests were utilized and demonstrated that AtRTNLB1, 2, 4, and AtRab8B may form a protein complex in plant protoplasts. The over-expression AtRTNLB1, 2 or 4 transgenic plants were hyper-susceptible to Agrobacterium-mediated plant transformation. We therefore performed RT-PCR to determine RNA accumulation levels of the pathogen-related gene 1-5 (PR1-5) and plant defesin gene 1.2 (PDF1.2) in both over-expression transgenic plants and wild-type plants. Most of the PR1-5 and PDF1.2 genes RNA accumulated more in over-expression AtRTNLB1, 2 or 4 transgenic lines than in wild-type plants. Additionally, in order to determine if other members of AtRTNLB participate A. tumefaciens transformation process, we cloned AtRTNLB3, and 5-8 genes from Arabidopsis and performed yeast-two hybrid assays between RTNLB3, 5-8 and several Vir proteins. So far, only AtRTNLB8 interacted with either VirB2 or AtRab8B, suggesting that AtRTNLB8 may be involved in Agrobacterium transformation process. We also examined Agrobacterium infection abilities of the Arabidopsis rtnlb8, rtnlb9, rtnlb10, and rtnlb13 T-DNA insertion mutants The transient and stable transformation efficiencies of some of these mutants showed only slightly 10-30% reductions in comparison to wild-type plants. These results suggest when either the AtRTNLB8-10, or 13 gene expression was affected due to the T-DNA insertion, the Agrobacterium-mediated plant transformation process might no significantly affected in these mutants.
URI: http://hdl.handle.net/11455/23672
其他識別: U0005-0901201218341600
Appears in Collections:生命科學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.