Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/23681
標題: 綠茶多酚保護H9c2心肌細胞免於氧化壓力的機制探討
Mechanistic studies of cardio-protection of EGCg by attenuating H2O2-induced oxidative stress in H9c2 cardiomyoblasts
作者: 許建生
Hsu, Chien-Sheng
關鍵字: H9c2 cardiomyoblasts
大鼠心臟細胞株-H9c2
EGCg
H2O2
oxidative stress
intracellular calcium
EGFP
gap junction proteins
adherens junction proteins
GSK-3beta
綠茶多酚
雙氧水
氧化壓力
胞內鈣離子
綠螢光蛋白
間隙蛋白
貼附蛋白
GSK-3beta
出版社: 生命科學系所
引用: Ahuja, P., Sdek, P. & MacLellan, W.R. (2007) Cardiac myocyte cell cycle control in development, disease, and regeneration. Physiol Rev, 87, 521-544. Aneja, R., Hake, P.W., Burroughs, T.J., Denenberg, A.G., Wong, H.R. & Zingarelli, B. (2004) Epigallocatechin, a green tea polyphenol, attenuates myocardial ischemia reperfusion injury in rats. Mol Med, 10, 55-62. Azuma, T., Koths, K., Flanagan, L. & Kwiatkowski, D. (2000) Gelsolin in complex with phosphatidylinositol 4,5-bisphosphate inhibits caspase-3 and -9 to retard apoptotic progression. J Biol Chem, 275, 3761-3766. Beardslee, M.A., Lerner, D.L., Tadros, P.N., Laing, J.G., Beyer, E.C., Yamada, K.A., Kleber, A.G., Schuessler, R.B. & Saffitz, J.E. (2000) Dephosphorylation and intracellular redistribution of ventricular connexin43 during electrical uncoupling induced by ischemia. Circ Res, 87, 656-662. Bers, D.M. (2008) Calcium cycling and signaling in cardiac myocytes. Annu Rev Physiol, 70, 23-49. Bhat, R.V., Shanley, J., Correll, M.P., Fieles, W.E., Keith, R.A., Scott, C.W. & Lee, C.M. (2000) Regulation and localization of tyrosine216 phosphorylation of glycogen synthase kinase-3beta in cellular and animal models of neuronal degeneration. Proc Natl Acad Sci U S A, 97, 11074-11079. Bianchi, P., Pimentel, D.R., Murphy, M.P., Colucci, W.S. & Parini, A. (2005) A new hypertrophic mechanism of serotonin in cardiac myocytes: receptor-independent ROS generation. FASEB J, 19, 641-643. Blankesteijn, W.M., van de Schans, V.A., ter Horst, P. & Smits, J.F. (2008) The Wnt/frizzled/GSK-3 beta pathway: a novel therapeutic target for cardiac hypertrophy. Trends Pharmacol Sci, 29, 175-180. Brembeck, F.H., Rosario, M. & Birchmeier, W. (2006) Balancing cell adhesion and Wnt signaling, the key role of beta-catenin. Curr Opin Genet Dev, 16, 51-59. Chen, L., Lee, M.J., Li, H. & Yang, C.S. (1997) Absorption, distribution, elimination of tea polyphenols in rats. Drug Metab Dispos, 25, 1045-1050. Chen, L.Y., Nichols, W.W., Hendricks, J. & Mehta, J.L. (1995) Myocardial neutrophil infiltration, lipid peroxidation, and antioxidant activity after coronary artery thrombosis and thrombolysis. Am Heart J, 129, 211-218. Crow, M.T., Mani, K., Nam, Y.J. & Kitsis, R.N. (2004) The mitochondrial death pathway and cardiac myocyte apoptosis. Circ Res, 95, 957-970. De Corte, V., Bruyneel, E., Boucherie, C., Mareel, M., Vandekerckhove, J. & Gettemans, J. (2002) Gelsolin-induced epithelial cell invasion is dependent on Ras-Rac signaling. EMBO J, 21, 6781-6790. Decker, R.S. & Wildenthal, K. (1980) Lysosomal alterations in hypoxic and reoxygenated hearts. I. Ultrastructural and cytochemical changes. Am J Pathol, 98, 425-444. Dhalla, N.S., Elmoselhi, A.B., Hata, T. & Makino, N. (2000) Status of myocardial antioxidants in ischemia-reperfusion injury. Cardiovasc Res, 47, 446-456. Doble, B.W. & Woodgett, J.R. (2003) GSK-3: tricks of the trade for a multi-tasking kinase. J Cell Sci, 116, 1175-1186. Dudek, H., Datta, S.R., Franke, T.F., Birnbaum, M.J., Yao, R., Cooper, G.M., Segal, R.A., Kaplan, D.R. & Greenberg, M.E. (1997) Regulation of neuronal survival by the serine-threonine protein kinase Akt. Science, 275, 661-665. Ferdinandy, P., Schulz, R. & Baxter, G.F. (2007) Interaction of cardiovascular risk factors with myocardial ischemia/reperfusion injury, preconditioning, and postconditioning. Pharmacol Rev, 59, 418-458. Ferrari, R., Agnoletti, L., Comini, L., Gaia, G., Bachetti, T., Cargnoni, A., Ceconi, C., Curello, S. & Visioli, O. (1998) Oxidative stress during myocardial ischaemia and heart failure. Eur Heart J, 19 Suppl B, B2-11. Givant-Horwitz, V., Davidson, B. & Reich, R. (2004) Laminin-induced signaling in tumor cells: the role of the M(r) 67,000 laminin receptor. Cancer Res, 64, 3572-3579. Gurusamy, N., Lekli, I., Gorbunov, N.V., Gherghiceanu, M., Popescu, L.M. & Das, D.K. (2009) Cardioprotection by adaptation to ischaemia augments autophagy in association with BAG-1 protein. J Cell Mol Med, 13, 373-387. Hamacher-Brady, A., Brady, N.R. & Gottlieb, R.A. (2006) Enhancing macroautophagy protects against ischemia/reperfusion injury in cardiac myocytes. J Biol Chem, 281, 29776-29787. Hengartner, M.O. (2000) The biochemistry of apoptosis. Nature, 407, 770-776. Hsieh, S.R., Tsai, D.C., Chen, J.Y., Tsai, S.W. & Liou, Y.M. (2009) Green tea extract protects rats against myocardial infarction associated with left anterior descending coronary artery ligation. Pflugers Arch, 458, 631-642. Hsu, Y.C. & Liou, Y.M. (2010) The anti-cancer effects of (-)-epigalocathine-3-gallate on the signaling pathways associated with membrane receptors in MCF-7 cells. J Cell Physiol. Huang, X.D., Sandusky, G.E. & Zipes, D.P. (1999) Heterogeneous loss of connexin43 protein in ischemic dog hearts. J Cardiovasc Electrophysiol, 10, 79-91. Janmey, P.A. (1994) Phosphoinositides and calcium as regulators of cellular actin assembly and disassembly. Annu Rev Physiol, 56, 169-191. Jiang, W.L., Zhang, S.P., Zhu, H.B. & Hou, J. (2011) Cardioprotection of Asperosaponin X on experimental myocardial ischemia injury. Int J Cardiol. Juhaszova, M., Zorov, D.B., Kim, S.H., Pepe, S., Fu, Q., Fishbein, K.W., Ziman, B.D., Wang, S., Ytrehus, K., Antos, C.L., Olson, E.N. & Sollott, S.J. (2004) Glycogen synthase kinase-3beta mediates convergence of protection signaling to inhibit the mitochondrial permeability transition pore. J Clin Invest, 113, 1535-1549. Kaplan, P., Babusikova, E., Lehotsky, J. & Dobrota, D. (2003) Free radical-induced protein modification and inhibition of Ca2+-ATPase of cardiac sarcoplasmic reticulum. Mol Cell Biochem, 248, 41-47. Kevin, L.G., Novalija, E. & Stowe, D.F. (2005) Reactive oxygen species as mediators of cardiac injury and protection: the relevance to anesthesia practice. Anesth Analg, 101, 1275-1287. Kim, S.Y., Jo, H.Y., Kim, M.H., Cha, Y.Y., Choi, S.W., Shim, J.H., Kim, T.J. & Lee, K.Y. (2008) H2O2-dependent hyperoxidation of peroxiredoxin 6 (Prdx6) plays a role in cellular toxicity via up-regulation of iPLA2 activity. J Biol Chem, 283, 33563-33568. Klener, P., Jr., Andera, L., Klener, P., Necas, E. & Zivny, J. (2006) Cell death signalling pathways in the pathogenesis and therapy of haematologic malignancies: overview of apoptotic pathways. Folia Biol (Praha), 52, 34-44. Kothakota, S., Azuma, T., Reinhard, C., Klippel, A., Tang, J., Chu, K., McGarry, T.J., Kirschner, M.W., Koths, K., Kwiatkowski, D.J. & Williams, L.T. (1997) Caspase-3-generated fragment of gelsolin: effector of morphological change in apoptosis. Science, 278, 294-298. Koya, R.C., Fujita, H., Shimizu, S., Ohtsu, M., Takimoto, M., Tsujimoto, Y. & Kuzumaki, N. (2000) Gelsolin inhibits apoptosis by blocking mitochondrial membrane potential loss and cytochrome c release. J Biol Chem, 275, 15343-15349. Kundu, M. & Thompson, C.B. (2008) Autophagy: basic principles and relevance to disease. Annu Rev Pathol, 3, 427-455. Lampe, P.D. & Lau, A.F. (2000) Regulation of gap junctions by phosphorylation of connexins. Arch Biochem Biophys, 384, 205-215. Li, G.H., Shi, Y., Chen, Y., Sun, M., Sader, S., Maekawa, Y., Arab, S., Dawood, F., Chen, M., De Couto, G., Liu, Y., Fukuoka, M., Yang, S., Da Shi, M., Kirshenbaum, L.A., McCulloch, C.A. & Liu, P. (2009) Gelsolin regulates cardiac remodeling after myocardial infarction through DNase I-mediated apoptosis. Circ Res, 104, 896-904. Lindsey, M.L., Escobar, G.P., Mukherjee, R., Goshorn, D.K., Sheats, N.J., Bruce, J.A., Mains, I.M., Hendrick, J.K., Hewett, K.W., Gourdie, R.G., Matrisian, L.M. & Spinale, F.G. (2006) Matrix metalloproteinase-7 affects connexin-43 levels, electrical conduction, and survival after myocardial infarction. Circulation, 113, 2919-2928. Liou, Y.M., Hsieh, S.R., Wu, T.J. & Chen, J.Y. (2010) Green tea extract given before regional myocardial ischemia-reperfusion in rats improves myocardial contractility by attenuating calcium overload. Pflugers Arch, 460, 1003-1014. Liou, Y.M., Kuo, S.C. & Hsieh, S.R. (2008) Differential effects of a green tea-derived polyphenol (-)-epigallocatechin-3-gallate on the acidosis-induced decrease in the Ca(2+) sensitivity of cardiac and skeletal muscle. Pflugers Arch, 456, 787-800. Magenta, A., Fasanaro, P., Romani, S., Di Stefano, V., Capogrossi, M.C. & Martelli, F. (2008) Protein phosphatase 2A subunit PR70 interacts with pRb and mediates its dephosphorylation. Mol Cell Biol, 28, 873-882. Matsui, Y., Takagi, H., Qu, X., Abdellatif, M., Sakoda, H., Asano, T., Levine, B. & Sadoshima, J. (2007) Distinct roles of autophagy in the heart during ischemia and reperfusion: roles of AMP-activated protein kinase and Beclin 1 in mediating autophagy. Circ Res, 100, 914-922. McGough, A.M., Staiger, C.J., Min, J.K. & Simonetti, K.D. (2003) The gelsolin family of actin regulatory proteins: modular structures, versatile functions. FEBS Lett, 552, 75-81. Misra, M.K., Sarwat, M., Bhakuni, P., Tuteja, R. & Tuteja, N. (2009) Oxidative stress and ischemic myocardial syndromes. Med Sci Monit, 15, RA209-219. Miura, T. & Miki, T. (2009) GSK-3beta, a therapeutic target for cardiomyocyte protection. Circ J, 73, 1184-1192. Mizushima, N., Levine, B., Cuervo, A.M. & Klionsky, D.J. (2008) Autophagy fights disease through cellular self-digestion. Nature, 451, 1069-1075. Nishihara, M., Miura, T., Miki, T., Tanno, M., Yano, T., Naitoh, K., Ohori, K., Hotta, H., Terashima, Y. & Shimamoto, K. (2007) Modulation of the mitochondrial permeability transition pore complex in GSK-3beta-mediated myocardial protection. J Mol Cell Cardiol, 43, 564-570. Nishio, R. & Matsumori, A. (2009) Gelsolin and cardiac myocyte apoptosis: a new target in the treatment of postinfarction remodeling. Circ Res, 104, 829-831. Oyama, K., Takahashi, K. & Sakurai, K. (2011) Hydrogen peroxide induces cell cycle arrest in cardiomyoblast H9c2 cells, which is related to hypertrophy. Biol Pharm Bull, 34, 501-506. Pagel, P.S., Krolikowski, J.G., Neff, D.A., Weihrauch, D., Bienengraeber, M., Kersten, J.R. & Warltier, D.C. (2006) Inhibition of glycogen synthase kinase enhances isoflurane-induced protection against myocardial infarction during early reperfusion in vivo. Anesth Analg, 102, 1348-1354. Peters, N.S., Green, C.R., Poole-Wilson, P.A. & Severs, N.J. (1993) Reduced content of connexin43 gap junctions in ventricular myocardium from hypertrophied and ischemic human hearts. Circulation, 88, 864-875. Reya, T. & Clevers, H. (2005) Wnt signalling in stem cells and cancer. Nature, 434, 843-850. Severs, N.J., Bruce, A.F., Dupont, E. & Rothery, S. (2008) Remodelling of gap junctions and connexin expression in diseased myocardium. Cardiovasc Res, 80, 9-19. Stephanou, A. (2004) Role of STAT-1 and STAT-3 in ischaemia/reperfusion injury. J Cell Mol Med, 8, 519-525. Stromhaug, P.E. & Klionsky, D.J. (2001) Approaching the molecular mechanism of autophagy. Traffic, 2, 524-531. Sugden, P.H., Fuller, S.J., Weiss, S.C. & Clerk, A. (2008) Glycogen synthase kinase 3 (GSK3) in the heart: a point of integration in hypertrophic signalling and a therapeutic target? A critical analysis. Br J Pharmacol, 153 Suppl 1, S137-153. Tamamori, M., Ito, H., Hiroe, M., Terada, Y., Marumo, F. & Ikeda, M.A. (1998) Essential roles for G1 cyclin-dependent kinase activity in development of cardiomyocyte hypertrophy. Am J Physiol, 275, H2036-2040. Tansey, E.E., Kwaku, K.F., Hammer, P.E., Cowan, D.B., Federman, M., Levitsky, S. & McCully, J.D. (2006) Reduction and redistribution of gap and adherens junction proteins after ischemia and reperfusion. Ann Thorac Surg, 82, 1472-1479. Tomaselli, G.F. (2010) Oxidant stress derails the cardiac connexon connection. J Clin Invest, 120, 87-89. Tsutsui, H., Kinugawa, S. & Matsushima, S. (2008) Oxidative stress and mitochondrial DNA damage in heart failure. Circ J, 72 Suppl A, A31-37. Tuteja, N. & Tuteja, R. (2001) Unraveling DNA repair in human: molecular mechanisms and consequences of repair defect. Crit Rev Biochem Mol Biol, 36, 261-290. Umeda, D., Yano, S., Yamada, K. & Tachibana, H. (2008) Green tea polyphenol epigallocatechin-3-gallate signaling pathway through 67-kDa laminin receptor. J Biol Chem, 283, 3050-3058. Valentim, L., Laurence, K.M., Townsend, P.A., Carroll, C.J., Soond, S., Scarabelli, T.M., Knight, R.A., Latchman, D.S. & Stephanou, A. (2006) Urocortin inhibits Beclin1-mediated autophagic cell death in cardiac myocytes exposed to ischaemia/reperfusion injury. J Mol Cell Cardiol, 40, 846-852. Yin, H.L. & Stossel, T.P. (1979) Control of cytoplasmic actin gel-sol transformation by gelsolin, a calcium-dependent regulatory protein. Nature, 281, 583-586. Zuppinger, C., Eppenberger-Eberhardt, M. & Eppenberger, H.M. (2000) N-Cadherin: structure, function and importance in the formation of new intercalated disc-like cell contacts in cardiomyocytes. Heart Fail Rev, 5, 251-257.
摘要: EGCg是綠茶中主要多酚物質,能有效的清除自由基。當心臟面臨因缺血再灌流所導致的心肌傷害,常伴隨著產生細胞過氧化物的自由基,例如:hydrogen peroxide、superoxy anions、以及 hydroxyl radicals。這些具有氧化活性的氧化物質(ROS),會對心臟細胞造成氧化壓力,讓心臟細胞造成損傷。本研究論文旨在:藉由建立外加雙氧水造成氧化刺激, 使心臟細胞株 (H9c2,大鼠心肌纖維母細胞) 產生氧化壓力的細胞模式,來探討綠茶多酚對心臟細胞面臨氧化壓力的保護機制。首先,檢視及量化綠茶多酚─EGCg和雙氧水影響H9c2心臟細胞的存活率。結果發現:心臟細胞受到氧化壓力會降低細胞存活率;然而,心臟細胞在面臨氧化壓力前事先添加綠茶多酚,卻能增加心臟細胞存活。另外,實驗結果發現:心臟細胞受到氧化壓力使細胞內產生過多的ROS及胞內鈣離子;然而,EGCg能降低細胞內ROS產生,以及降低氧化壓力所造成胞內鈣離子過多的現象。為了瞭解EGCg進入心臟細胞以及可能的作用機制,將H9c2心臟細胞轉染帶有綠螢光蛋白(EGFP)基因的轉殖載體,再利用螢光顯微鏡來觀察表現綠螢光蛋白基因的心臟細胞,並且利用螢光光譜儀來分析EGCg作用在H9c2心臟細胞所產生的影響。結果發現:逐漸增加綠茶多酚劑量會造成螢光強度呈現遞減的現象;而逐漸增加雙氧水劑量並沒有造成螢光強度產生變化,但這些氧化刺激後的心臟細胞對EGCg產生反應的敏感性卻有增加的情形。此外,加入Triton X-100破壞細胞膜時,EGCg對心臟細胞反應的敏感性也有類似增加的結果。綜合這些實驗結果,顯示:心臟細胞細胞膜受到傷害壓力時會增加對EGCg反應的敏感性,另外EGCg可以經由Triton X-100可溶及非可溶路徑影響心臟細胞。因為這些EGCg作用在氧化傷害的心臟細胞的保護機轉,可能會經由影響細胞膜上的貼附蛋白(beta-catenin、N-cadherin)及間隙蛋白( Cx43),進而改變心臟細胞間的訊息聯繫以及相關活性的表現。因此,利用西方轉滯法以及相關的專一性抗體來分析EGCg可能的作用路徑。實驗結果發現,受雙氧水處理的心臟細胞事先處理EGCg,會影響細胞膜上貼附蛋白(beta-catenin、N-cadherin)及間隙蛋白( connexin 43)蛋白表現量;也影響GSK-3beta蛋白的磷酸化,因而保護氧化傷害心臟細胞間的貼附。另外,EGCg也會影響心臟細胞間的Cx43磷酸化進而增加心臟細胞間的訊息聯繫。這些實驗研究結果,顯示: EGCg可以免於心臟細胞內氧化壓力產生的自由基及胞內鈣離子,進而經由抑制GSK-3beta/beta-catenin以及Cx43磷酸化來調控心臟細胞間的貼附以及訊息聯繫,終而達到保護氧化傷害所造成心臟細胞的死亡。
(-)-Epigalocathine-3-gallate (EGCg) is the major polyphenols in green tea, containing many OH- groups for a strong free radical scavenging capacity. When the heart is damaged by ischemia-reperfusion injury, the cells are accompanied by the generation of intracellular hydrogen peroxide, superoxi anions, and hydroxyl radicals and other reactive oxygen species (ROS). ROS would cause oxidative stress and the consequent damage on the heart. The main goal of the present study was to determine the potential mechanism for cardioprotection of EGCg on hydrogen peroxide (H2O2)-induced oxidative stress in H9c2 rat cardiomyoblasts. The results using the MTT assay showed that H9c2 cells exposing to H2O2 suppressed cell viability, while EGCg pretreatment for 30 min prior to oxidative stress effectively improved cell survival of cardiac cells. EGCg prevented ROS formation and attenuated cytosolic Ca2+ overload in H2O2-treated cells. To identify the putative mechanisms underlying the EGCg signaling pathways, EGFP (enhanced green fluorescence protein) was ectopically expressed in H9c2 cells. EGCg exerted a dose-dependent decrease in the EGFP fluorescence. In contrast, H2O2 did not cause significant spectral changes in EGFP fluorescence, but an increase in the sensitivity for the EGCg induced decrease in EGFP fluorescence. Using Triton X-100 to remove plasma membrane of the cells the similar result was obtained for the increased sensitivity of the EGCg induced response. Apparently, both Triton X-100-soluble and -insoluble fractions involved in transmission of the EGCg signals to regulate EGFP fluorescence in H9c2 cells, and the cell membrane damage caused by oxidative stress could enhance the sensitivity of EGCg. Intercellular junctional complexes in the intercalated discs play an important role in modulation of functional recovery of the cardiac injury. To examine whether EGCg could act to maintain the integrity of the intercalated disc and transmitting cell-cell adhesion signals during oxidative stress, immunoblotting with specific antibody were used to analyze the phosphorylated and non-phosphorylated protein levels of the major ventricular gap junction protein connexin 43 (Cx43) and adhesion molecule beta-catenin、N-cadherin and GSK-3beta in cells. Results obtained showed that EGCg could increase cell-cell adhesion by decreasing GSK-3beta dependent pathway to maintain adherens junction, and increase direct communication between adjacent cells by increasing phosphorylated level of Cx43. In summary, EGCg could protect cardiac cells from oxidative stress by preventing ROS formation and cytosolic Ca2+ overload, and by modulating adherens and gap junction proteins on cell membrane.
URI: http://hdl.handle.net/11455/23681
其他識別: U0005-1008201114162600
Appears in Collections:生命科學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.