Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/23704
標題: 建立臺灣常見觀賞魚-印度女王燈(恆河青鱂魚;Oryzias dancena)成為魚類生理學研究的新平台
Establishing brackish medaka Oryzias dancena, a Taiwanese ornamental fish, as a new experimental animal for studies on fish physiology
作者: 康兆凱
Kang, Chao-Kai
關鍵字: medaka
青鱂魚
gill
mitochondrion-rich cell
ionoregulation
microvilli

富含粒線體細胞
離子調節
微絨毛
出版社: 生命科學系所
引用: Arjona, F.J., Vargas-Chacoff, L., Ruiz-Jarabo, I., Martín del Río, M.P., Mancera, J.M., 2007. Osmoregulatory response of Senegalese sole (Solea senegalensis) to changes in environmental salinity. Comp. Biochem. Physiol. A 148, 413-421. Arpin, M., Blair, L., Coudrier, E., Dudouet, B., Finidori, J., Carcia, A., Huet, C., Pringault, E., Robine, S., Sahuguillo‐Merino, C., et al., 1988. Villin, a specific marker for some epithelia specialized intransport, to study the differentiation of intestinal and kidney cells in vivo and in a human colon adenocarcinoma line, HT29 in culture. Mol. Aspects. Med. 10, 257-272. Avella, M., Masoni, A., Bornancin, M., Mayer-Gostan, N., 1987. Gill morphology and sodium influx in the rainbow trout (Salmo gairdneri) acclimated to artificial freshwater environments. J. Exp. Zool. 241, 159-169. Ayson, F.G., Kaneko, T., Hasegawa, S., Hirano, T., 1994. Development of mitochondrion-rich cells in the yolk-sac membrane of embryos and larvae of tilapia (Oreochromis mossambicus) in freshwater and seawater. J. Exp. Zool. 270, 129-135. Bo, J., Cai, L., Xu, J.H., Wang, K.J., Au, D.W.T., 2011. The marine medaka Oryzias melastigma - A potential marine fish model for innate immune study. Mar. pollut. bull. doi:10.1016/j.marpolbul.2011.05.014 Boller, K., Arpin, M., Pringault, E., Mangeat, P., Reggio, H., 1988. Differential distribution of villin and villin mRNA in mouse intestinal epithelial cells. Differentiation 39, 51-57. Boonanuntanasarn, S., Yoshizaki, G., Takeuchi, Y.,Morita, T., Takeuchi, T., 2002. Gene knock-down in rainbowtrout embryos using antisense morpholino phosphorodiamidate oligonucleotides. Mar. Biotechnol. 4, 256-266. Brauer, P.R., Sanmann, J.N., Petzel, D.H., 2005. Effects of warm acclimation on Na+,K+-ATPase alpha-subunit expression in chloride cells of antarctic fish. Anat. Rec. 285A, 600-609. Bray, D., Heath, J., Moss, D. 1986. The membrane-associated "''cortex" of animal cells: its structure and mechanical properties. J. Cell Sci. Suppl. 4,,71-88. Bretscher, A., Weber, K., 1979. Villin: The major microfilament‐associated protein of the intestinal microvillus. Proc. Natl. Acad. Sci. USA 76, 2321-2325. Bretscher, A., Osborn, M., Wehland, J., Weber, K., 1981. Villin associates with specific microfilamentous structures as seen by immunofluorescence microscopy on tissue sections and cells microinjected with villin. Exp. Cell Res. 135, 213-219. Brown, J.W., McKnight, C.J., 2010. Molecular model of the microvillar cytoskeleton and organization of the brush border. PLoS ONE 5, e9406. Bystriansky, J.S., Richards, J.G., Schulte, P.M., Ballantyne, J.S., 2006. Reciprocal expression of gill Na+/K+-ATPase alpha-subunit isoforms alpha1a and alpha1b during seawater acclimation of three salmonid fishes that vary in their salinity tolerance. J. Exp. Biol. 209, 1848-1858. Carl, M., Loosli, F., Wittbrodt, J., 2002. Six3 inactivation reveals its essential role for the formation and patterning of the vertebrate eye. Development 129, 4057-4063. Chang, I.C., Lee, T.H., Wu, H.C., Hwang, P.P., 2002. Effects of environmental Cl- levels on Cl- uptake and mitochondria-rich cell morphology in gills of the stenohaline goldfish, Carassius auratus. Zool. Stud. 41, 236-243. Chen, X., Li, L., Wong, C.K., Cheng, S.H., 2009. Rapid adaptation of molecular resources from zebrafish and medaka to develop an estuarine/marine model. Comp. Biochem. Physiol. C 149, 647-655. Chen, X., Li, V.W., Yu, R.M., Cheng, S.H., 2008. Choriogenin mRNA as a sensitive molecular biomarker for estrogenic chemicals in developing brackish medaka (Oryzias melastigma). Ecotoxicol. Environ. Saf. 71, 200-208. Chew, S.F., Tng, Y.Y.M., Wee, N.L.J., Wilson, J.M., Ip, Y.K., 2009. Nitrogen metabolism and branchial osmoregulatory acclimation in the juvenile marble goby, Oxyeleotris marmorata, exposed to seawater. Comp. Biochem. Physiol. A 154, 360-369. Cho, Y.S., Lee, S.Y., Kim, Y.K., Kim, D.S., Nam, Y.K., 2011.Functional ability of cytoskeletal b-actin regulator to drive constitutive and ubiquitous expression of a fluorescent reporter throughout the life cycle of transgenic marine medaka Oryzias dancena. Transgenic Res. DOI 10.1007/s11248-011-9501-2. Choi, C.Y., An, K.W., 2008. Cloning and expression of Na+/K+-ATPase and osmotic stress transcription factor 1 mRNA in black porgy, Acanthopagrus schlegeli during osmotic stress. Comp. Biochem. Physiol. B 149, 91-100. Choi, J.H., Lee, K.M., Inokuchi, M., Kaneko, T., 2011. Morphofunctional modifications in gill mitochondria-rich cells of Mozambique tilapia transferred from freshwater to 70% seawater, detected by dual observations of whole-mount immunocytochemistry and scanning electron microscopy. Comp. Biochem. Physiol. A 158, 132-142. Cioni, C., De Merich, D., Cataldi, E., Sataudella, S., 1991. Fine structure of chloride cells in freshwater-and seawater-adapted Oreochromis niloticus (Linnaeus) and Oreochromis mossambicus (Peters). J. Fish. Biol. 39, 197-209. Costa de Beauregard, M. A., Pringault, E., Robine, S., Louvard, D., 1995. Suppression of villin expression by antisense RNA impairs brush border assembly in polarized epithelial intestinal cells. EMBO J 14, 409-421. Cutler, C.P., Cramb, G., 2002. Two isoforms of the Na+/K+/2Cl- cotransporter are expressed in the European eel (Anguilla anguilla). Biochim. Biophys. Acta 1566, 92-103. Cutler, C.P., Cramb, G., 2008. Differential expression of absorptive cationchloride-cotransporters in the intestinal and renal tissues of the European eel (Anguilla anguilla). Comp. Biochem. Physiol. B 149, 63-73. Dang, Z.C., Balm, P.H.M., Flik, G., Bonga, S.E.W., Lock, R.A.C., 2000. Cortisol increases Na+/K+-ATPase density in plasma membranes of gill chloride cells in the freshwater tilapia Oreochromis mossambicus. J. Exp. Biol. 203, 2349-2355. D''Cotta, H., Valotaire, C., Le Gac, F., Prunet, P., 2000. Synthesis of gill Na+-K+-ATPase in Atlantic salmon smolts: differences in α-mRNA and α-protein levels. Am. J. Physiol. 278, R101-110. Evans, D.H. 1984. The roles of gill permeability and transport mechanisms in euryhalinity. In: Hoar WS, Randall DJ, editors. Fish Physiology. vol. 10B. New York: Academic Press. p 239-283. Evans, D.H., 2008. Teleost fish osmoregulation: what have we learned since August Krogh, Homer Smith, and Ancel Keys. Am. J. Physiol. 295, R704-713. Evans, D.H., Piermarini, P.M., Choe, K.P., 2005. The multifunctional fish gill: Dominant site of gas exchange, osmoregulation, acid-base regulation, and excretion of nitrogenous waste. Physiol. Rev. 85, 97-177. Evans, D.H., Piermarini, P.M., Potts, W.T.W., 1999. Ionic transport in the fish gill epithelium. J. Exp. Zool. 283, 641-652. Feng, S.H., Leu, J.H., Yang, C.H., Fang, M.J., Huang, C.J., Hwang, P.P., 2002. Gene expression of Na+-K+-ATPase α1 and α3 subunits in gills of the teleost Oreochromis mossambicus, adapted to different environmental salinities. Mar. Biotech. 4, 379-391. Figiel, A., Keller, J.M., Schilt, J., Dauça, M., 1989. Stage-specific polypeptide and villin expression during thyroid hormone-induced substitution of the amphibian intestinal epithelium. Differentiation 40, 166-175. Figiel, A., Schilt, J., Dudouet, B., Robine, S., Dauça, M., 1987. Stage-specific polypeptides and villin expression during the intestinal epithelium substitution of the metamorphosing amphibian. Differentiation 36, 116-124. Franson, M.A.H., 1985. Standard methods for the examination of water and waste water. 16th ed. American Public Health Association, Washington, DC. Friederich, E., Huet, C., Arpin, M., Louvard, D., 1989. Villin induces microvilli growth and actin redistribution in transfected fibroblasts. Cell 59, 461-475. Friederich, E., Pringault, E., Arpin, M., Louvard, D., 1990. From the structure to the function of villin, an actin-binding protein of the brush border. Bioessays 12, 403-408. Friederich, E., Vancompernolle, K., Louvard, D., Vandekerckhove, J., 1999. Villin function in the organization of the actin cytoskeleton. Correlation of in vivo effects to its biochemical activities in vitro. J. Biol. Chem. 274, 26751-26760. Gamba, G., 2005. Molecular physiology and pathophysiology of electroneutral cation chloride cotransporters. Physiol. Rev. 85, 423-493. Gamba, G., Miyanoshita, A., Lombardi, M., Lytton, J., Lee, W.S., Hediger, M.A., Hebert, S.C., 1994. Molecular cloning, primary structure, and characterization of two members of the mammalian electroneutral sodium-(potassium)-chloride cotransporter family expressed in kidney. J. Biol. Chem. 269, 17713-17722. Gasteiger, E., Hoogland, C., Gattiker, A., Duvaud, S., Wilkins, M.R., Appel, R.D., Bairoch, A., 2005. Protein identification and analysis tools on the ExPASy Server. In: Walker JM, (eds.), The proteomics protocols handbook. Humana Press, Totowa, NJ. Greco, A.M., Fenwick, J.C., Perry, S.F., 1996. The effects of soft-water acclimation on gill structure in the rainbow trout Oncorhynchus mykiss. Cell Tissue Res 285, 75-82. Haas, M., Forbush, B. III., 2000. The Na+-K+-Cl- cotransporter of secretory epithelia. Annu. Rev. Physiol. 62, 515-534. Hampton, C.M., Liu, J., Taylor, D.W., DeRosier, D.J., Taylor, K.A., 2008. The 3D structure of villin as an unusual F-actin crosslinker. Structure 16, 1882-1891. Haruta, K., Yamashita, T., Kawashima, S., 1991. Changes in arginine vasotocin content in the pituitary of the medaka (Oryzias latipes) during osmotic stress. Gen. Comp. Endocrinol. 83, 327-336. Hebert, S.C., Mount, D.B., Gamba, G., 2004. Molecular physiology of cation coupled Cl- cotransport: the SLC12 family. Pflugers Arch. 447, 580-593. Heasman, J., Kofron, M., Wylie, C., 2000. β-Catenin signaling activity dissected in the early Xenopus embryo: a novel antisense approach. Dev. Biol. 222, 124-134. Heintzelman, M.B., Mooseker, M.S.,1990. Assembly of the brush border cytoskeleton: changes in the distribution of microvillar core proteins during enterocyte differentiation in adult chicken intestine. Cell Motil. Cytoskel. 15, 12-22. Heusser, S., Colin, S., Figiel, A., Huet, C., Keller, J.M., Pornet, P., Robine, S., Vandamme, J., Vandekerckhove, J., Dauça, M., 1992. Amphibian intestinal villin: isolation and expression during embryonic and larval development. Cell Science 103, 699-708. Hirai, N., Tagawa, M., Kaneko, T., Seikai, T., Tanaka, M., 1999. Distributional changes in branchial chloride cells during freshwater adaptation in Japanese sea bass Lateolabrax japonicus. Zool. Sci. 16, 43-49. Hiroi, J., McCormick, S.D., 2007. Variation in salinity tolerance, gill Na+/K+-ATPase, Na+/K+/2Cl- cotransporter and mitochondria-rich cell distribution in three salmonids Salvelinus namaycush, Salvelinus fontinalis and Salmo salar. J. Exp. Biol. 210, 1015-1024. Hiroi, J., McCormick, S.D., Ohtani-Kaneko, R., Kaneko, T., 2005. Functional classification of mitochondrion-rich cells in euryhaline Mozambique tilapia (Oreochromis mossambicus) embryos, by means of triple immunofluorescence staining for Na+/K+-ATPase, Na+/K+/2Cl- cotransporter and CFTR anion channel. J. Exp. Biol. 208, 2023-2036. Hiroi, J., Yasumasu, S., McCormick, S.D., Hwang, P.P., Kaneko, T., 2008. Evidence for an apical Na-Cl cotransporter involved in ion uptake in a teleost fish. J. Exp. Biol. 211, 2584-2599. Hiroi, J., Kaneko, T., Tanaka, M., 1999. In vivo sequential changes in chloride cell morphology in the yolk-sac membrane of Mozambique tilapia (Oreochromis mossambicus) embryos and larvae during seawater adaptation. J. Exp. Biol. 202, 3485-3495. Hirose, S., Kaneko, T., Naito, N., Takei, Y., 2003. Molecular biology of major components of chloride cells. Comp. Biochem. Physiol. B 136, 593-620. Ho, N.Y., Li, V.W.T., Poona, W.L., Cheng, S.H., 2008. Cloning and developmental expression of kinesin superfamily7 (kif7) in the brackish medaka (Oryzias melastigma), a close relative of the Japanese medaka (Oryzias latipes). Mar. Pollut. Bull. 57, 425-432. Hofer, D., Drenckhahn, D., 1992. Identification of brush cells in the alimentary and respiratory system by antibodies to villin and fimbrin. Histochemistry 98, 237-242. Hoffmann, E.K., Dunham, P.B., 1995. Membrane mechanisms and intracellular signalling in cell volume regulation. Int. Rev. Cytol. 161, 173-262. Hoffmann, E.K., Schettino, T., Marshall, W.S., 2007. The role of volume-sensitive ion transport systems in regulation of epithelial transport. Comp. Biochem. Physiol. A 148, 29-43. Hoffmann, E.K., Sjoholm, C., Simonsen, L.O., 1983. Na+,Cl- cotransport in Ehrlich ascites tumor cells activated during volume regulation (regulatory volume increase). J. Membr. Biol. 76, 269-280. Hossler, F.E., Musil, G., Karnaky, K.J., Epstein, F.H., 1985. Surface ultrastructure of the gill arch of the killifish, Fundulus heteroclitus, from seawater and fresh water, with special reference to the morphology of apical crypts of chloride cells. J. Morphol. 185, 377-386. Hossler, F.E., Ruby, J.R., Mcilwain, T.D., 1979. Gill Arch of the mullet, Mugil cephalus modification in surface ultrastructure and Na,K-ATPase content during adaptation to various salinities. J. Exp. Zool. 208, 399-405. Horng, J.L., Lin, L.Y., Huang, C.J., Katoh, F., Kaneko, T., Hwang, P.P., 2007. Knockdown of V-ATPase subunit A (atp6v1a) impairs acid secretion and ion balance in zebrafish (Danio rerio). Am. J. Physiol. 292, R2068-2076. Horng, J.L., Lin, L.Y., Hwang, P.P., 2009. Functional regulation of H+-ATPase-rich cells in zebrafish embryos acclimated to an acidic environment. Am. J. Physiol. 296, C682-692. Huang, Q., Fang, C., Wu, X., Fan, J., Dong, S., 2011. Perfluorooctane sulfonate impairs the cardiac development of a marine medaka (Oryzias melastigma) Aquat. Toxicol. 105, 71-77. Hwang, P.P., Fang, M.J., Tsai, J.C., Huang, C.J., Chen, S.T., 1998. Expression of mRNA and protein of Na+-K+-ATPase alpha subunit in gills of tilapia (Oreochromis mossambicus). Fish Physiol. Biochem. 18, 363-373. Hwang, P.P., Lee, T.H., 2007. New insights into fish ion regulation and mitochondrion-rich cells. Comp. Biochem. Physiol. A 148, 479-497. Hwang, P.P., Lee, T.H., Lin, L.Y., 2011. Ion Regulation in Fish Gills: Recent Progress in the Cellular and Molecular Mechanisms. Am. J. Physiol. doi: 10.1152/ajpregu.00047.2011 Hwang, P.P., Sun, C.M., Wu, S.M., 1989. Changes of plasma osmolarity, chloride concentration and gill Na+, K+-ATPase activity in tilapia Oreochromis mossambicus during seawater acclimation. Mar. Biol. 100, 295-299. Hyndman, K.A., Evans, D.H., 2009. Short-term low-salinity tolerance by the longhorn sculpin, Myoxocephalus octodecimspinosus. J. Exp. Zool. 311, 45-56. Igarashi, P., Vanden Heuvel, G.B., Payne, J.A., Forbush III, B. 1995. Cloning, embryonic expression, and alternative splicing of a marine kidney-specific Na+-K+-Cl- cotransporter. Am. J. Physiol. 269, F405-418. Imsland, A.K., Gunnarsson, S., Foss, A., Stefansson, S.O., 2003. Gill Na+, K+-ATPase activity, plasma chloride and osmolality in juvenile turbot (Scophthalmus maximus) reared at different temperatures and salinities. Aquaculture. 218, 671-683. Inokuchi, M., Hiroi, J., Watanabe, S., Hwang, P.P., Kaneko, T., 2009. Morphological and functional classification of ion-absorbing mitochondria-rich cells in the gills of Mozambique tilapia. J. Exp. Biol. 212, 1003-1010. Inoue, K., Takei, Y., 2002. Diverse adaptability in Oryzias species to high environmental salinity. Zool. Sci. 19, 727-734. Inoue, K., Takei, Y., 2003. Asian medaka fishes offer new models for studying mechanisms of seawater adaptation. Comp. Biochem. Physiol. B 136, 635-645. Jensen, M.K., Madsen, S.S., Kristiansen, K., 1998. Osmoregulation and salinity effects on the expression and activity of Na+,K+-ATPase in the gills of European sea bass, Dicentrarchus labrax (L.). J. Exp. Zool. 282, 290-300. Kamioka, H., Sugawara, Y., Honjo, T., Yamashiro, T., Takano‐Yamamoto, T., 2004. Terminal differentiation of osteoblasts to osteocytes is accompanied by dramatic changes in the distribution of actin‐binding proteins. J. Bone Miner. Res. 19, 471-478. Kaneko, T., Shiraishi, K., 2001. Evidence for chloride secretion from chloride cells in the yolk-sac membrane of Mozambique tilapia larvae adapted to seawater. Fish Sci 67, 541-543. Kaneko, T., Watanabe, S., Lee, K.M., 2008. Functional morphology of mitochondrion-rich cells in euryhaline and stenohaline teleosts. Aqua. BioSci. Monogr. 1, 1-62. Kasahara, M., Naruse, K., Sasaki, S., Nakatani, Y., Qu, W., Ahsan, B., Yamada, T., Nagayasu, Y., Doi, K., Kasai, Y. et al., 2007. The medaka draft genome and insights into vertebrate genome evolution. Nature 447, 714-719. Kato, A., Doi, H., Nakada, T., Sakai, H., Hirose, S., 2005. Takifugu obscurus is a euryhaline fugu species very close to Takifugu rubripes and suitable for studying osmoregulation. BMC. Physiol. 5, 18. Katoh, F., Cozzi, R.R.F., Marshall, W.S., Goss, G.G., 2008. Distinct Na+/K+/2Cl- cotransporter localization in kidneys and gills of two euryhaline species, rainbow trout and killifish. Cell Tissue Res. 334, 265-281. Katoh, F., Kaneko, T., 2003. Short-term transformation and long-term replacement of branchial chloride cells in killifish transferred from seawater to freshwater, revealed by morphofunctional observations and a newly established ''time-differential double fluorescent staining technique. J. Exp. Biol. 206, 4113-4123. Katoh, F., Shimizu, A., Uchida, K., Kaneko, T., 2002. Shift of chloride cell distribution during early life stages in seawater adapted killifish, Fundulus heteroclitus. Zool. Sci. 17, 11-18. Kelly, S.P., Chow, I.N.K., Woo, N.Y.S., 1999. Haloplasticity of black seabream (Mylio macrocephalus): hypersaline to freshwater acclimation. J. Exp. Zool. 283, 226-241. Kelly, S.P., Woo, N.Y.S., 1999. Cellular and biochemical characterization of hyposmotic adaptation in a marine teleost, Sparus sarba. Zool. Sci. 16, 505-514. King, J.A.C., Hossler, F.E., 1991. The gill arch of the striped bass (Morone saxatilis). Alterations in the ultrastructure of chloride cell apical crypts and chloride efflux following exposure to seawater. J. Morphol. 209, 165-176. Kinoshita, M., Murata, K., Naruse, K., Tanaka, M., 2009. Medaka: Biology, Management, and Experimental Protocols. Wiley-Blackwell, Ames Kim, M.A., Kim, D.S., Sohn, Y.C., 2011. Characterization of two functional glucocorticoid receptors in the marine medaka Oryzias dancena. Gen. Comp. Endocrinol. 171, 341-349. Kimmel, C.B., Ballard, W.W., Kimmel, S.R., Ullmann, B., Schilling, T., 1995. Stages of embryonic development of the zebrafish. Dev. Dyn. 203, 253-310. Klahre, U., Friederich, E., Kost, B., Louvard, D., Chua, N.H., 2000. Villin-like actin-binding proteins are expressed ubiquitously in Arabidopsis. Plant Physiol. 122, 35-47. Kodak Digital Science 1D., 1995. Kodak 1D image analysis software.Windows Version 2.0.3. Eastman Kodak Company, Rochester, NY. Koga, A., Shimada, A., Shima, A., Sakaizumi, M., Tachida, H., Hori, H. 2000. Evidence for recent invasion of the medaka fish genome by the Tol2 transposable element. Genetics 155, 273-281. Koga, A., Hori, H., 2000. Detection of de novo insertion of the medaka fish transposable element Tol2. Genetics 156,1243-1247. Kong, R.Y., Giesy, J.P., Wu, R.S., Chen, E.X., Chiang, M.W., Lim, P.L., Yuen, B.B., Yip, B.W., Mok, H.O., Au, D.W., 2008. Development of a marine fish model for studying in vivo molecular responses in ecotoxicology. Aquat. Toxicol. 86, 131-141. Kregenow, F.M., 1981. Osmoregulatory salt transporting mechanisms: control of cell volume in anisotonic media. Annu. Rev. Physiol. 43, 493-505. Khurana, S., 2006. Structure and function of villin in: Aspects of the cytoskeleton. In: Khurana, S., editor. Advances in molecular and cell biology. Vol. 37. Elsevier; p. 89-115. Khurana, S., George, S.P., 2008. Regulation of cell structure and function by actin-binding proteins: Villin's perspective. FEBS Lett. 582, 2128-2139. Laurent, P., Perry, S.F., 1990. Effects of cortisol on gill chloride cell morphology and ionic uptake in the freshwater trout, Salmo gairdneri. Cell Tissue Res. 259, 429-442. Lee, T.H., Hwang, P.P., Lin, H.C., Huang, F.L., 1996. Mitochondria-rich cells in the branchial epithelium of the teleost, Oreochromis mossambicus, acclimated to various hypotonic environments. Fish Physiol. Biochem. 15, 513-523. Lee, T.H., Hwang, P.P., Shieh, Y.E., Lin, C.H., 2000. The relationship between ''deep-hole'' mitochondria-rich cells and salinity adaptation in the euryhaline teleost, Oreochromis mossambicus. Fish Physiol. Biochem. 23, 133-140. Lee, T.H., Feng, S.H., Lin, C.H., Hwang, Y.H., Huang, C.L., Hwang, P.P., 2003. Ambient salinity modulates the expression of sodium pumps in branchial mitochondria-rich cells of Mozambique tilapia, Oreochromis mossambicus. Zool. Sci. 20, 29-36. Lee, Y.C., Yang, J.J., Cruze, S., Horng, J.L., Hwang, P.P., 2011. Anion exchanger 1b, but not sodium-bicarbonate cotransporter 1b, plays a role in transport functions of zebrafish H+-ATPase-rich cells. Am. J. Physiol. 300, C295-307. Lin, C.H., Lee, T.H., 2005. Sodium or potassium ions activate different kinetics of gill Na, K-ATPase in three seawater- and freshwater-acclimated euryhaline teleosts. J. Exp. Zool. 303A, 57-65. Lin, C.H., Huang, C.L., Yang, C.H., Lee, T.H., Hwang, P.P., 2004a. Time-course changes in the expression of Na+, K+-ATPase and the morphometry of mitochondrion-rich cells in gills of euryhaline tilapia (Oreochromis mossambicus) during freshwater acclimation. J. Exp. Zool. 301A, 85-96. Lin, C.H., Tsai, R.S., Lee, T.H., 2004b. Expression and distribution of Na+, K+-ATPase in gills and kidneys of the green spotted pufferfish, Tetraodon nigroviridis, in response to salinity challenge. Comp. Biochem. Physiol. A 138, 287-295. Lin, L.Y., Horng, J.L., Kunkel, J.G., Hwang, P.P., 2006a. Proton pump-rich cell secretes acid in skin of zebrafish larvae. Am. J. Physiol. 290, C371-378. Lin, S.T., 2010. The chloride secretory mechanisms of the brackish medaka, Oryzias dancena: studies on the mitochondrion-rich cells of the opercular membrane and molecular expression of branchial chloride channel (cystic fibrosis transmembrane conductance regulator). Master thesis. Lin, Y.M., Chen, C.N., Yoshinaga, T., Tsai, S.C., Shen, I.D., Lee, T.H., 2006b. Short-term effects of hyposmotic shock on Na+/K+-ATPase expression in gills of the euryhaline milkfish, Chanos chanos. Comp. Biochem. Physiol. A 143, 406-415. Lin, Y.M., Chen, C.N., Lee, T.H., 2003. The expression of gill Na+, K+-ATPase in milkfish, Chanos chanos, acclimated to seawater, brackish water and fresh water. Comp. Biochem. Physiol. A 135, 489-497. Lorin-Nebel, C., Boulot, V., Bodinier, C., Charmantier, G., 2006. The Na+/K+/2Cl- cotransporter in the sea bass Dicentrarchus labrax ontogeny: involvement in osmoregulation. J. Exp. Biol. 209, 4908-4922. Lytle, C., Xu, J. C., Biemesderfer, D., Forbush III, B., 1995. Distribution and diversity of Na-K-Cl cotransport proteins: a study with monoclonal antibodies. Am. J. Physiol. 269, C1496-1505. Madsen, S.S., Jensen, L.N., Tipsmark, C.K., Kiilerich, P., Borski, R.J., 2007. Differential regulation of cystic fibrosis transmembrane conductance regulator and Na+,K+-ATPase in gills of striped bass, Morone saxatilis: effect of salinity and hormones. J Endocrinol. 192, 249-260. Maina, J.N., 1990. A study of the morphology of tile gills of an extreme alkalinity and hyperosmotic adapted teleost Oreochromis alcalicus grahami (Boulenger) with particular emphasis on the ultrastructure of the chloride cells and their modifications with water dilution. A SEM and TEM study. Anat. Embryol. 181, 83-98. Marshall, W.S., 2002. Na+, Cl-, Ca2+ and Zn2+ transport by fish gills: retrospective review and prospective synthesis. J. Exp. Zool. 293, 264-283. Marshall, W.S., Bryson, S.E., 1998. Transport mechanisms of seawater teleost chloride cells: an inclusive model of a multifunctional cell. Comp. Biochem. Physiol. A 119, 97-106. Marsigliante, S, Muscella, A, Vilella, S, Storelli, C., 2000. Dexamethasone modulates the activity of the eel branchial Na+/K+ ATPase in both chloride and pavement cells. Life Sci. 66, 1663-1673. Matova, N., Mahajan-Miklos, S., Mooseker, M.S., Cooley, L., 1999. Drosophila quail, a villin-related protein, bundles actin filaments in apoptotic nurse cells. Development 126, 5645-5657. Matson, C.W., Clark, B.W., Jenny, M.J., Fleming, C.R., Hahn, M.E., Di Giulio. R.T., 2008. Development of the morpholino gene knockdown technique in Fundulus heteroclitus: A tool for studying molecular mechanisms in an established environmental model. Aquatic Toxicology 87, 289-295. McCormick, S.D., 1993. Methods for nonlethal gill biopsy and measurement of Na+,K+-ATPase activity. Can. J. Fish Aquat. Sci. 50, 656-658. McCormick, S.D., Sundell, K., Bjornsson, B.T., Brown, C.L., Hiroi, J., 2003. Influence of salinity on the localization of Na+/K+-ATPase, Na+/K+/2Cl- cotransporter (NKCC) and CFTR anion channel in chloride cells of the Hawaiian goby (Stenogobius hawaiiensis). J. Exp. Biol. 206, 4575-4583. Merwe, J.P.V.D., Chan, A.K.Y., Lei, E.N.Y., Yau, M.S., Lam, M.H.W., Wu, R.S.S., 2011.Bioaccumulation and maternal transfer of PBDE 47 in the marine medaka (Oryzias melastigma) following dietary exposure. Aquat. Toxicol. 103, 199-204. Nasevicius, A., Ekker, S.C., 2000. Effective targeted gene ‘knockdown' in zebrafish. Nat. Genet. 26, 216-220. Nilsen, T.O., Ebbesson, L.O., Madsen, S.S., McCormick, S.D., Andersson, E., Bjornsson, B.T., Prunet, P., Stefansson, S.O., 2007. Differential expression of gill Na+, K+-ATPase α- and β-subunits, Na+, K+, 2Cl- cotransporter and CFTR anion channel in juvenile anadromous and landlocked Atlantic salmon Salmo salar. J. Exp. Biol. 210, 2885-2896. Nusslein-Volhard, C., Dahm, R., 2002. Zebrafish, A Practical Approach, New York, NY, Oxford University Press. Payne, J.A., Forbush III, B., 1994. Alternatively spliced isoforms of the putative renal Na-K-Cl cotransporter are differentially distributed within the rabbit kidney. Proc. Natl. Acad. Sci. USA 91, 4544-4548. Payne, J.A., Forbush III, B., 1995. Molecular characterization of the epithelial Na-K-Cl cotransporter isoforms. Curr. Opin. Cell. Biol. 7, 493-503. Pelis, R.M., Zydlewski, J., McCormick, S.D., 2001. Gill Na+-K+-2Cl- cotransporter abundance and location in Atlantic salmon: effects of seawater and smolting. Am. J. Physiol. 280, R1844-1852. Perry, S.F., 1997. The chloride cell: structure and function in the gills of freshwater fishes. Annu. Rev. Physiol. 59, 325-347. Perry, S.F., Goss, G.G., Laurent, P., 1992. The interrelationships between gill chloride cell morphology and ionic uptake in four freshwater teleosts. Can. J. Zool. 70, 1775-1786. Peterson, G.L., 1978. A simplified method for analysis of inorganic phosphate in the presence of interfering substances. Anal. Biochem. 84, 164-172. Phillips, M.J., Azuma, T., Meredith, S.L., Squire, J.A., Ackerley, C.A., Pluthero, F.G., Roberts, E.A., Superina, R.A., Levy, G.A., Marsden, P.A., 2003. Abnormalities in villin gene expression and canalicular microvillus structure in progressive cholestatic liver disease of childhood. Lancet 362, 1112-1119. Piechotta, K., Lu, J., Delpire, E., 2002. Cation chloride cotransporters interact with the stress-related kinases Ste20-related proline-alanine-rich kinase (SPAK) and oxidative stress response 1 (OSR1). J. Biol. Chem. 277, 50812-50819. Pisam, M., Le moal, C., Auperm, B., Prunet, P.,Rambourg, A., 1995. Apical structures of "mitochondria-rich''" α and β cells in euryhaline fish gill: their behaviour in various living conditions. Anat. Rec. 241, 13-24. Pisam, M., Boeuf, G., Prunet, P., Rambourg, A., 1990. Ultrastructural features of mitochondria-rich cells in stenohaline freshwater and seawater fishes. Am. J. Anat. 187, 21-31. Porazinski, S. R., Wang, H., Furutani-Seiki, M., 2010. Microinjection of Medaka Embryos for use as a Model Genetic Organism. J. Vis. Exp. 46 doi: 10.3791/1937. Prodocimo, V., Freire, C.A., 2006. The Na+, K+, 2Cl- cotransporter of estuarine pufferfishes (Sphoeroides testudineus and S. greeleyi) in hypo- and hyper-regulation of plasma osmolality. Comp. Biochem. Physiol. C 143, 347-355. Revenu, C., Athman, R., Robine, S., Louvard, D., 2004. The co-workers of actin filaments: from cell structures to signals. Nat. Rev. Mol. Cell. Biol. 5, 635-646. Richards, J.G., Semple, J.W., Bystriansky, J.S., Schulte, P.M., 2003. Na+/K+-ATPase α-isoform switching in gills of rainbow trout (Oncorhynchus mykiss) during salinity transfer. J. Exp. Biol. 206, 4475-4486. Roberts, T.R., 1998. Systematic observations on tropical Asian medakas or ricefishes of the genus Oryzias with descriptions of four new species. Ichthyol. Res. 45, 213-224. Robine, S., Huet, C., Moll, R., Sahuquillo‐Merino, C., Coudrier, E., Zweibaum, A., Louvard, D., 1985. Can villin be used to identify malignant and undifferentiated normal digestive epithelial cells? Proc. Natl. Acad. Sci. USA 82, 8488-8492. Rozen, S., Skaletsky, H.J., 2000. Primer3 on theWWWfor general users and for biologist programmers. In: Krawetz, S., Misener, S. (Eds.), Bioinformatics Methods and Protocols: Methods in Molecular Biology. Humana Press, Totowa, NJ, pp. 365-386. Russell, J.M., 2000. Sodium-potassium-chloride cotransport. Physiol. Rev. 80, 211-276. Sakamoto, T., Kozaka, T., Takahashi, A., Kawauchi, H., Ando, M., 2001a. Medaka (Oryzias latipes) as a model for hypoosmoregulation of euryhaline fishes. Aquaculture 193, 347-354. Sakamoto, T., Uchida, K., Yokota, S., 2001b. Regulation of the ion-transporting mitochondrial-rich cell during adaptation of teleost to different salinities. Zool. Sci. 18, 1163-1174. Sardella, B.A., Kültz, D., 2009. Osmo- and ionoregulatory responses of green sturgeon (Acipenser medirostris) to salinity acclimation. J. Comp. Physiol., B 179, 383-390. Scheiner-Bobis, G., 2002. The sodium pump - its molecular properties and mechanics of ion transport. Eur. J. Biochem. 269, 2424-2433. Scott, G.R., Baker, D.M.W., Schulte, P.M., Wood, C.M., 2008. Physiological and molecular mechanisms of osmoregulatory plasticity in killifish after seawater transfer. J. Exp. Biol. 211, 2450-2459. Scott, G.R., Keir, K.R., Schulte, P.M., 2005. Effects of spironolactone and RU486 on gene expression and cell proliferation after freshwater transfer in the euryhaline killifish. J. Comp. Physiol. B 175, 499-510. Scott, G.R., Richards, J.G., Forbush, B., Isenring, P., Schulte, P.M., 2004a. Changes in gene expression in gills of the euryhaline killifish Fundulus heteroclitus after abrupt salinity transfer. Am. J. Physiol. 287, C300-309. Scott, G.R., Rogers, J.T., Richards, J.G., Wood, M.C., Schulte, P.M., 2004b. Intraspecific divergence of ionoregulatory physiology in the euryhaline teleost Fundulus heteroclitus: possible mechanisms of freshwater adaptation. J. Exp. Biol. 207, 3399-3410. Seidelin, M., Madsen, S.S., Blenstrup, H., Tipsmark, C.K., 2000. Time-course changes in the expression of Na+,K+-ATPase in gills and pyloric caeca of brown trout (Salmo trutta) during acclimation to seawater. Physiol. Biochem. Zool. 73, 446-453. Sharma, M., Pampinella, F., Nemes, C., Benharouga, M., So, J., Du, K., Bache, K.G., Papsin, B., Zerangue, N., Stenmark, H., Lukacs, G.L., 2004. Misfolding diverts CFTR from recycling to degradation: quality control at early endosomes. J. Cell. Biol. 164, 923-933. Shen, M., Xu, J., Tsang, T.Y., Au, D.W.T., 2010. Toxicity comparison between Chattonella marina and Karenia brevis using marine medaka (Oryzias melastigma): Evidence against the suspected ichthyotoxins of Chattonella marina. Chemosphere. 80, 585-591. Shibayama, T., Carboni, J.M., Mooseker, M.S., 1987. Assembly of the intestinal brush border: appearance and redistribution of microvillar core proteins in developing chick enterocytes. J. Cell. Biol. 105,335-344. Shikano, T., Fujio, Y., 1998a. Immunolocalization of Na+, K+-ATPase and morphological changes in two types of chloride cells in the gill epithelium during seawater and freshwater adaptation in a euryhaline teleost, Poecilia reticulata. J. Exp. Zool. 281, 80-89. Shikano, T., Fujio, Y., 1998b. Immunolocalization of Na+/K+-ATPase in branchial epithelium of chum salmon fry during seawater and freshwater acclimation. J. Exp. Biol. 201, 3031-3040. Shiraishi, K, Kaneko, T, Hasegawa, S, Hirano, T., 1997. Development of multicellular complexes of chloride cells in the yolk-sac membrane of tilapia (Oreochromis mossambicus) embryos and larvae in seawater. Cell Tissue Res. 288, 583-590. Singer, T.D., Clements, K.M., Semple, J.W., Schulte, P.M., Bystriansky, J.S., Finstad, B., Fleming, I.A., McKinley, R.S., 2002. Seawater tolerance and gene expression in two strains of Atlantic salmon smolts. Can. J. Fish Aquat. Sci. 59, 125-135. So, L.K., Cheung, S.K., Ma, H.L., Chen, X
摘要: 印度女王燈又名恆河青鱂魚(Oryzias dancena),與具有基因資料庫的日本青鱂魚(O. latipes)為近源種,在台灣為常見的小型觀賞魚種。此魚種具有可參考的基因資料庫、廣鹽性、易於飼育繁殖、來源穩定、市售價格便宜等特點;由於上述特性,本論文選用此種青鱂魚作為實驗物種,應用於魚類生理學的相關研究,獲得許多實質進展,也奠定以此魚種作基因轉殖技術之基礎。 本論文主要探討恆河青鱂魚在適應環境鹽度變化時,鰓表皮富含粒線體(mitochondrion-rich, MR)細胞調適的機制。首先比較馴養在不同鹽度環境下,恆河青鱂魚與日本青鱂魚鰓上的Na+, K+-ATPase (NKA)從分生至細胞層面的表現差異:結果顯示此二種青鱂魚都符合鰓的最低NKA活性表現在環境鹽度最相似於其原棲地鹽度時的假說。其次探討恆河青鱂魚是否具有海水魚鰓表皮細胞排氯模式中的離子運輸蛋白-Na+, K+, 2Cl- cotransporter 1 (NKCC1)之表現。本研究利用原位雜交技術證實MR細胞主要表現的基因為Odnkcc1a,並發現鰓上此基因與蛋白質皆具有鹽度依賴性的表現;藉由將青鱂魚從海水轉移到淡水的轉換過程中,發現鰓上NKCC1a蛋白質表現量的維持與此種魚保有海水耐受性的能力有關。第三部分則專注探討在環境鹽度轉換時,MR細胞從海水型態轉變成淡水型態的過程。此過程依時間快慢可以區分二階段,第一階段(早期,轉移至淡水後一天內)進行細胞型態的改變、離子運輸蛋白基因表現量的減弱、與頂膜Cystic fibrosis transmembrane regulator (CFTR)氯離子通道蛋白的消失; 第二階段(後期,轉移至淡水二天之後)可以發現原本存在的基底膜上有NKCC1a的MR細胞數量會隨時間而減少,並新生不具海水型細胞調節特性的MR細胞。 根據細胞型態的研究成果,因此本論文將探討細胞骨架調節蛋白-villin-like (VILL)蛋白在恆河青鱂魚的淡水型MR細胞開口微絨毛形成機制中所扮演的角色。本研究首次從硬骨魚類鰓上選殖出VILL基因的全長,也證實面臨低滲透壓環境會刺激恆河青鱂魚提高鰓上VILL基因與蛋白質的表現量,並利用針對此魚種VILL序列的專一性抗體進行免疫共沉澱,證實魚類VILL與細胞骨架actin有交互作用。更進一步,本研究以鰓蓋膜為材料,使用免疫螢光染色搭配粒線體螢光染劑(Rhodamine 123)與掃描式電子顯微鏡多重觀察的技術,證實VILL表現在淡水型MR細胞上具有微絨毛的頂膜區域。最後,本研究建立恆河青鱂魚的顯微注射系統,設計專一性morpholino oligonucleotides進行gene knockdown,抑制VILL在發育過程中的表現,由此觀察其對淡水青鱂魚胚胎體表的MR細胞的影響,證實VILL對MR細胞的頂膜結構變化具有調節功能,也首次釐清在低等脊椎動物中VILL調節細胞骨架重組之型態功能性機制。 綜上所述,本論文由傳統魚類生理學的研究著眼,將臺灣常見的觀賞魚-恆河青鱂魚建立成科學實驗的動物平台,並結合多重實驗技術的應用,提供硬骨魚類離子調節的新發現。
Abstract Brackish medaka (Oryzias dancena) is a famous ornamental fish in the local aquaria. This medaka species is close to Japanese medaka (O. latipes) with genomic database. Individuals which the study uses are obtained from the local aquaculture farms in south Taiwan. Since the brackish medaka was characterized by it's euryhalinity, easy and economic to rear, stable resources, and available of medaka genomic database (Japanese medaka), the goal of the present study was to develop this fish to be a new experimental species for physiological studies. This thesis attempted to explore the osmoregulatory mechanism and morphology of mitochondrion-rich (MR) cells in gills of brackish medaka upon various environmental salinities. From genetic to cellular expressions of gill Na+, K+-ATPase (NKA) were compared between Japanese medaka and brackish medaka acclimated to fresh water (FW), brackish water (BW), and seawater (SW) to illustrate the conformance to the hypothesis that the lowest NKA activity exhibited in the gills of euryhaline teleosts upon the environments with salinity similar to their nature habitats. On the other hand, expressions of gill Na+, K+, 2Cl- cotransporter 1 (NKCC1), a member of Cl- secretory mechanism, were evaluated in the in the brackish medaka. We found that the Odnkcc1a gene was dominantly found in gill MR cells using whole-mount in situ hybridization. The gene and protein expressions of NKCC1a were both salinity-dependent in gills of brackish medaka. Furthermore, transfer of brackish medaka from SW to FW revealed that protein abundance of NKCC1a in gills was retained until 7 days, which is a likely mechanism for maintaining hyposmoregulatory endurance of this fish. In addition, this study observed time-course remodeling of the cell remodeling and the altered expressions of typical ion transporters in the branchial MR cells of SW-acclimated brackish medaka when exposed to FW. The dynamic elimination of Cl- secretory capacity of branchial MR cells exhibited two phases. In the 1st day post-transfer, the first phase showed rapid changes: the hole-type apical surface of MR cells started to replace the flat-type cells, the apical immunostaining signals of cystic fibrosis transmembrane regulator (CFTR) disappeared, and the gene abundances of Odnkcc1a and Odcftr both decreased. From the second phase (the 2nd day after transfer), the basolateral immunostaining signals of NKCC1a protein were vanishing. At this period, the observed proliferated MR cells no more exhibited the Cl- secretory capacity. The microvilli were commonly found in gill ionocytes of the fresh water- (FW-) adapted fish rather than in those of the seawater- (SW-) adapted fish. Using the brackish medaka, this study characterized villin-like (VILL) protein and illustrated the correlation between apical microvilli of the ionocytes and fish VILL expression. The highest mRNA and protein levels of VILL were found in gills of FW-acclimated medaka compared to the SW and BW fish. Imufluorescence staining combined with vital staining (Rhodamine 123) and scanning electron microscopy revealed that the distribution of VILL protein was in the cell cortex of FW-type MR cells with microvilli. Finally, the gene knockdown technology of morpholino oligonucleotides (MO) was established in the brackish medaka embryo. The VILL-MO results indicated that the VILL protein was involved in the formation of microvilli in the apical surface of FW-type MR cells. To our knowledge, this is the first study to illustrate the morphological function of fish VILL protein. Taken together, different approaches were used in this study to address the mechanisms of fish osmoregulation and develop the brackish medaka to be a new experimental animal. The integrative study will provide new insights in the fish ionoregulatory researches.
URI: http://hdl.handle.net/11455/23704
其他識別: U0005-1608201101074700
Appears in Collections:生命科學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.