Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/23740
標題: 影響人類抗酶與鳥胺酸脫羧酶結合的重要因子
Determination the essential binding residues on human antizyme toward ornithine decarboxylase
作者: 王喻萱
Wang, Yu-Hsuan
關鍵字: antizyme
抗酶鳥胺酸脫羧酶多胺
ornithine decarboxylase
polyamine
出版社: 生命科學系所
引用: 謝如怡,2010,人類蘋果酸酶及抗酶結構與功能關係之探討。 Albeck, S., Dym, O., Unger, T., Snapir, Z., Bercovich, Z., and Kahana, C. (2008). Crystallographic and biochemical studies revealing the structural basis for antizyme inhibitor function. Protein Sci 17, 793-802. Almrud, J.J., Oliveira, M.A., Kern, A.D., Grishin, N.V., Phillips, M.A., and Hackert, M.L. (2000). Crystal structure of human ornithine decarboxylase at 2.1 A resolution: structural insights to antizyme binding. J Mol Biol 295, 7-16. Auvinen, M., Paasinen, A., Andersson, L.C., and Holtta, E. (1992). Ornithine decarboxylase activity is critical for cell transformation. Nature 360, 355-358. Balbo, P.B., Patel, C.N., Sell, K.G., Adcock, R.S., Neelakantan, S., Crooks, P.A., and Oliveira, M.A. (2003). Spectrophotometric and steady-state kinetic analysis of the biosynthetic arginine decarboxylase of Yersinia pestis utilizing arginine analogues as inhibitors and alternative substrates. Biochemistry 42, 15189-15196. Bercovich, Z., and Kahana, C. (2004). Degradation of antizyme inhibitor, an ornithine decarboxylase homologous protein, is ubiquitin-dependent and is inhibited by antizyme. J Biol Chem 279, 54097-54102. Bradford, M.M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72, 248-254. Brown, P.H., Balbo, A., and Schuck, P. (2008). Characterizing protein-protein interactions by sedimentation velocity analytical ultracentrifugation. Curr Protoc Immunol Chapter 18, Unit 18 15. Chattopadhyay, M.K., Fernandez, C., Sharma, D., McPhie, P., and Masison, D.C. (2011). Yeast ornithine decarboxylase and antizyme form a 1:1 complex in vitro: purification and characterization of the inhibitory complex. Biochem Biophys Res Commun 406, 177-182. Chen, H., MacDonald, A., and Coffino, P. (2002). Structural elements of antizymes 1 and 2 are required for proteasomal degradation of ornithine decarboxylase. J Biol Chem 277, 45957-45961. Childs, A.C., Mehta, D.J., and Gerner, E.W. (2003). Polyamine-dependent gene expression. Cell Mol Life Sci 60, 1394-1406. Coffino, P. (2001a). Antizyme, a mediator of ubiquitin-independent proteasomal degradation. Biochimie 83, 319-323. Coffino, P. (2001b). Regulation of cellular polyamines by antizyme. Nat Rev Mol Cell Biol 2, 188-194. Cohavi, O., Tobi, D., and Schreiber, G. (2009). Docking of antizyme to ornithine decarboxylase and antizyme inhibitor using experimental mutant and double-mutant cycle data. J Mol Biol 390, 503-515. Daigle, N.D., Carpentier, G.A., Frenette-Cotton, R., Simard, M.G., Lefoll, M.H., Noel, M., Caron, L., Noel, J., and Isenring, P. (2009). Molecular characterization of a human cation-Cl- cotransporter (SLC12A8A, CCC9A) that promotes polyamine and amino acid transport. J Cell Physiol 220, 680-689. Dulloo, I., Gopalan, G., Melino, G., and Sabapathy, K. (2010). The antiapoptotic DeltaNp73 is degraded in a c-Jun-dependent manner upon genotoxic stress through the antizyme-mediated pathway. Proc Natl Acad Sci U S A 107, 4902-4907. Feith, D.J., Origanti, S., Shoop, P.L., Sass-Kuhn, S., and Shantz, L.M. (2006). Tumor suppressor activity of ODC antizyme in MEK-driven skin tumorigenesis. Carcinogenesis 27, 1090-1098. Fong, L.Y., Feith, D.J., and Pegg, A.E. (2003). Antizyme overexpression in transgenic mice reduces cell proliferation, increases apoptosis, and reduces N-nitrosomethylbenzylamine-induced forestomach carcinogenesis. Cancer Res 63, 3945-3954. Fujita, K., Murakami, Y., and Hayashi, S. (1982). A macromolecular inhibitor of the antizyme to ornithine decarboxylase. Biochem J 204, 647-652. Gandre, S., Bercovich, Z., and Kahana, C. (2002). Ornithine decarboxylase-antizyme is rapidly degraded through a mechanism that requires functional ubiquitin-dependent proteolytic activity. Eur J Biochem 269, 1316-1322. Gandre, S., Bercovich, Z., and Kahana, C. (2003). Mitochondrial localization of antizyme is determined by context-dependent alternative utilization of two AUG initiation codons. Mitochondrion 2, 245-256. Gerner, E.W., and Meyskens, F.L., Jr. (2004). Polyamines and cancer: old molecules, new understanding. Nat Rev Cancer 4, 781-792. Heller, J.S., Fong, W.F., and Canellakis, E.S. (1976). Induction of a protein inhibitor to ornithine decarboxylase by the end products of its reaction. Proc Natl Acad Sci U S A 73, 1858-1862. Hoffman, D.W., Carroll, D., Martinez, N., and Hackert, M.L. (2005). Solution structure of a conserved domain of antizyme: a protein regulator of polyamines. Biochemistry 44, 11777-11785. Ichiba, T., Matsufuji, S., Miyazaki, Y., Murakami, Y., Tanaka, K., Ichihara, A., and Hayashi, S. (1994). Functional regions of ornithine decarboxylase antizyme. Biochem Biophys Res Commun 200, 1721-1727. Ivanov, I.P., and Atkins, J.F. (2007). Ribosomal frameshifting in decoding antizyme mRNAs from yeast and protists to humans: close to 300 cases reveal remarkable diversity despite underlying conservation. Nucleic Acids Res 35, 1842-1858. Ivanov, I.P., Gesteland, R.F., and Atkins, J.F. (1998). A second mammalian antizyme: conservation of programmed ribosomal frameshifting. Genomics 52, 119-129. Ivanov, I.P., Gesteland, R.F., and Atkins, J.F. (2000a). Antizyme expression: a subversion of triplet decoding, which is remarkably conserved by evolution, is a sensor for an autoregulatory circuit. Nucleic Acids Res 28, 3185-3196. Ivanov, I.P., Rohrwasser, A., Terreros, D.A., Gesteland, R.F., and Atkins, J.F. (2000b). Discovery of a spermatogenesis stage-specific ornithine decarboxylase antizyme: antizyme 3. Proc Natl Acad Sci U S A 97, 4808-4813. Iwata, S., Sato, Y., Asada, M., Takagi, M., Tsujimoto, A., Inaba, T., Yamada, T., Sakamoto, S., Yata, J., Shimogori, T., Igarashi, K., and Mizutani, S. (1999). Anti-tumor activity of antizyme which targets the ornithine decarboxylase (ODC) required for cell growth and transformation. Oncogene 18, 165-172. Jackson, L.K., Brooks, H.B., Myers, D.P., and Phillips, M.A. (2003). Ornithine decarboxylase promotes catalysis by binding the carboxylate in a buried pocket containing phenylalanine 397. Biochemistry 42, 2933-2940. Jackson, L.K., Brooks, H.B., Osterman, A.L., Goldsmith, E.J., and Phillips, M.A. (2000). Altering the reaction specificity of eukaryotic ornithine decarboxylase. Biochemistry 39, 11247-11257. Kahana, C. (2009). Antizyme and antizyme inhibitor, a regulatory tango. Cell Mol Life Sci 66, 2479-2488. Keren-Paz, A., Bercovich, Z., Porat, Z., Erez, O., Brener, O., and Kahana, C. (2006). Overexpression of antizyme-inhibitor in NIH3T3 fibroblasts provides growth advantage through neutralization of antizyme functions. Oncogene 25, 5163-5172. Kitani, T., and Fujisawa, H. (1989). Purification and characterization of antizyme inhibitor of ornithine decarboxylase from rat liver. Biochim Biophys Acta 991, 44-49. Lambert, C., Leonard, N., De Bolle, X., and Depiereux, E. (2002). ESyPred3D: Prediction of proteins 3D structures. Bioinformatics 18, 1250-1256. Li, X., and Coffino, P. (1992). Regulated degradation of ornithine decarboxylase requires interaction with the polyamine-inducible protein antizyme. Mol Cell Biol 12, 3556-3562. Li, X., and Coffino, P. (1993). Degradation of ornithine decarboxylase: exposure of the C-terminal target by a polyamine-inducible inhibitory protein. Mol Cell Biol 13, 2377-2383. Li, X., and Coffino, P. (1994). Distinct domains of antizyme required for binding and proteolysis of ornithine decarboxylase. Mol Cell Biol 14, 87-92. Li, X., Stebbins, B., Hoffman, L., Pratt, G., Rechsteiner, M., and Coffino, P. (1996). The N terminus of antizyme promotes degradation of heterologous proteins. J Biol Chem 271, 4441-4446. Liu, Y.C., Liu, Y.L., Su, J.Y., Liu, G.Y., and Hung, H.C. (2011). Critical factors governing the difference in antizyme-binding affinities between human ornithine decarboxylase and antizyme inhibitor. PLoS ONE 6, e19253. Lopez-Contreras, A.J., Lopez-Garcia, C., Jimenez-Cervantes, C., Cremades, A., and Penafiel, R. (2006). Mouse ornithine decarboxylase-like gene encodes an antizyme inhibitor devoid of ornithine and arginine decarboxylating activity. J Biol Chem 281, 30896-30906. Lopez-Contreras, A.J., Ramos-Molina, B., Cremades, A., and Penafiel, R. (2008). Antizyme inhibitor 2 (AZIN2/ODCp) stimulates polyamine uptake in mammalian cells. J Biol Chem 283, 20761-20769. Lu, Q. (2005). Seamless cloning and gene fusion. Trends Biotechnol 23, 199-207. Mangold, U. (2005). The antizyme family: polyamines and beyond. IUBMB Life 57, 671-676. Mangold, U., and Leberer, E. (2005). Regulation of all members of the antizyme family by antizyme inhibitor. Biochem J 385, 21-28. Marton, L.J., and Pegg, A.E. (1995). Polyamines as targets for therapeutic intervention. Annu Rev Pharmacol Toxicol 35, 55-91. Matsufuji, S., Matsufuji, T., Miyazaki, Y., Murakami, Y., Atkins, J.F., Gesteland, R.F., and Hayashi, S. (1995). Autoregulatory frameshifting in decoding mammalian ornithine decarboxylase antizyme. Cell 80, 51-60. McCann, P.P., and Pegg, A.E. (1992). Ornithine decarboxylase as an enzyme target for therapy. Pharmacol Ther 54, 195-215. Meyskens, F.L., Jr., and Gerner, E.W. (1999). Development of difluoromethylornithine (DFMO) as a chemoprevention agent. Clin Cancer Res 5, 945-951. Murai, N., Murakami, Y., and Matsufuji, S. (2003). Identification of nuclear export signals in antizyme-1. J Biol Chem 278, 44791-44798. Murai, N., Shimizu, A., Murakami, Y., and Matsufuji, S. (2009). Subcellular localization and phosphorylation of antizyme 2. J Cell Biochem 108, 1012-1021. Murakami, Y., Ichiba, T., Matsufuji, S., and Hayashi, S. (1996). Cloning of antizyme inhibitor, a highly homologous protein to ornithine decarboxylase. J Biol Chem 271, 3340-3342. Murakami, Y., Matsufuji, S., Kameji, T., Hayashi, S., Igarashi, K., Tamura, T., Tanaka, K., and Ichihara, A. (1992). Ornithine decarboxylase is degraded by the 26S proteasome without ubiquitination. Nature 360, 597-599. Newman, R.M., Mobascher, A., Mangold, U., Koike, C., Diah, S., Schmidt, M., Finley, D., and Zetter, B.R. (2004). Antizyme targets cyclin D1 for degradation. A novel mechanism for cell growth repression. J Biol Chem 279, 41504-41511. Palanimurugan, R., Scheel, H., Hofmann, K., and Dohmen, R.J. (2004). Polyamines regulate their synthesis by inducing expression and blocking degradation of ODC antizyme. EMBO J 23, 4857-4867. Pollastri, G., and McLysaght, A. (2005). Porter: a new, accurate server for protein secondary structure prediction. Bioinformatics 21, 1719-1720. Sakata, K., Kashiwagi, K., and Igarashi, K. (2000). Properties of a polyamine transporter regulated by antizyme. Biochem J 347 Pt 1, 297-303. Schuck, P. (2003). On the analysis of protein self-association by sedimentation velocity analytical ultracentrifugation. Anal Biochem 320, 104-124. Shantz, L.M., and Levin, V.A. (2007). Regulation of ornithine decarboxylase during oncogenic transformation: mechanisms and therapeutic potential. Amino Acids 33, 213-223. Snapir, Z., Keren-Paz, A., Bercovich, Z., and Kahana, C. (2008). ODCp, a brain- and testis-specific ornithine decarboxylase paralogue, functions as an antizyme inhibitor, although less efficiently than AzI1. Biochem J 410, 613-619. Su, K.L., Liao, Y.F., Hung, H.C., and Liu, G.Y. (2009). Critical factors determining dimerization of human antizyme inhibitor. J Biol Chem 284, 26768-26777. Tabor, C.W., and Tabor, H. (1984). Polyamines. Annu Rev Biochem 53, 749-790. Thomas, T., and Thomas, T.J. (2001). Polyamines in cell growth and cell death: molecular mechanisms and therapeutic applications. Cell Mol Life Sci 58, 244-258. Tosaka, Y., Tanaka, H., Yano, Y., Masai, K., Nozaki, M., Yomogida, K., Otani, S., Nojima, H., and Nishimune, Y. (2000). Identification and characterization of testis specific ornithine decarboxylase antizyme (OAZ-t) gene: expression in haploid germ cells and polyamine-induced frameshifting. Genes Cells 5, 265-276. Yong, K.-T., Swihart, M., Ding, H., and Prasad, P. (2009). Preparation of Gold Nanoparticles and their Applications in Anisotropic Nanoparticle Synthesis and Bioimaging, 79-93. Zhang, M., Pickart, C.M., and Coffino, P. (2003). Determinants of proteasome recognition of ornithine decarboxylase, a ubiquitin-independent substrate. EMBO J 22, 1488-1496.
摘要: 鳥胺酸脫羧酶 (ornithine decarboxylase, ODC; EC 4.1.1.17) 在活化狀態下形成雙聚體,需要輔酶5-磷酸吡哆醛 (pyridoxal 5’-phosphate, PLP) 及不同單體上的胺基酸共同參與,催化鳥胺酸 (ornithine) 生成腐胺 (putrescine),為多胺 (polyamine) 生合成的速率決定步驟。多胺為帶正電的有機分子,藉由調控遺傳物質或蛋白質參與細胞週期、細胞凋亡、蛋白質合成及細胞增生和癌化轉形等過程。多胺影響基因表現的一個例子為抗酶 (antizyme, AZ) 的合成:當多胺濃度過高時,會發生+1片段位移 (frameshift) 轉譯出具功能的全長蛋白,可調控鳥胺酸脫羧酶被26S蛋白酶體 (proteasome) 降解。抗酶會和鳥胺酸脫羧酶結合形成異源雙聚體而抑制它的酵素活性,此外也透過減少多胺的吸收降低多胺濃度,形成負回饋調節機制以維持恆定。抗酶與鳥胺酸脫羧酶的結合區主要為C端片段,針對帶電之側鏈進行定點突變 (site-directed mutagenesis),搭配鳥胺酸脫羧酶的活性抑制分析,找到K153、E164、E165及H171是影響抗酶抑制酵素活性的重要位置。抗酶可透過與鳥胺酸脫羧酶結合改變其四級結構,由活化狀態下的同源雙聚體轉變為異源雙聚體 (AZ-ODC heterodimer);計算解離常數 (dissociation constant, Kd) 的結果顯示突變型抗酶與鳥胺酸脫羧酶結合之親和力較野生型抗酶差。經由探討兩者間交互作用關鍵的影響因素,對於設計有效性的胜肽型抗癌藥物,使用在鳥胺酸脫羧酶與多胺代謝相關的癌症治療上提供了參考資訊。
Ornithine decarboxylase (ODC) catalyzes the first and rate-limiting step in polyamine biosynthesis. The enzyme catalyzes the decarboxylation of ornithine to putrescine. Dimeric ODC is a pyridoxal phosphate (PLP)-dependent enzyme. Two active sites are located in the dimer interface, with both monomers provide the essential residues. Polyamines (putrescine, spermidine and spermine) are small organic cations involved in many cellular processes include cell cycle, apoptosis, protein synthesis, cell proliferation and neoplastic transformation by interact with DNA or RNA. An example of polyamine induced gene expression is the formation of antizyme (AZ). High levels of polyamines stimulate ribosomal +1 frameshift, therefore encode the functional full length of AZ protein. AZ interacts with ODC forming an AZ-ODC heterodimer, inhibits its enzyme activity and also targets the ubiquitin-independent degradation of ODC by 26S proteasome. In additional, AZ negatively regulates polyamine transport. These will form a feedback control to keep cellular polyamine homeostasis. Using site-directed mutagenesis, the charged residues were mutated to alanine on the major binding region of AZ toward ODC. Enzyme activity inhibition assay showed that K153, E164, E165 and H171 are critical residues. According to dissociation constant (Kd) of AZ toward ODC, the values of AZ mutants were higher than WT, supporting that the four residues on AZ binding site play a predominant role for interacting with ODC. These data will be helpful in designing a functional peptide as antineuoplatic drug in ODC and polyamine-related cancer.
URI: http://hdl.handle.net/11455/23740
其他識別: U0005-1908201113251600
Appears in Collections:生命科學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.