請用此 Handle URI 來引用此文件: http://hdl.handle.net/11455/23771
標題: 叢枝菌根真菌對蘇鐵蕨早期生長發育之影響
Effects of arbuscular mycorrhizal fungi on the early development of Brainea insignis ( Hook. ) J. Sm.
作者: 李逸昕
Lee, Yi-Shin
關鍵字: Brainea insignis
蘇鐵蕨
arbuscular mycorrhizal fungi
叢枝菌根真菌
出版社: 生命科學系所
引用: 呂金誠。1990。野火對台灣主要森林生態系影響之研究。國立中興大學植物學研究所博士論文。 呂金誠、劉業經、陳明義。1986。紀蘇鐵蕨 (Brainea insignis) 在台灣之一新分布及其植物社會組成。中華林學季刊 19:121 – 126。 吳繼光、林素禎。1998。囊叢枝內生菌根菌應用手冊。行政院農業委員會農業試驗所。 林仲剛。1992。臺灣蕨類植物的認識與園藝運用。國立自然科學博物館。 林子超、吳繼光。2001。囊叢枝內生菌根菌簡介。自然保育季刊 34:23 – 27。 林昭遠、陳明義、呂金誠。1986。林火對東卯山區台灣二葉松林地土壤沖蝕量及養份流失量之影響。中華水土保持學報 17:42 – 49。 洪泉旭。1993。台灣二葉松火燒後植群生態之研究。國立中興大學森林學系研究所碩士論文。 翁韶良。1998。蘇鐵蕨植群生態及配子體發育之研究。國立中興大學森林學系研究所碩士論文。 郭城孟。1997。臺灣維管束植物簡誌第壹卷。行政院農業委員會 p.125 – 127。 莊明富、程永雄。2005。接種期對叢枝菌根菌繁殖與溫度對孢子發芽之影響。台灣農業研究 54:184 – 194。 陳明義、林昭遠、呂金誠。1989。野火對惠蓀林場杜鵑嶺植群之初期期影響。中興大學實驗林森林系所研究報告 10:11 – 28。 簡錕榮。2005。瓶爾小草科蕨類菌根之研究。國立台灣大學生態學與演化生物學研究所碩士論文。 劉潤進、陳應龍。2007。菌根學。北京科學出版社。 蔡進來。1992。台灣蕨類之資源與研究狀況。「台灣生物資源調查及資訊管理研習會」論文集。中央研究院植物研究所專刊 11:87 – 99。 謝萬權。1981。蕨類植物。國立中興大學植物學系。 Auge, R. M. 2001. Water relations, drought and vesicular-arbuscular mycorrhizal symbiosis. Mycorrhiza 11: 3 – 42. Becard, G. and Fortin, J. A. 1988. Early events of vesicular-arbuscular mycorrhiza formation on Ri T-DNA transformed roots. New phytologist 108: 211 – 218. Bell, P. R. 1958. Variations in the germination rate and development of fern spores in culture. Ann. Bot. 22: 503 – 511. Biermann, B. J. and Linderman, R. G. 1983. Increased Geranium growth using pretransplant inoculation with a mycorrhizal fungus. J. Am. Soc. Hort. Sci. 108: 972 – 976. Daniels, B. A. and Skipper, H. D. 1982. Methods for the recovery and quantitative estimation of progagules from soil. p.20 – 45. In: Methods and principles of mycorrhizal research, Ed. Schenck, N. C. The American Phytopathological Society, St. Paul. De Miranda, J. C. C. and Harris, P. J. 1994. Effects of soil phosphorus on spore germination and hyphal growth of arbuscular mycorrhizal fungi. New Phytologist 128: 103 – 108. Dehne, H. W. 1982. Interaction between vesicular-arbuscular mycorrhizal fungi and plant pathogens. Phytopathology 72: 1115 – 1119. Dickson, S. 2004. The Arum–Paris continuum of mycorrhizal symbioses. New Phytologist 163: 187 – 200. Frank, A. B. 1885. Ueber die auf Wurzelsymbiose beruhende Ernahrung gewisser Baume durch unterirdische Pilze. Ber. Deut. Bot. Gesell. 3: 128 - 145. Gerdemann, J. M. and Nicolson, T. H. 1963. Spores of mycorrhizal endogone species extracted from soil by wet sieving and decanting. Trans. Brit. Mycol. Soc. 46: 235 – 244. Gerdemann, J. W. and Trappe, J. M. 1974. The Endogonaceae in the Pacific Northwest. Mycologia Memoir 5: 1 – 76. Harley, J. L. 1989. The significance of mycorrhiza. Mycol. Res. 92: 129 – 139. Hayman, D. S. 1974. Plant growth responses to vesicular-arbuscular mycorrhiza. VI. Effect of light and temperature. New Phytologist 73: 71 – 80. Hodge, A. 2000. Microbial ecology of the arbuscular mycorrhiza. FEMS Microbiol. Ecol. 32: 91 – 96. Hoeksema, J. D., Chaudhary, V. B., Gehring, C. A., Johnson, N. C., Karst, J., Koide, R. T., Pringle, A., Zabinski, C., Bever, J. D., Moore, J. C., Wilson, G. W. T., Klironomos, J. N. and Umbanhowar, J. 2010. A meta-analysis of context-dependency in plant response to inoculation with mycorrhizal fungi. Ecology Letters 13: 394 – 407. Huang, T. C. (ed. chief). 1994. Flora of Taiwan 2nd ed. Vol. I. Editorial Committee of the Flora of Taiwan, Second Edition, Taipei. p.266 – 279. Hutchinson, C. S. and Fahim, M. 1958. The effects of fungi on the gametophytes of Pteridium aquilium (L.) Kuhn. Ann. Bot. 22: 117 – 126. Iqbal, S. H., Yousaf, M. and Younus, M. 1981. A field survey of mycorrhizal associations in ferns of Palistan. New Phytologist 87: 69 – 79. Koide, R. T. and Mosse, B. 2004. A history of research on arbuscular mycorrhiza. Mycorrhiza 14: 145–163. Koske, R. E. 1987. Distribution of VA mycorrhizal fungi along a latitudinal temperature gradient. Mycologia 79: 55 – 68. Liu, Y., Zhu, Y. G., Chen, B. D., Christie, P. and Li, X. L. 2005. Influence of the arbuscular mycorrhizal fungus Glomus mosseae on uptake of arsenate by the As hyperaccumulator fern Pteris vittata L. Mycorrhiza 15:187 – 192. Miller, J. H. 1968. Fern gametophytes as experimental material. Bot. Rev. 34: 361- 440. Mosse, B. 1973. Advances in the study of vesicular-arbuscular mycorrhiza. Annu. Rev. Phytopathol. 11: 171 - 196. Mugnier, J. and Mosse, B. 1987. Vesicular-arbuscular mycorrhizal infection in transformed root-inducing T-DNA roots grown axenically. Phytopathology 77: 1045 – 1050. Raju, P. S., Clark, R. B., Ellis, J. R. and Maranville, J. W. 1990. Effects of spcies of VA-mycorrhizal fungi on growth and mineral uptake of sorghum at different temperatures. Plant and Soil 121: 165 – 170. Riddle, R., Brooker, N. and Pruitt, D. 2002. Enhanced tree fern prothalli formation and development using soil mycorrhiza. Proceeding of the national conference on undergraduate research. University of North Carolina Schenck, N. C., Grahan, S. O. and Green, N. E. 1975. Temperature and light effect on contamination and spore germination of vesicular arbuscular mycorrhizal fungi. Mocologia 67: 1189 – 1192. Schenck, N. C. and Smith, G.S. 1982. Responses of six species of vesicular-arbuscular mycorrrhizal fungi and their effects on soybean at four soil temperature. New Phytologist 92: 193 – 201. Shannon, M. B. and Kendrick, B. 1982. Vesicular-arbuscular mycorrhizae of southern Ontario ferns and fern-allies. Mycologia 74: 769 – 776. Simon, L., Bousquet, J. and Levesque, R. C. 1993. Origin and diversification of endomycorrhizal fungi and coincidence with vascular land plants. Nature 363: 67. Smith, S. E. 1988. Physiological interactions between symbionts in vesicular-arbuscular mycorrhizal plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 39: 221 – 244. Smith, F. A. and Smith, S. E. 1997. Tansley review No. 96. Structural diversity in (vesicular)-arbuscular mycorrhizal symbioses. New Phytologist 137: 373 – 388. Son, C. L. and Smith, S. E. 1988. Mycorrhizal growth responses: interactions between photon irradiance and phosphorus nutrition. New Phytologist 108: 305 – 314. Taylor, T. N., Remy, W., Hass, H. and Kerp. H. 1995. Fossil arbuscular mycorrhizae from the early Devonian. Mycologia 87: 560 – 573. Tommerup, I. C. 1983. Temperature relations of spore germination and hyphal growth of vesicular-arbuscular mycorrhizal fungi in soil. Trans. Br. Mycol. Soc. 81: 381 – 387. Turnau, K., Anielska, T. and Jurkiewicz, A. 2005. Mycothallic/mycorrhizal symbiosis of chlorophyllous gametophytes and sporophytes of a fern, Pellaea viridis (Forsk.) Prantl (Pellaeaceae, Pteridales) Mycorrhiza 15: 121 – 128. Winfried, R., Thomas, N. T., Hagen, H. and Hans, K. 1994. Four hundred-million-year-old vesicular arbuscular mycorrhizae. Proc. Natl. Acad. Sci. USA. 91: 11841 – 11943. Zhao, Z. W. 2000. The arbuscular mycorrhizas of pteridophytes in Yunnan, southwest China: evolutionary interpretations. Mycorrhiza 10: 145 – 149. Zhang, Y., Guo, L. D. and Liu, R. J. 2004. Arbuscular mycorrhizal fungi associated with common pteridophytes in Dujiangyan, southwest China. Mycorrhiza 14: 25 – 30.
摘要: 蘇鐵蕨﹝Brainea insignis (Hook.) J. Sm.﹞為台灣稀有植物之一,分布局限於南投縣仁愛鄉。叢枝菌根 (arbuscular mycorrhiza, AM) 真菌為一群會與植物體根部產生互利共生情形的真菌,此種共生情形出現在絕大多數的陸域植物中。本研究以蘇鐵蕨為研究對象,探討蘇鐵蕨是否與AM真菌有互利共生的情形及其對植株生長的影響。研究結果顯示,在野外及移植實驗室栽培的蘇鐵蕨根段皆有AM真菌與之共生,利用原生育地表土及滅菌土培養的蘇鐵蕨孢子皆可萌發、形成配子體及長出孢子體;利用原生育地表土培養孢子萌發時間較短且萌發率較高,其長成孢子體的時間也比滅菌土培養的植株短,且此培養長出的小苗皆有AM真菌共生。前後兩批利用原生育地表土培養的蘇鐵蕨小苗之菌根依賴度分別為中依賴度及高依賴度,菌根真菌感染率集中在30 – 60 %。原生育地表土中的真菌孢子以兩種佔多數,初步鑑定分別為Acaulospora屬和Glomus屬的物種,此兩物種極可能為蘇鐵蕨之共生真菌。綜合以上,蘇鐵蕨為兼性菌根植物,從菌根依賴度與感染率及培養觀察來看,與AM真菌共生確實有助於蘇鐵蕨的生長發育,且共生的AM真菌種類可能不單只有一種,此外培養結果推測溫度可能是影響蘇鐵蕨小苗與真菌共生的主要環境因子。
Brainea insignis (Hook.) J. Sm. was considered as an rare species in Taiwan, which was distributed only in Ren-ai township of Nantou county. Arbuscular mycorrhizal (AM) fungi are those share mutualism with most land plants at their roots. The objectives of this study were to test whether B. insignis shares mutualism with AM fungi and how the relationship influences the B. insignis growth. The results showed that B. insignis' roots shares mutualism with AM fungi no matter on wild or transplanted groups. Brainea insignis' spores could germinate in both the soil from the collected area and the sterilized one, and later formed gametophytes and grew into sporophytes. The cultivations in the soil from collected area resulted in higher spores germination rate and germination percentage than the sterilized cultivation, with shorter time of forming sporophytes, and all of which shared symbiosis with AM fungi. The cultivations in the soil from collected area can be separated into two groups by their mycorrhizal dependency, the moderate- and high-dependency, respectively. The mycorrhizal colonizations of these two groups were within 30 - 60 %. Most of fungal spores in the soil from collected area mainly belonged to two species, Acaulospora sp. and Glomus sp., which might be the symbiotic fungi to B. insignis. In conclusion, B. insignis was a facultative mycorrhizal plant. Based on the mycorrhizal dependency, colonization with AM fungi could help B. insignis grow, and there could be more than one fungal species in this mutual relationships. Temperature could also play an important role on the growth of B. insignis.
URI: http://hdl.handle.net/11455/23771
其他識別: U0005-2207201116033100
顯示於類別:生命科學系所

文件中的檔案:
檔案 大小格式 
nchu-100-7097052121-1.pdf2.69 MBAdobe PDF檢視/開啟


在 DSpace 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。