Please use this identifier to cite or link to this item:
標題: 利用RNA干擾降低小球藻Chlorella PsbO 蛋白轉譯以誘導產氫
Using RNA interference to knockdown PsbO protein to induce hydrogenase expression in Chlorella
作者: 劉邦弘
Liu, Bang-Hung
關鍵字: 小球藻
出版社: 生命科學系所
引用: Agrawal, N., Dasaradhi, P.V.N., Mohmmed, A., Malhotra, P., Bhatnagar, R.K., and Mukherjee, S.K. (2003). RNA interference: biology, mechanism, and applications. Microbiol. Res. 67: 657-685. Antal, T.K., Krendeleva, T.E., Laurinavichene, T.V., Makarova, V.V., Ghirardi, M.L., Rubin, A.B., Tsygankov, A.A., and Seibert, M. (2003). The dependence of algal H2 production on photosystem II and O2 consumption activities in sulfur-deprived Chlamydomonas reinhardtii cells. Biochim. Biophys. Acta 1607: 153-160. Arockiasamy, S., and Ignacimuthu, S. (2007). Regeneration of transgenic plants from two indica rice (Oryza sativa L.) cultivars using shoot apex explants. Plant cell 26: 1745-1753. Chader, S., Hacene, H., and Agathos, S.N. (2009). Study of hydrogen production by three strains of Chlorella isolated from the soil in the Algerian Sahara. Int. J. Hydrogen Energy 34: 4941-4946. Chen, H.C., Newton, A.J., and Melis, A. (2005). Role of SulP, a nuclear-encoded chloroplast sulfate permease, in sulfate transport and H2 evolution in Chlamydomonas reinhardtii. Photosynth. Res. 84: 289-296. Chilton, M.D., Drummond, M.H., Merio, D.J., Sciaky, D., Montoya, A.L., Gordon, M.P., and Nester, E.W. (1977). Stable incorporation of plasmid DNA into higher pland cells: the molecular basis o crown gall tumorigenesis. Cell 11: 263-271. Christie, P.J. (1997). Agrobacterium tumefaciens T-complex transport apparatus: a paradigm for a new family of multifunctional transporters in eubacteria. J. Bacteriol. 179: 3085-3094. de Groot, M.J., Bundock, P., Hooykaas, P.J., and Beijersbergen, A.G. (1998). Agrobacterium tumefaciens-mediated transformation of filamentous fungi. Nat Biotechnol. 16: 839-42. Debus, R.J. (1992). The manganese and calcium ions of photosynthetic oxygen evolution. Biochim Biophys Acta 1102: 269-352. Dykxhoorn, D.M., Novina, C.D., and Sharp, P.A. (2003). Killing the messenger: short RNAs that silence gene expression. Mol. Cell Biol. 4: 457-467. Florin, L., Tsokoglou, A., and Happe, T. (2001). A novel type of iron hydrogenase in the green alga Scenedesmus obliquus is linked to the photosynthetic electron transport chain. J. Biol. Chem. 276: 6125-6132. Ghirardi, ML., Zhang, L., Lee JW., Flynn, T., Seibert, M., Greenbaum, E., and Melis, A. (2000). Microalgae: a green source of renewable H2. Trends Biotechnol. 18: 506-511. Guan, Y.F., Deng, M., Yu, X.J., and Zhang, W. (2004). Two-stage photo-biological production of hydrogen by marine green alga Platymonas subcordiformis. Biochem. Eng. J. 19: 69-73. Hallmann, A. (2007). Algal Transgenics and Biotechnology. Plant Physiol. 1: 81-98 Hamilton, C.M., Frary, A., Lewis, C., and Tanksley, S.D. (1996). Stable transfer of intact high molecular weight DNA into plant chromosomes. Proc. Natl. Acad. Sci. USA 93: 9975-9979. Happe, T., and Naber, J.D. (1993). Isolation, characterization and N-terminal amino acid sequence of hydrogenase from the green alga Chlamydomonas reinhardtii. Eur. J. Biochem. 214: 475-481. Happe, T., Mosler, B., and Naber, D. (1994). Induction, localization and metal content of hydrogenase in the green alga Chlamydomonas reinhardtii. Eur. J. Biochem. 222: 769-774. Harborth, J., Elbashir, S.M., Vandenburgh, K., Manninga, H., Scaringe, S.A., Weber, K., and Tuschl, T. (2003). Sequence, Chemical, and Structural Variation of Small Interfering RNAs and Short Hairpin RNAs and the Effect on Mammalian Gene Silencing. Antisense nucleic acid drug dev. 13: 83-105. Hemschemeier, A., Fouchard, S., Cournac, L., Peltier, G., and Happe, T. (2008). Hydrogen production by Chlamydomonas reinhardtii: elaborate interplay of electron source and sink. Planta. 227: 397-407. Hiei, Y.K., Ohta, S.Z., Komari, T., and Kumashiro, T.S. (1994). Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J. 6: 271-282. Homann, P.H. (2003). Hydrogen metabolism of green algae: discovery and early research- a tribute to Hans Gaffron and his coworkers. Photosynth. Res. 76: 93-103. Huang, C.C., Chen, M.W., Hsieh, J.L., Lin, W.H., Chen, P.C., and Chien, L.F. (2006). Expression of mercuric reductase from Bacillus megaterium MB1 in eukaryotic microalga Chlorella sp. DT: an approach for mercury phytoremediation. Appl. Microbiol. Biotechnol. 72: 197-205. Ifuku, K., Yamamoto, Y., Ono, T.A., Ishihara, S., and Sato, F. (2005). PsbP protein, but not PsbQ protein, is essential for the regulation and stabilization of photosystem II in higher plants. Plant Physiol. 139: 1175-1184. Kruse, O., Rupprecht, K.P., Skye, T.H., Schenk, P.M., Finazzi, G., and Hankamer, B. (2005). Improved photobiological H2 production in engineered green algal cells. J. Biol. Chem. 280: 34170-34177. Kumar, S.V., and Rajam, M.V. (2004). Genetic transformation of the green alga Chlamydomonas reinhardtii by Agrobacterium tumefaciens. Plant Science 166: 731-734. Kunik, T., Tzfira, T., Kapulnik, Y., Gafni, Y., Dingwall, C., and Citovsky, V. (2001). Genetic transformation of HeLa cells by Agrobacterium. Proc. Natl. Acad. Sci. USA 98: 1871-1876. Lai, C.L. (1991). Physiological study of desiccation-tolerant Chlorella. Master thesis of the Department of Botany, National Chung Hsing University, Taiwan Lamppa,, G., Nagy, F., and Chua, N.H. (1985). Light-regulated and organ-specific expression of a wheat Cab gene in transgenic tobacco. Nature 316: 750-752. Laurinavichene, T., Tolstygina, I., and Tsygankov, A. (2004). The effect of light intensity on hydrogen production by sulfur-deprived Chlamydomonas reinhardtii. J. Biotech. 114: 143-151. Li, C.X., Parker, A., Menocal, E., Xiang, S.L., Borodyansky, L., and Fruehauf, J.H. (2006). Delivery of RNA Interference. Cell Cycle 5: 2103-2109. Lin, H.T. (2010). PsbA or PSbO suppression leads to hydrogenase induction in Chlorella sp. DT. Master thesis of the Department of Life Science, National Chung Hsing University, Taiwan Lin, L.P. (2005). Purchasing and collection of algal culture. In LP Lin. Ed, CHLORELLA- It's Ecology, Structure, Cultivation, Bioprocess and Application. (1st ed. Yi Hsien Publisher Co, Ltd, Taipei, Taiwan), pp. 248-254 Lin, W.H. (2004). The change in Chlorella photosynthesis and superoxide dismutase activity under low temperature relatively high irradiation stress. Master thesis of the Department of Life Sciences, National Chung-Hsing University, Taiwan Lundin, B., Nurmi, M., Rojas, S.M., Aro, E.M., Adamska, I., and Spetea, C. (2008). Towards understanding the functional difference between the two PsbO isoforms in Arabidopsis thaliana—insights from phenotypic analyses of psbo knockout mutants. Photosynth. Res. 98: 405-414. Maris, L. (1984). Binary Agrobacterium vectors for plant transformation. Nucleic acids Res. 12: 8711-8721. Mayfield, S.P., Rahire, M., Frank, G., Zuber, H., and Rochaix, J.D. (1987). Expression of the nuclear gene encoding oxygen-evolving enhancer protein 2 is required for high levels of photosynthetic oxygen evolution in Chlamydomonas einhardtii. Proc. Natl. Acad. Sci. US A 84: 749-753. McEvoy, J.P., and Brudvig, G.W. (2006). Water-splitting chemistry of photosystem II. Chem. Rev. 106: 4455-4483. Melis, A. (2007). Photosynthetic H2 metabolism in Chlamydomonas reinhardtii (unicellular green algae). Planta 226: 1075-1086. Melis, A., and Happe, T. (2001). Hydrogen production. Green algae as a source of energy. Plant Physiol. 127: 740-748. Melis, A., Zhang, L.P., Forestier, M., Ghirardi, M.L., and Seibert, M. (2000). Sustained photobiological hydrogen gas production upon reversible inactivation of oxygen evolution in the green alga Chlamydomonas reinhardtii. Plant Physiol. 122: 127-135. Murakami, R., Ifuku, K., Takabayashi, A., Shikanai, T., Endo, T., and Sato, F. (2002). Characterization of an Arabidopsis thaliana mutant with impaired psbO, one of two genes encoding extrinsic 33-kDa proteins in photosystem II. FEBS J. 523: 138-142. Murakami, R., Ifuku, K., Takabayashi, A., Shikanai, T., Endo, T., and Sato, F. (2005). Functional dissection of two Arabidopsis PsbO proteins PsbO1 and PsbO2. FEBS J. 272: 2165-2175. Nelson, N., and Yocum, C.F. (2006). Structure and function of photosystem I and II. Plant Biology. 57: 521-565. Nicolet, Y., Piras, C., Legrand, P., Hatchikian, C.E., and Fontecilla-Camps, C.J. (2001). H/D Exchange Reactions in Dinuclear Iron Thiolates as Activity Assay Models of Fe−H2ase. Structure 7: 13-23. Pancoska P., Moravek Z., and Moll U.M. (2004). Efficient RNA interference depends on global context of the target sequence: quantitative analysis of silencing efficiency using Eulerin graph representation of siRNA. Nucleic Acids Res. 32: 1469-1479. Pigolev, A.V., Zharmukhamedov, S.K., and Klimov, V.V. (2009). The psbO mutant of Chlamydomonas reinhardtii is capable of assembling stable, photochemically active reaction of photosystem II. Biochemistry (Moscow) supplements Series: Membrane and Cell biology. 3: 33-41. Rivas, J.D., and Barder, J. (2004). Analysis of the structure of the PsbO protein and its implication. Biomed. Sci. 18: 329-343. Rivas, J.D., Balser, M., and Barder, J. (2004). Evolution of oxygenic photosynthesis: genome-wide analysis of OEC extrinsic proteins. Trends Plant Sci. 9: 18-25. Rohr, J,, Sarkar, N,, Balenger, S,, Jeong, B,R,, and Cerutti, H. (2004). Tandem inverted repeat system for selection of effective transgenic RNAi strains in Chlamydomonas. Plant Physio. 40: 611-621. Scherr, M., Battermer, K., Ganser, A., and Eder, M. (2003). Modulation of gene expression by lentiviral-mediated delivery of small interfering RNA. Cell cycle 2: 251-257. Schulz, R. (1996). Hydrogenase and hydrogen production in eukaryotic organisms and cyanobacteria. J. Mar. Biotechnol. 4: 16-22. Semin, B.K., Davletshina, L.N., Rubin, A.B., and Seibert, M. (2008). Decoupling of the processes of molecular oxygen synthesis and electron transport in Ca2+-depleted PSII membranes. Photosynth. Res. 98: 235-249. Skjanes, K., Knutsen, G., Kallqvist, T., and Lindblad, P. (2008). H2 production from marine and freshwater species of green algae during sulfur deprivation and considerations for bioreactor design. Int. J. Hydrogen Energy. 33: 511-521. Smith, E.F., and Townsend, C.O. (1907). A plant-tumor of bacterial origin. Science 25: 671-673. Stripp, S.T., Goldet, G., Brandmayr, C., Sanganas, O., Vincent, K.A., Haumann, M., Armstrong F.A., and Happe T. (2009). How oxygen attacks [FeFe] hydrogenases from photosynthetic organisms. Proc. Natl. Acad. Sci. USA 106: 17331-17336. Taiz, L., and Zeiger, E. (2006). Photosynthesis: the light reactions. In L Taiz, E Zeiger, eds, Palnt Physiology. (4th ed. Sinauer Associates Inc, Massachusetts), pp. 125-158. Tsygankov, A.A., Kosourov, S.N., Tolstygina, I.V., Ghirardi, M.L., and Seibert, M. (2006). Hydrogen production by sulfur-deprived Chlamydomonas reinhardtii under photoautotrophic conditions. Int. J. Hydrogen Energy. 31: 1547-1584. Vignais, P.M., Billoud, B., and Meyer, J. (2001). Classification and phylogeny of hydrogenases. FEMS Microbiol. Rev. 25: 455-501. Vlasak, J., Š mahel, M., Pavlik, A., Pavingerova, D., and Břiza, J. (2003). Comparison of hCMV immediate early and CaMV 35S promoters in both plant and human cells. J. Biotechnol. 103: 197-202. Wang, H., Fan, X., Zang, Y., Yang, D., and Guo, R. (2011). Sustained photo-hydrogen production by Chlorella pyrenoidosa without sulfur depletion. Biotechnol. Lett. 33: 1345-1350. Waterhouse, P.M., and Helliwell, C.A. (2003). Exploring plant genomes by RNA-induced gene silencing. Nat. Rev. Genet. 4: 29-38. Wunschiers, R., Stangier, K., Senger, H., and Schulz, R. (2001). Molecular evidence for a [Fe]-hydrogenase in the green alga Scenedesmus obliquus. Curr. Microbiol. 42: 353-360. Wyman, A.J., and Yocum, C.F. (2005). Structure and activity of the photosystem II manganese-stabilizing protein: pole of the conserved disulfide bond. Photosynth. Res. 85: 359-372. Yi, X.P., Hargett, S.P., Frankel, L.K., and Bricker, T.M. (2009). The PsbP protein, but not the PsbQ protein, is required for normal thylakoidarchitecture in Arabidopsis thaliana. FEBS Lett. 583: 2142-2147. Yi, X.P., McChargue, M., Laborde, S., Frankel, L.K., and Bricke, T.M. (2005). The manganese-stabilizing protein is required for photosystem II assembly/stability and photoautotrophy in higher plants. J. Biol. Chem. 280: 16170-16174.
摘要: PsbO是位於光合作用系統II (PSII)中放氧複合體(OEC)的次單元蛋白之一,參與光合作用水裂解的反應。此蛋白質與釋放氧氣的PSII穩定性有關。氧氣對於產氫
The PsbO protein is one of the oxygen-evolving complex (OEC) subunits of Photosystem II (PSII), the water splitting enzyme of photosynthesis. It concerned with the stability of PSII for O2 evolution. O2 is a powerful suppressor of hydrogenase (HydA) gene expression and a potent inhibitor of HydA enzymatic activity. While cultivated in sulfur-deprived medium, the PSII activity of green algae would be inhibited and the O2 evolution would be decreased. Therefore, the circumstance became anaerobic, leading to the induction of HydA to produce H2. However, the cells would be gradually dead because of lacking sulfur. We attempted to knockdown the psbO gene expression of Chlorella sp. DT (DT) by short interference RNA (siRNA) as PsbO suppression would lead to the inhibition of O2 evolution and induction of HydA. The DT cells were transformed with siRNA vectors of pHm3A/psbO-a and pHm3A/psbO-b which contained the antisense gene fragments of antisense-psbO-a and antisense-psbO-b, respectively. The presence of transformed plasmids was detected by PCR amplification of the hpt, merA, siRNA-psbO-a and siRNA-psbO-b gene fragments from genomic DNA isolated from DT transformants. The results suggested that the siRNA plasmids had been successfully transformed into DT. PsbO protein was detected by western blotting. The amounts of PsbO in DT transformants were decreased to 42-66% as compared to that in DT wild type. Under sulfur-supplied condition, the transcription of hydA and the translation of HydA in transformants could be induced in these transformants. H2 concentrations of DT transformants were about 98.5-352.3 ml l-1 and higher than that of DT wild type about 30.3 ml l-1. These results indicate that the decrease of the PsbO protein can induce HydA expression to increase H2 production.
其他識別: U0005-2707201111551000
Appears in Collections:生命科學系所



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.