Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/23828
標題: 以牛胃菌群降解木質纖維素進行醱酵生產丁醇之研究
Application of rumen bacterial isolates for production of biofuels from lignocellulose
作者: 李昂軒
Lee, Ang-Hsuan
關鍵字: rumen bacterial
瘤胃
napiergrass
lignocellulose
biohydrogen
biobutanol
synthetic biology
丁醇
Clostridium xlanolytiucm
Clostridium puniceum
Clostridium acetobutylicum ATCC824
狼尾草
纖維素
半纖維素
木質纖維素
合成生物學
出版社: 生命科學系所
引用: 1. 吳耿東,李宏台。2007。全球生質能源應用現況與未來展望,林業研究專訊,30卷3期。 2. 吳耿東,2008。認識生質能源,物理雙月刊,30卷4期。 3. 成游貴,2006。狼尾草育種與多元化利用科學發展月刊407卷,24-29頁。 4. 楊价民,1997。瘤胃生態系統與反芻動物對養分的利用。藝軒圖書出版社,台北,中華民國。 5. 韓如暘,陳美慈,閔航,趙宇華,馬曉航, 1999,嗜熱厭氧細菌Clostridium sp. EVA4菌株直接轉化纖維素產乙醇的研究,應用與環境生物學報,第5卷。 6. 吳秋芬,2008,嗜熱厭氧狼尾草分解菌之產醇特性研究,大葉大學環境工程學系碩士班,碩士論文。 7. 王馨儀,2006,以牛糞堆肥中嗜熱厭氧菌群分解纖維素產乙醇之研究,東海大學環境科學與工程研究所,碩士論文。 8. Carpita N C and McCann M. 2000. The cell wall. In Biochemistry and Molecular Biology of Plants, Rockville, MD, pp. 52–108. 9. Taiz and Zeiger. 2002. Plant Physiology. 3rd ed. 10. Akin DE, Borneman WS, Rigsby LL, Martin SA. 1993. p-Coumaryl and feruloyl arabinoxylans from plant cell walls as substrates for ruminal bacteria. Appl Environ Microbiol 59:644-647 11. Bayer EA, Kenig R, Lamed R. 1983. Adherence of Clostridium thermocellum to cellulose. J Bacteriol 156(2):818-27. 12. Bayer EA, Shimon LJ, Shoham Y, Lamed R. 1998. Cellulosomes-structure and ultrastructure. J Struct Biol 124(2-3):221-34. 13. Beguin, P., and M. Lemaire. 1996. The cellulosome: An exocellular, multiprotein complex specialized in cellulose degradation. Crit. Rev. Biochem. Mol. Biol. 31: 201-236 14. Blair BG, Anderson KL. 1999. Regulation of cellulose-inducible structures of Clostridium cellulovorans. Can J Microbiol 45(3):242-9. 15. Brett, C. T., and Waldron, K. W. (1996) Physiology and Biochemistry of Plant Cell Walls, 2nd ed. Chapman and Hall, London. 16. Breznak JA, Brune A. 1994. Role of microorganisms in the digestion of lignocellulose by termites. Annu Rev Entomol 39:453–487 17. Bryant MP, Small N, Bouma AC, Robinson IM. 1958. Characteristics of ruminal anaerobic cellulolytic Cocci and Cillobacterium cellulosolvens n. sp. J Bacteriol 76(5): 529–537. 18. Cavedon K, Leschine SB, Canale-Parola E. 1990. Characterization of the extracellular cellulase from a mesophilic clostridium (strain C7). J Bacteriol. 172(8):4231-7. 19. Chang JJ, Chen WE, Shih SY, Yu SJ, Lay JJ, Wen FS, Huang CC. 2006. Molecular detection of the clostridia in an anaerobic biohydrogen fermentation system by hydrogenase mRNA-targeted reverse transcription-PCR. Appl Microbiol Biotechnol 70(5):598-604. 20. Chang JJ, Chou CH, Hsu PC, Yu SJ, Chen WE, Lay JJ, et al. 2007. Flow-FISH analysis and isolation of clostridial strains in an anaerobic semi-solid bio-hydrogen producing system by hydrogenase gene target. Appl Microbiol Biotechnol 74(5):1126–34. 21. Chang JJ, J. H. Wu, F. S. Wen, K. Y. Hung, C. L. Hsiao, C. Y. Lin, and C. C Huang 2008. Molecular monitoring of microbes in a continuous hydrogen-producing system with different hydraulic retention time. Int. J. Hydrogen Energy 33: 1579-1585. 22. Chesson, A., and C. W. Forsberg. 1997. Polysaccharide degradation by rumen microbiology. In: P. N. Hobson and C. S. Stewart (eds.) The Rumen Microbial Ecosystem. pp 329-381. Blackie Academic & Professional, London, UK. 23. Christov LP, Prior BA. 1993. Esterases of xylan-degrading microorganisms:production, properties, and significance. Enzyme Microb Technol 15:460-474 24. Claasen PAM, van Lier JB, Lopez Contreras AM, van Niel EWJ, Sijtsma L, Stams AJM, de Vries SS, Weusthuis RA (1999) Utilisation of biomass for the supply of energy carriers. Appl Microbiol Biotechnol 52:741–755 25. Claassen PAM, van Lier JB, Lopez Contreras AM, van Niel EWJ, Sijtsma L, Stams AJM, de Vries SS, Weusthuis RA. 1999. Utilisation of biomass for the supply of energy carriers. Appl Microbiol Biotechnol 52(6):741–755 26. Cottrell MT, Yu L, Kirchman DL. 2005. Sequence and expression analyses of Cytophaga-like hydrolases in a Western arctic metagenomic library and the Sargasso Sea. Appl Environ Microbiol 71(12):8506-13. 27. Coughlan MP, Mayer F. 1992. The cellulose-decomposing bacteria and their enzyme systems. In: Balows A, Truper HG, Dworkin M, Harder W, Schleifer KH (eds) The prokaryotes: a handbook on the biology of bacteria, 2nd edn. Springer, Berlin Heidelberg New York., p460–516 28. Doi RH, Kosugi A. 2004. Cellulosomes: plant-cell-wall-degrading enzyme complexes. Nat Rev Microbiol 2(7):541-51. 29. Edward A. Bayer, Yuval Shoham and Raphael Lamed. 2006. Cellulose-decomposing Bacteria and Their Enzyme Systems. Prokaryotes 2:578–617 30. Endo, K., Y. Hakamada, S. Takizawa, H. Kubota, N. Sumitomo, T. Kobayashi, and S. Ito. 2001.A novel alkaline endoglucanase from an alkaliphilic Bacillus isolate: enzymatic propertie s, and nucleotide and deduced amino acid sequences. Appl Microbiol Biotechnol 57:109-16. 31. Flint. 2000. Three multidomain esterases from the cellulolytic rumen anaerobe Ruminococcus flavefaciens 17 that carry divergent dockerin sequences. Microbiology 146:1391–1397. 32. Gerngross, U. T., M. P. Romaniec, T. Kobayashi, N. S. Huskisson, and A. L. Demain. 1993. Sequencing of a Clostridium thermocellum gene (Cip A) encoding the cellulosomal Sl-protein reveals an unusual degree of internal homology. Mol. Microbiol. 8: 325-334. 33. Goering, H. K.. and P. J. Van Soest. 1970. Forage fiber analyses (apparatus, reagents, procedures, and some applications). Agric. Handbook No. 379. ARSUSDA, Washington, DC. 34. Harchand, R. K., and S. Singh. 1997. Extracellular cellulase system of a thermotolerant streptomycete: Streptomyces albaduncus. Acta Microbiol Immunol Hung 44:229-39. 35. Holt RA, Cairns AJ, Morris JG. 1988. Production of butanol by Clostridium puniceum in batch and continuous culture. Appl Microbiol Biotechnol 27:319-324 36. Iannotti EL, Kafkewitz D, Wolin MJ, Bryant MP. 1973. Glucose fermentation products in Ruminococcus albus grown in continuous culture with Vibrio succinogenes: changes caused by interspecies transfer of H 2 J Bacteriol 114(3):1231-40. 37. Ito, S. 1997. Alkaline cellulases from alkaliphilic Bacillus: enzymatic properties, genetics, and application to detergents. Extremophiles 1:61-6. 38. Kato S, Haruta S, Cui ZJ, Ishii M, Igarashi Y. 2008. Network relationships of bacteria in a stable mixed culture. Microb Ecol 56(3):403-11. 39. Koukiekolo R, Cho HY, Kosugi A, Inui M, Yukawa H, Doi RH. 2005. Degradation of corn fiber by Clostridium cellulovorans cellulases and hemicellulases and contribution of scaffolding protein CbpA. Appl Environ Microbiol. 71(7):3504-11 40. Lamed R, Naimark J, Morgenstern E, Bayer EA. 1987. Specialized cell surface structures in cellulolytic bacteria. J Bacteriol 169(8):3792-800. 41. Lamed R, Setter E, Bayer EA. 1983. Characterization of a cellulosebinding, cellulase-containing complex in Clostridium thermocellum. J. Bacteriol 156:828–836 42. Lam, V.M.S., Daruwalla, K.R., Henderson, P.J.F. & Jons-Mortimer M.C. 1980 Proton-linked D-xylose transport in Escherichia coli. Journal of Bacteriology, 143, 396±402. 43. Lay, J. J. 2000. Modeling and optimization of anaerobic digested sludge converting starch to hydrogen. Biotechnol Bioeng 68:269-78. 44. Lee J. 1997. Biological conversion of lignocellulosic biomass to ethanol. Journal of Biotechnology 56: 1-24 45. Leschine, S. B. 1995. Cellulose degradation in anaerobic environments. Annu Rev Microbiol 49:399-426. 46. Levin DB, Islamc R, Cicekc N, and Sparlingd R. 2006. Hydrogen production by Clostridium thermocellum 27405 from cellulosic biomass substrates. Int J Hydrogen Energy. 31: 1496-1503. 47. Levin L and Forchiassin F. 2001. Ligninolytic enzymes of the white rot basidiomycete Trametes trogii. Acta Biotechnol. 21: 179-186 48. LiesackW, Schnell S, Revsbech NP. 2000. Microbiology of flooded ricepaddies. FEMS Microbiol Rev 24:625–45. 49. Lund BM, Brocklehurst TF, Wyatt GM. 1981. Characterization of Strains of Clostridium puniceum sp.no v., a Pink-pigmented, Pectolytic Bacterium. J Gen Microbiol 122:117-120 50. Mayer F, Coughlan MP, Mori Y, Ljungdahl LG. 1987. Macromolecular organization of the cellulolytic enzyme complex of Clostridium thermocellum as revealed by electron microscopy. Appl. Environ. Microbiol. 53:2785–2792. 51. McCann MC, Wells B, Roberts K. 1990. Direct visualization of cross-links in the primary plant cell wall. J Cell Sci. 96:323-334. 52. McDougall EI. 1948. The composition and output of sheep''s saliva.Biochem J. 43(1):99-109. 53. McSweeney CS, Dulieu A, Bunch R. 1998. Butyrivibrio spp. and other xylanolytic microorganisms from the rumen have cinnamoyl esterase activity. Anaerobe 4:57-65 54. McSweeney CS, Dulieu A, Webb RI, Del Dot T, Blackall LL. 1999. Isolation and characterization of a Clostridium sp. with cinnamoyl esterase activity and unusual cell envelope ultrastructure. Arch Microbiol 172(3):139-49 55. Miller TL, Wolin MJ. 1973. Formation of hydrogen and formate by Ruminococcus albus. J Bacteriol. Nov. 116(2):836-46. 56. Murashima K, Kosugi A, Doi RH. 2003. Synergistic effects of cellulosomal xylanase and cellulases from Clostridium cellulovorans on plant cell wall degradation. J Bacteriol 185(5):1518-24. 57. Murray WD, Khan AW, van den Berg L. 1982. Clostvidium saccharolyticurn sp. nov., a Saccharolytic Species from Sewage Sludge. J Gen Appl Microbiol 32(1):132-135 58. Murray WD. 1986. Symbiotic Relationship of Bacteroides cellulosolvens and Clostridium saccharolyticum in Cellulose Fermentationt. J Gen Appl Microbiol 51(4):710-714 59. Muyzer Gerard and Smalla Kornelia. 1998. Application of denaturing gradient gel electrophoresis (DGGE) and temperature gradient gel electrophoresis (TGGE) in microbial ecology. Antonie van Leeuwenhoek 73: 127–141, 1998.. 60. Nandi R, Sengupta S. 1998. Microbial production of hydrogen: an overview. Crit Rev Microbiol 24(1):61-84. 61. Nielsen AT, Liu WT, Filipe C, Grady L, Molin S, Stahl DA. 1999. Identification of a novel group of bacteria in sludge from a deteriorated biological phosphorus removal reactor. Appl Environ Microbiol 65:1251–1258 62. Nocek, J. E. and J. B. Russell. 1988. Protein and energy as an integrated system. Relationship of ruminal protein and carbohydrate availability to microbial synthesis and milk production. J. Dairy Sci 71:2070-2107. 63. Novaes RFV. 1986. Microbiology of anaerobic digestion. Water Sci Technol 18: 1–14. 64. Ohara, H., J. Noguchi, S. Karita, T. Kimura, K. Sakka, and K. Ohmiya. 2000. Sequence of egV and properties of EgV, a Ruminococcus albus endoglucanase containing a dockerin domain. Biosci Biotechnol Biochem 64:80-8. 65. Ohara, H., J. Noguchi, S. Karita, T. Kimura, K. Sakka, and K. Ohmiya. 2000. Sequence of egV and properties of EgV, a Ruminococcus albus endoglucanase containing a dockerin domain. Biosci. Biotechnol. Biochem. 64:80–88. 66. Ozcan, N., C. Cunningham, and W. J. Harris. 1996. Cloning of a cellulase gene from the rumen anaerobe Fibrobacter succinogenes SD35 and partial characterization of the gene product. Lett Appl Microbiol 22:85-9. 67. Pohlschroder M, Leschine SB, Canale-Parola E. 1994. Multicomplex cellulase-xylanase system of Clostridium papyrosolvens C7. J Bacteriol 176(1):70-6. 68. Rani KS, Swamy MV, Seenayya G. 1998. Production of ethanol from various pure and nature cellulosic biomass by Clostridium thermocellum Strains SS21 and SS22. Process Biochemistry 33: 435-440. 69. Rogers GM and Baecker AAW. 1991. Clostridium xylanolyticum sp. nov. an Anaerobic Xylanolytic Bacterium from Decayed Pinus patula Wood Chips. J Gen Appl Microbiol 41(1):140-143 70. Rogers GM, Baecker AAW. 1991. Clostridium xylanolyticum sp. nov., an Anaerobic Xylanolytic Bacterium from Decayed Pinus patula Wood Chips. Int J Syst Bacteriol 41:140-143 71. Rogers P, Gottschalk G (1993) Biochemistry and regulation of acid and solvent production in clostridia. In: Woods DR (eds) The clostridia and biotechnology. Butterworth- Heinemann, Stoneham, pp 25–50 72. Russell JB, Muck RE, Weimer PJ. 2009. Quantitative analysis of cellulose degradation and growth of cellulolytic bacteria in the rumen. FEMS Microbiol Ecol 67(2):183-97. Review. 73. Russell JB, Rychlik JL. 2001. Factors that alter rumen microbial ecology. Science 292(5519):1119-22. Review. 74. Schwarz, W.H. 2001. The cellulosome and cellulose degradation by anaerobic bacteria. Appl Microbiol Biotechnol 56: 634-649. streptomycete: Streptomyces albaduncus. Acta Microbiol Immunol Hung 44:229-39. 75. Tamburini E, LeonAG, PeritoB, Mastromei G. 2003. Characterization of bacterial pectino lytic strains involvedin the water retting process. EnvironMicrobiol 5:730-6. 76. Tamaru, Y., S. Karita, A. Ibrahim, H. Chan, and R. H. Doi. 2000. A large gene cluster for the clostridium cellulovorans cellulosome. J. Bacteriol. 182: 5906–5910. 77. Tardy F, Nasser W, Robert-Baudouy J, Hugouvieux Cotte Pattat N. 1997. Comparative analysis of the five major Erwinia chrysanthemi pectate lyases: enzyme characteristics and potential inhibitors. J Bacteriol 179: 2503-2511. 78. Uden P, Rounsaville TR, Wiggans GR, Van Soest PJ. 1982..Links The measurement of liquid and solid digesta retention in ruminants, equines and rabbits given timothy (Phleum pratense) hay. Br J Nutr 48(2):329-39 79. Ulbrik TYL. 1991. Cellulolytic fermentation by Clostridium thermocellum, Smartech. Gatech. Edu. Bayer EA., Shoham Y, Lamed R. 2001. Cellulose-decomposing bac-teria and their enzyme systems. In M. Dworkin, S. Falkow, E. Rosenberg, K.-H. Schleifer, and E. Stackebrandt (ed.), The prokaryotes: an evolving electronic resource for the microbiological community, 3rd ed. [Online.] Springer-Verlag, New York, N.Y. 80. van Solingen, P., D. Meijer, W. A. van der Kleij, C. Barnett, R. Bolle, S. D. Power, and B. E. Jones. 2001. Cloning and expression of an endocellulase gene from a novel streptomycete isolated from an East African soda lake. Extremophiles 5:333-41. 81. Walker E, Warren FL. 1938. Decomposition of cellulose by Cytophaga. I. Biochem J. 32(1):31-43 82. Woods DR (1995) The genetic engineering of microbial solvent production. Trends Biotechnol 13:259–264 83. Xie G, Bruce DC, Challacombe JF, Chertkov O, Detter JC, Gilna P, Han CS et al. 2007. Genome sequence of the cellulolytic gliding bacterium Cytophaga hutchinsonii. Appl Environ Microbiol. 73(11):3536-46.
摘要: 近年來石油價格迅速上漲,生質能源技術的發展再一次受到重視。由於之物化特性最近似汽油,所以丁醇被視為未來最有可能替代石油的生質燃料。如今生質燃料之技術已推向第二代,乃係以纖維廢棄物做為醱酵的原料產生質能。植物細胞壁主要由纖維素、半纖維素、木質素組成複雜並與木質素鍵結強化結構,所以需要具有纖維素分解酵素之微生物來進行降解。本研究目標利用篩自牛瘤胃的纖維素分解菌株Clostridium puniceum Ru6及Clostridium xylanolyticum Ru15 與Clostridium acetobutylicum ATCC824 建立仿生式的同步醣化醱酵丁醇與氫氣之系統。實驗以狼尾草做為基質醣化,探討在醇菌培養與共培養方式下纖維素醣化醱酵之能力,並運用回應面法求得降解纖維素醱酵產丁醇與氫氣的最佳操作條件。實驗結果顯示:於狼尾草做為單一碳源醣化實驗中,以Clostridium xylanolyticum Ru15與Clostridium acetobutylicum ATCC824有最佳的纖維素降解成果,木質纖維素的最佳之降解率高達 12 %,半纖維素降解率高達 11 %。於共培養方式降解纖維素同步醱酵之結果看來,丁醇醱酵量並無非常顯著的加乘結果。因此,改變策略建立以人工合成之纖維素分解酵素複合體之菌株與 Clostridium acetobutylicum 重組同步醣化醱酵系統,分析胞外纖維素酵素活性與醣化結果,轉植株有顯著的分解狼尾草醣化之能力。
In our previous study, a stable rumen-mimic bacterial consortia system that could act as functional union for biohydrogen and biofuels production was constructed. The result revealed that cellulolytic Clostridial strains were predominated in the system. In this study, to enhance the efficiency for simultaneous saccharification and fermentation (SSF) by Clostridium xylanolyticum Ru15 and Clostridium puniceum Ru6 were co-cultured to develop a dual microbial SSF system. The fermentative metabolites analyzed to isolate that including acetate, butyrate, ethanol and butanol. Since C. acetobutylicum strain 824 could efficiently utilize butyrate for butanol production. However, the co-culture system were use C. acetobutylicum strain 824 with the cellulolytic Clostridial strains that could degradation lignocellulose of napiergrass 12%, and degradation hemicellulose 11%, but that was nonsignificant additive of butanol production by SSF. Finally, in order to enhance butanol production and saccharification, we were enhanc the ability of sacharification of bacteria by synthetic biology. Our bacteria of synthetic could significant additive ability to degradation and saccharification lignocellulose.
URI: http://hdl.handle.net/11455/23828
其他識別: U0005-2808201115490800
Appears in Collections:生命科學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.