Please use this identifier to cite or link to this item:
標題: Clostridium pasteurianum F40 的產氫酶和鐵硫蛋白基因之異源表現
Heterologous expression of the hydrogenase 1 and ferredoxin genes of Clostridium pasteurianum F40
作者: 紀映光
Ji, Ying-Wuang
關鍵字: Clostridium pasteurianum
hydrogenase 1
出版社: 生命科學系所
引用: 參考文獻 朱冠穎。2007。白蟻腸道細菌 Clostridium xylanolyticum Ter3 之分離及其糖化纖維 素與產氫活性分析。國立中興大學生命科學所碩士論文 徐志華。2007。以螢光原位雜交技術偵測厭氧醱酵系統中產氫微生物產氫活性。 國立中興大學生命科學所碩士論文。 陳永田。2006。偵測及篩選分離厭氧產氫系統中的微生物。國立中興大學生命科 學所碩士論文。 張瑞仁。2006。以分子生物技術建構厭氣產氫系統之基礎研究。國立中興大學生 命科學所博士論文。 經濟部。2010。能源產業白皮書 楊盛行、林正芳、王繼國。 2003 農廢棄物處理與再利用。國立空中大學,頁 501。 Akhtar, M. K. and P. R. Jones.2009. Construction of a synthetic YdbK-dependent pyruvate: H2 pathway in Escherichia coli BL21 (DE3). Metabolic engineering 11(3): 139-147. Banerjee, M., A. Kumar and H. Kumar.1989. Factors regulating nitrogenase activity and hydrogen evolution in Azolla-Anabaena symbiosis. International journal of hydrogen energy 14(12): 871-879. Benemann, J. 1997. Feasibility analysis of photobiological hydrogen production. International journal of hydrogen energy 22(10-11): 979-987. Brosseau, J. and J. Zajic. 1982. Continuous microbial production of hydrogen gas. International journal of hydrogen energy 7(8): 623-628. Buch, B. K. S. G. C., S. Grinna and B. Kruse .2002. Hydrogen, Belona Foundation Fascetti, E., E. D''addario, O. Todini and A. Robertiello .1998. Photosynthetic hydrogen evolution with volatile organic acids derived from the fermentation of source selected municipal solid wastes. International journal of hydrogen energy 23(9): 753-760. Calusinska, M., T. Happe, B. Joris and A. Wilmotte. 2010. The surprising diversity of clostridial hydrogenases: a comparative genomic perspective. Microbiology 156(6): 1575. Chen, J. S. and L. E. Mortenson. 1974. Purification and properties of hydrogenase from Clostridium pasteurianum W5. Biochimica et Biophysica Acta (BBA)-Protein Structure 371(2): 283-298. Chen, Z., B. J. Lemon, S. Huang, D. J. Swartz, J. W. Peters and K. A. Bagley. 2002. Infrared studies of the CO-inhibited form of the Fe-only hydrogenase from Clostridium pasteurianum I: examination of its light sensitivity at cryogenic temperatures. Biochemistry 41(6): 2036-2043. Demain, A. L., M. Newcomb and J. Wu. 2005. Cellulase, clostridia, and ethanol. Microbiology and Molecular Biology Reviews 69(1): 124. Fascetti, E., E. D''addario, O. Todini and A. Robertiello. 1998. Photosynthetic hydrogen evolution with volatile organic acids derived from the fermentation of source selected municipal solid wastes. International journal of hydrogen energy 23(9): 753-760. Gaffron, H., Rubin, J.1992. Fermentative and photochemical production of hydrogen by algae. J Gen Physiol 26:219-40. Gaffron, H. and J. Rubin .1942. Fermentative and photochemical production of hydrogen in algae. The journal of general physiology 26(2): 219. Gogotov, I., N. Zorin and L. Serebriakova. 1991. Hydrogen production by model systems including hydrogenases from phototrophic bacteria. International journal of hydrogen energy 16(6): 393-396. Gorwa, M. F., C. Croux and P. Soucaille. 1996. Molecular characterization and transcriptional analysis of the putative hydrogenase gene of Clostridium acetobutylicum ATCC 824. Journal of bacteriology 178(9): 2668. Graves, M. C., G. T. Mullenbach and J. C. Rabinowitz. 1985. Cloning and nucleotide sequence determination of the Clostridium pasteurianum ferredoxin gene. Proceedings of the National Academy of Sciences 82(6): 1653. Graves, M. and J. Rabinowitz. 1986. In vivo and in vitro transcription of the Clostridium pasteurianum ferredoxin gene. Evidence for extended promoter elements in gram-positive organisms. Journal of Biological Chemistry 261(24): 11409. Greene, N., N. R. D. Council, E. Foundation and N. C. o. E. Policy.2004. Growing energy: how biofuels can help end America''s oil dependence, Natural Resources Defense Council. Guedon, E., M. Desvaux, S. Payot and H. Petitdemange. 1999. Growth inhibition of Clostridium cellulolyticum by an inefficiently regulated carbon flow. Microbiology Guerrini, O., B. Burlat, C. Leger, B. Guigliarelli, P. Soucaille and L. Girbal .2008. Characterization of two 2 [4Fe4S] ferredoxins from Clostridium acetobutylicum. Current microbiology 56(3): 261-267. Hanahan, D. 1983. Studies on transformation of Escherichia coli with plasmids. Journal of molecular biology 166(4): 557-580. Henrissat, B. 1998.Glycosidase families. Biochemical Society Transactions 26(2): 153-156. Hillring, B.2002. Rural development and bioenergy--experiences from 20 years of development in Sweden. Biomass and Bioenergy 23(6): 443-451. Higashide, W., Y. Li, Y. Yang and J. C. Liao. 2011. Metabolic engineering of clostridium cellulolyticum for isobutanol production from cellulose. Applied and environmental microbiology: AEM. 02454-02410v02451. Kaji, M., Y. Taniguchi, O. Matsushita, S. Katayama, S. Miyata, S. Morita and A. Okabe .1999. The hydA gene encoding the H2 evolving hydrogenase of Clostridium perfringens: molecular characterization and expression of the gene. FEMS microbiology letters 181(2): 329-336. Kim, B. H., P. Bellows, R. Datta and J. Zeikus. 1984. Control of carbon and electron flow in Clostridium acetobutylicum fermentations: utilization of carbon monoxide to inhibit hydrogen production and to enhance butanol yields. Applied and environmental microbiology 48(4): 764. King, P. W., M. C. Posewitz, M. L. Ghirardi and M. Seibert. 2006. Functional studies of [FeFe] hydrogenase maturation in an Escherichia coli biosynthetic system.Journal of bacteriology 188(6): 2163. Kuchenreuther, J. M., C. S. Grady-Smith, A. S. Bingham, S. J. George, S. P.Cramer and J. R. Swartz. 2010. High-yield expression of heterologous [FeFe] hydrogenases in Escherichia coli. PLoS One 5(11): e15491. Lanz, A., J. Heffel, C. Messer and C. o. t. D. E. T. T. Center. 2001. Hydrogen fuel cell engines and related technologies, College of the Desert, Energy Technology Training Center. Lane, D. J., Pace, B., Olsen, G. J., Stahl, D. A., Sogin, M. L., Pace, N. R. 1985. Rapid detection of 16S ribosomal RNA sequences for hylogenetic analysis. Proc. Natl. Acad. Sci. USA 82, pp. 6955–6959 Lehman, I., M. J. Bessman, E. S. Simms and A. Kornberg .1958. Enzymatic synthesis of deoxyribonucleic acid. J. biol. Chem 233: 163-170. Lemon, B. J. and J. W. Peters. 1999. Binding of exogenously added carbon monoxide at the active site of the iron-only hydrogenase (CpI) from Clostridium pasteurianum. Biochemistry 38(40): 12969-12973. Lubitz, W. and W. Tumas .2007. Hydrogen: an overview. Chemical reviews 107(10):3900-3903. Lutke-Eversloh, T. and H. Bahl. 2011. Metabolic engineering of Clostridium acetobutylicum: recent advances to improve butanol production. Current Opinion in Biotechnology. 145(8): 1831. Lynd, L. R., P. J. Weimer, W. H. van Zyl and I. S. Pretorius .2002. Microbial Cellulose Utilization: Fundamentals and Biotechnology. Microbiology and Molecular Biology Reviews. 66: 506-577. Ma, K., Schicho, R.N., Kelly, R.,M. and Adams, M.W.1993 Hydrogenase of the hyperthermophile Pyrococcus furiosus is an elemental sulfur reductase or sulfhydrogenase: evidence for a sulfur-reducing hydrogenase ancestor. Proc.Natl. Acad. Sci.90, 5341-5344. Macor, K., R. Czernuszewicz, M. Adams and T. Spiro. 1987. An investigation of hydrogenase I and hydrogenase II from Clostridium pasteurianum by resonance Raman spectroscopy. Evidence for a [2Fe-2S] cluster in hydrogenase I. Journal of Biological Chemistry 262(21): 9945. Mermelstein, L. and E. Papoutsakis 1993. In vivo methylation in Escherichia coli by the Bacillus subtilis phage phi 3T I methyltransferase to protect plasmids from restriction upon transformation of Clostridium acetobutylicum ATCC 824. Applied and environmental microbiology 59(4): 1077. Meyer, J. and J. Gagnon.1991. Primary structure of hydrogenase from Clostridium pasteurianum. Biochemistry 30(40): 9697-9704. Meyer, J. (1995). Sequence of a 10.5 kbp fragment of Clostridium pasteurianum genomic DNA encompassing the hydrogenase I gene and two spore germination genes. Anaerobe 1(3): 169-174. Orme-Johnson, W., W. Hamilton, T. Jones, M. Y. W. Tso, R. Burris, V. Shah and W. Brill. 1972. Electron paramagnetic resonance of nitrogenase and nitrogenase components from Clostridium pasteurianum W5 and Azotobacter vinelandii OP. Proceedings of the National Academy of Sciences 69(11): 3142. Peters, J. W., W. N. Lanzilotta, B. J. Lemon and L. C. Seefeldt .1998. X-ray Crystal Structure of the Fe-Only Hydrogenase (CpI) from Clostridium pasteurianum to 1.8 Angstrom Resolution. Science. 282. Pilet, E., Y. Nicolet, C. Mathevon, T. Douki, J. C. Fontecilla-Camps and M. Fontecave .2009. The role of the maturase HydG in [FeFe]-hydrogenase active site synthesis and assembly. FEBS Letters 583(3): 506-511. Ramachandran, R. and R. K. Menon. 1998. An overview of industrial uses of hydrogen. International journal of hydrogen energy 23(7): 593-598. Rabinowitz, J. 1972. Preparation and propertiesof clostridial ferredoxins. Methods in enzymology 24: 431-446. Rouvinen, J., T. Bergfors, T. Teeri, J. Knowles and T. Jones. 1990.Three-dimensional structure of cellobiohydrolase II from Trichoderma reesei. Science 249(4967): 380. Rubach, J. K., X. Brazzolotto, J. Gaillard and M. Fontecave. 2005. Biochemical characterization of the HydE and HydG iron-only hydrogenase maturation enzymes from Thermatoga maritima. FEBS Letters 579(22): 5055-5060. Sambrook, J., Fritsch, E. F., Maniatis, T. 1989. Molecular cloning: a laboratory manual, Cold Spring Habor Laboratory Press,USA Santangelo, J. D., P. Durre and D. R. Woods .1995. Characterization and expression of the hydrogenase-encoding gene from Clostridium acetobutylicum P262. Microbiology 141(1): 171. Tanisho, S., Y. Suzuki and N. Wakao . 1987. Fermentative hydrogen evolution by Enterobacter aerogenes strain E. 82005. International journal of hydrogen energy 12(9): 623-627. Teeri, T. T.1997. Crystalline cellulose degradation: new insight into the function of cellobiohydrolases. Trends Biotechnol. 15:160–167. Thauer, R. K., A. R. Klein and G. C. Hartmann. 1996. Reactions with molecular hydrogen in microorganisms: evidence for a purely organic hydrogenation catalyst. Chemical reviews 96(7): 3031-3042. Tyurin, M. V., S. G. Desai and L. R. Lynd .2004. Electrotransformation of Clostridium thermocellum. Applied and environmental microbiology 70(2): 883. Wyman, C. E. 1994. Alternative fuels from biomass and their impact on carbon dioxide accumulation. Applied biochemistry and biotechnology 45(1): 897-915. Yanisch-Perron, C., J. Vieira and J. Messing.1985. Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mpl8 and pUC19 vectors. Gene 33(1): 103-119. Yokoi, H., T. Ohkawara, J. Hirose, S. Hayashi and Y. Takasaki. 1995. Characteristics of hydrogen production by aciduric Enterobacter aerogenes strain HO-39. Journal of fermentation and bioengineering 80(6): 571-574. Zhou, T., Y. Mo, A. Liu, Z. Zhou and K. Tsai .2004. Enzymatic mechanism of Fe-only hydrogenase: density functional study on HH making/breaking at the diiron cluster with concerted proton and electron transfers. Inorganic chemistry 43(3):923-930.
摘要: 氫氣是在石油面臨枯竭的當今,極具發展性且潔淨的能源之一。由於許多微生物能夠在利用各種碳水化合物進行生長代謝的過程中產生氫氣、乙醇及丁醇等可作為燃料的產物,藉由微生物產氫是各種產氫方式中,最不具地域性、成本較低廉且能永續發展的方式。梭狀芽孢菌屬(Clostridium)細菌是目前最常被用來深入研究微生物產氫的細菌之一,這類細菌能夠在厭氧的狀況下,利用醣解作用所產生的NADH,經由鐵硫蛋白(ferredoxin)的攜帶,將電子傳遞至產氫酶(hygrogenase),在產氫酶蛋白中,再經由4個鐵硫集團(Fe-S cluster)的傳遞,將電子送至產氫酶活性中心的H-cluster和氫氣離子形成氫氣。因此在梭狀芽孢菌屬細菌的產氫途徑中,產氫酶以及鐵硫蛋白扮演著不可或缺的重要角色。實驗室前人由白蟻腸道分離出來一株具有極佳半纖維素分解能力,但只稍具產氫能力的菌株Clostridium xylanolyticum Ter3,本研究希望藉由遺傳工程的方式提升其產氫能力,使之成為碳源利用產氫能力俱佳的菌種。實驗的策略是將實驗室另一株優良產氫菌株Clostridium pasteuriaum F40的產氫酶基因和鐵硫蛋白基因選殖到C. xylanolyticum Ter3。從C. pasteuriaum F40的染色體得到完整的兩個基因並經定序確認之後,將兩個基因一起用E.coli與Clostridium屬細菌的 shuttle vector pIMP1構築成為重組質體pIMP1F40d。為了避免將此重組質體送入C.xylanolyticum Ter3時發生新宿主菌的限制酶切割外源 DNA的問題,除了將重組質體送入E.coli DH5α之外,同時也將其送入E.coli ER2275及E.coli JM110,以便利用ER2275的甲基酶ψ3t1和JM110的甲基酶Dam及Dcm進行特定限制酶辨識位置的甲基化。在將pIMP1F40d送入E.coli DH5α之後,RT-PCR實驗分析證明選殖的產氫酶基因與鐵硫蛋白基因均能轉錄出mRNA,而分析E.coli DH5α、E.coli ER2275及E.coli JM110的轉殖株其氫氣能力皆較個別的wild type有4.7%~108%的增加。然而進一步嘗試藉由電穿孔轉形作用將重組質體送入C.xylanolyticum Ter3卻未能成功,可能是由於C.xylanolyticum Ter3有其特有的限制酶會辨認外源 DNA並加以切割所致。
Hydrogen is one of the most developmental clean energy under the oil shortage of today. Some microorganisms can break down cellulose to produce biofuels like hydrogen, ethanol and butanol. Using microorganisms to produce hydrogen is the least regional, lower-cost, and sustainable way among various hydrogen production methods. The genus Clostridium are one of the bacteria most often used for studying hydrogen production, they are strict anaerobes, when they carry out fermentation, NADH is produced in the glycolytic pathway and its electrons are transferred to hydrogenase by ferredoxin. In hydrogenase, Fe-S cluster transfers electrons to active site, H-cluster, to form hydrogen with proton. In this hydrogen production pathway, both hydrogenase and ferredoxin are indispensable. Clostridium xylanolyticum Ter3 is an early isolate of our lab, it has good hemicellulolytic ability but moderate hydrogen-producing ability. In this study an attempt was made to improve its hydrogen production by transforming C. xylanolyticum Ter3 with the hydrogenase gene and ferredoxin gene of C. pasteurianum F40, which is a very good hydrogen producer isolated by our lab. After both whole genes were obtained from C. pasteurianum F40 chromosome and sequenced, they were cloned into a shuttle vector, pIMP1,of E.coli and Clostridium. The resulting recombinant plasmid pIMP1F40D was used to transform E.coli DH5α first, in order to protect pIMP1F40D from degradation by specific clostridial restriction endonuclease, pIMP1F40D was also introduced into E. coli strains ER2275(pAN1) and JM110 to carry out in vivo methylation with then known methylases, ψ3t1 and Dam/Dcm, respectively. The results of RT-PCR indicated that both hydrogenase gene and ferredoxin gene could be transcribed in E.coli DH5α, but SDS-PAGE did not clearly show the translating products of both genes. When these transformed strains were grown anaerobically in LB medium containing 10 g/l glucose for 16 hours, they produced 25%~114% more hydrogen than their wild type strains. Unfortunately the transformation of C. xylanolyticum Ter3 with pIMP1F40D by electroporation was unsuccessful, it seems that C. xylanolyticum Ter3 possesses unknown restrictiction - modification system to be disclosed further.
其他識別: U0005-2908201112330300
Appears in Collections:生命科學系所



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.