Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/23942
標題: 與竹嵌紋病毒三重疊基因區第二轉譯蛋白相互作用之宿主蛋白搜尋
The Screening of Host Factor(s) Interacting with the Triple-Gene-Block Protein 2 of Bamboo Mosaic Virus
作者: 林宗旻
Lin, Tzung-Min
關鍵字: Bamboo Mosaic Virus
竹嵌紋病毒
出版社: 生物化學研究所
引用: Angell, S.M., Davies, C., and Baulcombe, D.C. (1996). Cell-to-cell movement of potato virus X is associated with a change in the size-exclusion limit of plasmodesmata in trichome cells of Nicotiana clevelandii. Virology 216, 197-201. Beck, D.L., Guilford, P.J., Voot, D.M., Andersen, M.T., and Forster, R.L. (1991). Triple gene block proteins of white clover mosaic potexvirus are required for transport. Virology 183, 695-702. Carrington, J.C., Kasschau, K.D., Mahajan, S.K., and Schaad, M.C. (1996). Cell-to-Cell and Long-Distance Transport of Viruses in Plants. Plant Cell 8, 1669-1681. Chang, B.Y., Lin, N.S., Liou, D.Y., Chen, J.P., Liou, G.G., and Hsu, Y.H. (1997). Subcellular localization of the 28 kDa protein of the triple-gene-block of bamboo mosaic potexvirus. J Gen Virol 78, 1175-1179. Chen, M.H., Sheng, J., Hind, G., Handa, A.K., and Citovsky, V. (2000). Interaction between the tobacco mosaic virus movement protein and host cell pectin methylesterases is required for viral cell-to-cell movement. EMBO J 19, 913-920. Citovsky, V., Knorr, D., Schuster, G., and Zambryski, P. (1990). The P30 movement protein of tobacco mosaic virus is a single-strand nucleic acid binding protein. Cell 60, 637-647. Citovsky, V., Wong, M.L., Shaw, A.L., Prasad, B.V., and Zambryski, P. (1992). Visualization and characterization of tobacco mosaic virus movement protein binding to single-stranded nucleic acids. Plant Cell 4, 397-411. Citovsky, V., McLean, B.G., Zupan, J.R., and Zambryski, P. (1993). Phosphorylation of tobacco mosaic virus cell-to-cell movement protein by a developmentally regulated plant cell wall-associated protein kinase. Genes Dev 7, 904-910. Coster R.V., Smet J., George E., Meirleir L. D., Seneca S., Hove J. V., Sebire G., Verhelst H., BleeckerJ. D., Vlem B.V., Vreloo P., AND Leroy J.(2001). Blue Native Polyacrylamide Gel Electrophoresis: A Powerful Tool in Diagnosis of Oxidative Phosphorylation Defects PEDIATRIC RESEARCH 50, 658-665 Cowan, G.H., Lioliopoulou, F., Ziegler, A., and Torrance, L. (2002). Subcellular localisation, protein interactions, and RNA binding of Potato mop-top virus triple gene block proteins. Virology 298, 106-115. Davies, C., Hills, G., and Baulcombe, D.C. (1993). Sub-cellular localization of the 25-kDa protein encoded in the triple gene block of potato virus X. Virology 197, 166-175. Deom, C.M., Schubert, K.R., Wolf, S., Holt, C.A., Lucas, W.J., and Beachy, R.N. (1990). Molecular characterization and biological function of the movement protein of tobacco mosaic virus in transgenic plants. Proc Natl Acad Sci U S A 87, 3284-3288. Derrick, P.M., Backer, H., and Oparka, K.J. (1990). Effect of virus infection on symplastic transport of fluorescent tracers in Nicotiana clevelandii leaf epidermis. Planta 181, 555-559. Derrick, P.M., Barker, H., and Oparka, K.J. (1992). Increase in Plasmodesmatal Permeability during Cell-to-Cell Spread of Tobacco Rattle Virus from Individually Inoculated Cells. Plant Cell 4, 1405-1412. Ding, B. (1998). Intercellular protein trafficking through plasmodesmata. Plant Mol Biol 38, 279-310. Dorokhov, Y.L., Makinen, K., Frolova, O.Y., Merits, A., Saarinen, J., Kalkkinen, N., Atabekov, J.G., and Saarma, M. (1999). A novel function for a ubiquitous plant enzyme pectin methylesterase: the host-cell receptor for the tobacco mosaic virus movement protein. FEBS Lett 461, 223-228. Gibbs, A.J. (1976). Viruses and plasmodesmata. In intercellular communication in plants: Studies on plasmodesmata, B. E. S. Gunning and A. W. Robards, eds (Berlin: Springer-Verlag), pp. 149-164. Gorshkova, E.N., Erokhina, T.N., Stroganova, T.A., Yelina, N.E., Zamyatnin, A.A., Kalinina, N.O., Schiemann, J., Solovyev, A.G., and Morozov, S.Y. (2003). Immunodetection and fluorescent microscopy of transgenically expressed hordeivirus TGBp3 movement protein reveals its association with endoplasmic reticulum elements in close proximity to plasmodesmata. J Gen Virol 84, 985-994. Heinlein, M., Epel, B.L., Padgett, H.S., and Beachy, R.N. (1995). Interaction of tobamovirus movement protein with the plant cytoskeleton. Science 270, 1983-1985. Hull, R. (1989). The movement of viruses in plant. Annu Rev Phytopathol 27, 213-240. Hsu, H.T., Hsu, Y.H., Bi, I.P., Lin, N.S., and Chang, B.Y. (2004). Biological functions of the cytoplasmic TGBp1 inclusions of bamboo mosaic potexvirus. Arch Virol 149, 1027-1035. Kasteel, D., Wellink, J., Verver, J., van Lent, J., Goldbach, R., and van Kammen, A. (1993). The involvement of cowpea mosaic virus M RNA-encoded proteins in tubule formation. J Gen Virol 74, 1721-1724. Kormelink, R., Storms, M., Van Lent, J., Peters, D., and Goldbach, R. (1994). Expression and subcellular location of the NSM protein of tomato spotted wilt virus (TSWV), a putative viral movement protein. Virology 200, 56-65. Kragler, F., Monzer, J., Shash, K., Xoconostle-Cazares, B., and Lucas, W.J. (1998). Cell-to-cell transport of proteins: requirement for unfolding and characterization of binding to a putative plasmodesmal receptor. Plant J. 15, 367-381. Krall L., Wiedemann U., Unsin G., Weiss S., Domke N., and Baron C. (2002). Detergent extraction identifies different VirB protein subassemblies of the type IV secretion machinery in the membranes of Agrobacterium tumefaciens. PNAS 99, 11405-11410. Lin, M.T., Kitajima, E.W., Cupertino, F.P., and Costa, C.L. (1977). Partial purification and same properties of bamboo mosaic virus. Phytopathology 67, 1439-1443. Lin. N.S., Lin, F.Z., Huang, T.Y., and Hsu, Y.H. (1992). Genome properties of bamboo mosaic virus. Phytopathology 82, 731-734. Lin, N.S., Lin, B.Y., Lo, N.W., Hu, C.C., Chow, T.Y., and Hsu, Y.H. (1994). Nucleotide sequence of the genomic RNA of bamboo mosaic potexvirus. J Gen Virol 75, 2513-2518. Linstead, P.J., Hills, G.J., Plaskitt, K.A., Wilson, I.G., Harker, C.L., and Maule, A.J. (1988). The subcellular localization of the gene I product of cauliflower mosaic virus is consistent with a function associated with virus spread. J Gen Virol 69, 1809-1818. Lough, T.J., Shash, K., Xoconostle-Cazares, B., Hofstra, K.R., Beck, D.L., Balmori, E., Forster, R.L. , and Lucas, W.J. (1998). Molecular dissection of the mechanism by which potexvirus triple gene block proteins mediate cell-to-cell transport of infectious RNA. Mol Plant Microbe Interact 11, 801-814. Lough, T.J., Netzler, N.E., Emerson, S.J., Sutherland, P., Carr, F., Beck, D.L., Lucas, W.J., and Forster, R.L. (2000). Cell-to-cell movement of potexviruses: evidence for a ribonucleic protein complex involving the coat protein and first triple gene block protein. Mol Plant Microbe Interact 13, 962-974. Lough, T.J., Emerson, S.J., Lucas, W.J., and Forster, R.L. (2001). Trans-complementation of long-distance movement of White clover mosaic virus triple gene block (TGB) mutants: phloem-associated movement of TGBp1. Virology 288, 18-28. Lucas, W.J., and Gibertson, R.L. (1994). Plasmodesmata in Relation to Viral Movement within Leaf Tissues. Annu Rev Phytopathol 32, 387-415. Lucas, W.J. (1999). Plasmodesmata and the cell-to-cell transport of proteins and nucleoprotein complexes. J Exp Bot 50, 979-987. Majima E., Ikawa K., Takeda M., Hashimoto M., Shinohara Y., and Terada H. (1995). Translocation of Loops Regulates Transport Activity of Mitochondral ADP/ATP Carrier Deduced from Formation of a Specific Intermolecular Disulfiede Bridge Catalyzed by Copper-o-Phenanthroline. The Journal Biological Chemistry 207, 29548-29554 Malcuit, I., Marano, M.R., Kavanagh, T.A., De Jong, W., Forsyth, A., and Baulcombe, D.C. (1999). The 25-kDa Movement Protein of PVX Elicits Nb-Mediated Hypersensitive Cell Death in Potato. Mol Plant Microbe Interact 12, 536-543. Margarita M. Camacho-Carvajal, Bernd Wollscheid, Ruedi Aebersold, Viktor Steimle, and Wolfgang W. A. Schamel. (2004). Two-dimensional Blue Native/SDS Gel Electrophoresis of Multi-Protein Complexes from Whole Cellular Lysates. Molecular & Cellular Proteomics 3.2, 176-182 Maire M., Champeil P., and Moller J. V. (2000). Interaction of membrane proteins and lipids with solubilizing detergents. Biochimica et Biophysica 1508, 86-111 Matsushita, Y., Miyakawa, M., Nisiguchi, M., and Nyunoya, H. (2002). Cloning of a tobacco cDNA coding for a putative transcriptional coactivator MBF1 that interacts with the tomato mosaic virus movement protein. J Exp Bot 53, 1531-1532. Maule, A.J. (1991). Virus movement in infected plants. Crit Rev Plant Sci 9, 457-473. McLean, B.G., Waigmann, E., Citovsky, V., and Zambryski, P. (1993). Cell-to-cell movement of plant viruses. Trends Microbiol 1, 105-109. McLean, B.G., Zupan, J., and Zambryski, P.C. (1995). Tobacco mosaic virus movement protein associates with the cytoskeleton in tobacco cells. Plant Cell 7, 2101-2114. Mitra, R., Krishnamurthy, K., Blancaflor, E., Payton, M., Nelson, R.S., and Verchot-Lubicz, J. (2003). The Potato virus X TGBp2 protein association with the endoplasmic reticulum plays a role in but is not sufficient for viral cell-to-cell movement. Virology 312, 35-48. Morozov, S., Fedorkin, O.N., Juttner, G., Schiemann, J., Baulcombe, D.C., and Atabekov, J.G. (1997). Complementation of a potato virus X mutant mediated by bombardment of plant tissues with cloned viral movement protein genes. J Gen Virol 78, 2077-2083. Morozov, S.Y., Solovyev, A.G., Kalinina, N.O., Fedorkin, O.N., Samuilova, O.V., Schiemann, J., and Atabekov, J.G. (1999). Evidence for two nonoverlapping functional domains in the potato virus X 25K movement protein. Virology 260, 55-63. Poirson, A., Turner, A.P., Giovane, C., Berna, A., Roberts, K., and Godefroy-Colburn, T. (1993). Effect of the alfalfa mosaic virus movement protein expressed in transgenic plants on the permeability of plasmodesmata. J Gen Virol 74, 2459-2461. Ritzenthaler, C., Schmit, A.C., Michler, P., Stussi-Garaud, C., and Pinck, L. (1995). Grapevine fanleaf nepovirus P38 putative movement protein is located on tubules in vivo. Mol Plant Microbe Interact 8, 379-387. Rouleau, M., Smith, R.J., Bancroft, J.B., and Mackie, G.A. (1994). Purification, properties, and subcellular localization of foxtail mosaic potexvirus 26-kDa protein. Virology 204, 254-265. Schagger H., and Jagow G. V. (1991). Blue native electrophoresis for lsolation of membrane protein complexes in enzymatically active form. Analytical Biochemistry 199. 223-231 Schagger H.,Cramer W. A., and Jagow G. V. (1994). Analysis of molecular masses and oligomeric states of protein complexes by blue native electrophoresis and isolation of membrane protein complexes by two-dimensional native electrophoresis. Analytical Biochemistry 217. 220-230. Solovyev, A.G., Stroganova, T.A., Zamyatnin, A.A., Jr., Fedorkin, O.N., Schiemann, J., and Morozov, S.Y. (2000). Subcellular sorting of small membrane-associated triple gene block proteins: TGBp3-assisted targeting of TGBp2. Virology 269, 113-127. Tomenius, K., Clapham, D., and Meshi, T. (1987). Localization by immunogold cytochemistry of the virus-coded 30K protein in plasmodesmata of leaves infect with tobacco mosaic virus. Virology 160, 363-371. Travis R. L., Booz M. L. (1979). Partial characterization of a potassium-stimulated adenosine triphosphatease from the plasma membrane of meristematic and mature soybean root tissue. Plant physiol 63, 573-577 Tzfira, T., Rhee, Y., Chen, M.H., and Citovsky, V. (2000). Nucleic acid transport in plant-microbe interactions: the molecules that walk through the walls. Annu Rev Microbiol 54, 187-219. Wellink, J., and ven Kammen, A. (1989). Cell-to-cell transport of cowpea mosaic virus requires both the 58K/48K proteins and the capsid proteins. J Gen Virol 70, 2279-2286. Wieczorek, A., and Sanfacon, H. (1993). Characterization and subcellular localization of tomato ringspot nepovirus putative movement protein. Virology 194, 734-742. Wolf, S., Deom, C.M., Beachy, R.N., and Lucas, W.J. (1989). Movement protein of tobacco mosaic virus modifies plasmodesmatal size exclusion limit. Science 246, 377-379. Yang, Y., Ding, B., Baulcombe, D.C., and Verchot, J. (2000). Cell-to-cell movement of the 25K protein of potato virus X is regulated by three other viral proteins. Mol Plant Microbe Interact 13, 599-605. Zamyatnin, A.A., Jr., Solovyev, A.G., Sablina, A.A., Agranovsky, A.A., Katul, L., Vetten, H.J., Schiemann, J., Hinkkanen, A.E., Lehto, K., and Morozov, S.Y. (2002). Dual-colour imaging of membrane protein targeting directed by poa semilatent virus movement protein TGBp3 in plant and mammalian cells. J Gen Virol 83, 651-662.
摘要: 竹嵌紋病毒 (Bamboo mosaic virus, BaMV) 是一種由感染的單子葉植物中所發現的病毒。它需要利用本身基因體三重疊基因區所轉譯出來的蛋白(Triple-Gene-Block proteins, TGBps),協助它在植物細胞中進行移動。本研究乃利用 BN-PAGE(Blue Native Polyacrylamide Gel Electrophoresis) 及 Tricine SDS-PAGE 尋找在 Nicotiana benthamiana 細胞之膜狀構造中,能夠和 BaMV 三重疊基因區第二轉譯蛋白 (TGBp2) 結合,並協助病毒蛋白核酸複合體在細胞與細胞間移動的宿主蛋白。首先,我利用差異離心方式取得健康及感染BaMV的N. benthamiana葉片中的膜狀成份 (P30),並以西方墨點分析比較健康及BaMV感染菸草植株中,TGBp2蛋白的型態,發現感病菸草中之TGBp2主要以單體、雙體及三體之型態存在。接著,我以非離子性清潔劑 (non-ionic detergent) 將可能含有 TGBp2 之蛋白複合體萃取出來,並進一步將其分成 P100 及 S100 兩部份。可能含有 TGBp2 蛋白之複合體先以 BN-PAGE 進行大小聚合體的分離,再以 Tricine SDS-PAGE 將單一複合體中的各個蛋白質分開。實驗結果顯示, P100 中含有四個蛋白複合體,其中分子量約 127 kDa 及 83 kDa 的蛋白聚合體含有 BaMV TGBp2;S100 則有五個蛋白複合體,其中分子量約 200 kDa 的蛋白複合體含有 BaMV TGBp2。利用氧化劑Cu(OP)2 處理 P100,也發現 TGBp2 單體會隨著 Cu(OP)2 的濃度增加而減少。由於 TGBp2 蛋白胺基酸序列上含有二個高度保留的 Cys,推測 TGBp2 可能藉由雙硫鍵與自身或其它蛋白形成聚合體。
Bamboo mosaic virus (BaMV) is a positive-stranded RNA virus that can infect monocotyledons. It needs Triple-Gene-Block proteins (TGBps) to move in the plant cell. Triple-Gene-Block protein 2 (TGBp2) is one of the TGBps. It helps the viral ribonucleoprotein complexes (RNP) to move between the host cells. In this study, Blue Native Polyacrylamide Gel Electrophoresis (BN-PAGE) and Tricine SDS-PAGE were adopted to look for host factors in Nicotiana benthamiana, which can interact with TGBp2 and assist the movement of BaMV. To start with, differential centrifugation was used to isolate proteins in the membrane fraction (P30) of both healthy and BaMV-infected N. benthamiana. Western blot analyses of both healthy and BaMV-infected tobacco revealed that at least monomeric, dimeric and trimeric forms of TGBp2 exist in the BaMV-infected tissues.Furthermore, non-ionic detergent was used to extract membrane protein complexes possibly containing TGBp2. Following extraction, the protein complexes were separated into P100 and S100. The membrane protein complexes, possibly containing TGBp2, were examined with BN-PAGE and Tricine SDS-PAGE followed by Western blotting to identify the TGBp2-containing complexes. Four protein complexes were observed in P100 as examined by BN-PAGE. Two of them, with molecular masses of 127 and 83 kDa, respectively, were TGBp2-associated. Five protein complexes were detected in S100 and only the one with a molecular mass of 200-kDa had TGBp2. The decrease in the content of monomeric TGBp2 in P100 in response to the treatment of the oxidizing agent, Cu(OP)2, suggested that TGBp2 may use disulfide bridge to bond with itself or other host factors。
URI: http://hdl.handle.net/11455/23942
其他識別: U0005-1907200616032000
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-1907200616032000
Appears in Collections:生物化學研究所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.