Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/24081
標題: 格蘭氏陰性植物病原菌非典型PilZ domain 蛋白Xc1028及Xc6012的結構解析與蛋白性質分析
Structural and qualitative analysis of non-canonical PilZ domain proteins Xc1028 and Xc6012 from a Gram-negative phytopathogenic bacterium
作者: 李佐寧
Li, Tso-Ning
關鍵字: Gram-negative
格蘭氏陰性植物病原菌
PilZ
Xc1028
Xc6012
非典型
結構解析
蛋白性質分析
出版社: 生物化學研究所
引用: 1. Aloni, Y., Cohen, R., Benziman, M. and Delmer, D., Solubilization of the UDPglucose:1,4-beta-D-glucan 4-beta-D-glucosyltransferase (cellulose synthase) from Acetobacter xylinum. A comparison of regulatory properties with those of the membrane-bound form of the enzyme. J. Biol. Chem., 1983. 258: p. 4419-4423. 2. Ross, P., Aloni, Y.,Weinhouse, H., Michaeli, D. and Weinberger-Ohana, P., An unusual guanyl oligonucleotide regulates cellulose synthesis in Acetobacter xylinum. FEBS Lett., 1985. 186: p. 191-196. 3. Ross, P., Aloni, Y., Weinhouse, H., Michaeli, D. and Weinberger-Ohana, P., Control of cellulose synthesis Acetobacter xylinum. A unique guanyl oligonucleotide is the immediate activator of the cellulose synthase. Carbohydrate Res., 1986. 149: p. 101-117. 4. Ross, P., Weinhouse, H., Aloni, Y., Michaeli, D., Weinberger-Ohana, P., Regulation of cellulose synthesis in Acetobacter xylinum by cyclic diguanylic acid. Nature, 1987. 325: p. 279-281. 5. Jenal, U., Malone, J., Mechanisms of cyclic-di-GMP signaling in bacteria. Annu. Rev. Genet., 2006. 40: p. 385-407. 6. Schirmer, T., Jenal, U., Structural and mechanistic determinants of c-di-GMP signalling. Nat. Rev. Microbiol., 2009. 7: p. 724-735. 7. Duerig, A., Abel, S., Folcher, M., Nicollier, M., Schwede, T., Amiot, M., Giese, B. and Jenal, U., Second messenger-mediated spatiotemporal control of protein degradation regulates bacterial cell cycle progression. Genes Dev., 2009. 23: p. 93-104. 8. Christen, M., Christen, Beat., Allan, G.M., Folcher, M., Jenö, P., Grzesiek, S. and Jenal, U., DgrA is a member of a new family of cyclic diguanosine monophosphate receptors and controls flagellar motor function in Caulobacter crescentus. Proc. Nat. Acad. Sci. USA, 2007. 104: p. 4112-4117. 9. Huang, B., Whitchurch, C.B. and Mattick, J.S., FimX, a multidomain protein connecting environmental signals to twitching motility in Pseudomonas aeruginosa. J. Bacteriol., 2003. 185: p. 7068-7076. 10. Navarro, M.V.A.S., De, N., Bae, N., Wang, Q. and Sondermann, H., Structural analysis of the GGDEF-EAL domain-containing c-di-GMP receptor FimX. Structure, 2009. 17: p. 1104-1116. 11. Hickman, J.W., Tifrea, D.F. and Harwood, C.S., A chemosensory system that regulates biofilm formation through modulation of cyclic diguanylate levels. Proc. Nat. Acad. Sci. USA, 2005. 102: p. 14422-14427. 12. Hickman, J.W., and Harwood, C.S. , Identification of FleQ from Pseudomonas aeruginosa as a c-di-GMP-responsive transcription factor. Mol. Microbiol., 2008. 69: p. 376-389. 13. Chin, K.H., Lee, Y.C., Tu, Z.L., Chen, C.H., Tseng, Y.H., Yang, J.M., Ryan, R.P., McCarthy, Y., Dow, J.M., Wang, A.H.J. and Chou, S.H., The cAMP receptor-like protein CLP is a novel c-di-GMP receptor linking cell-cell signaling to virulence gene expression in Xanthomonas campestris. J. Mol. Biol., 2010. 396: p. 646-662. 14. Sudarsan, N., Lee, E.R.,Weinberg, Z., Moy, R.H., Kim, J.N., Link, K.H. and Breaker, R.R., Riboswitches in eubacteria sense the second messenger cyclic di-GMP. Science, 2008. 321: p. 411-413. 15. Alm, R.A., Bodero, A.J., Free, P.D. and Mattick, J.S., Identification of a Novel Gene, pilZ, Essential for Type 4 Fimbrial Biogenesis in Pseudomonas aeruginosa. J. Bacteriol., 1996. 178: p. 46-53. 16. Bateman, A., The Pfam protein families database. Nucleic Acids Res., 2004. 32: p. D138-D141. 17. Amikam, D.a.G., M.Y., PilZ domain is part of the bacterial c-di-GMP binding protein. Bioinform., 2006. 22: p. 1-6. 18. Pratt, J.T., Tamayo, R., Tischler, A.D., and Camilli, A., PilZ domain proteins bind cyclic diguanylate and regulate diverse processes in Vibrio cholerae. J. Biol. Chem., 2007. 282: p. 12860-12870. 19. Merighi, M., Lee, V.T., Hyodo, M., Hayakawa, Y. and Lory, S., The second messenger bis-(3''-5'')-cyclic-GMP and its PilZ domain-containing receptor Alg44 are required for alginate biosynthesis in Pseudomonas aeruginosa. Mol. Microb., 2007. 65: p. 876-895. 20. Amikam, D.a.B., M., Cyclic diguanylic acid and cellulose synthesis in Agrobacterium tumefaciens. J. Bacteriol., 1989. 171: p. 6649-6655. 21. Ko, M.a.P., C., Two novel flagellar components and H-NS are involved in the motor function of Escherichia coli. J. Mol. Biol., 2000. 303: p. 371-382. 22. Simm, R., Morr, M., Kader, A., Nimtz, M. and Romling, U., GGDEF and EAL domains inversely regulate cyclic di-GMP levels and transition from sessility to motility. Mol. Microbiol., 2004. 53: p. 1123-1134. 23. Ramelot, T.A., Yee, A., Cort, J.R., Semesi, A., Arrowsmith, C.H., Kennedy, M.A.,Semesi, A., Arrowsmith, C.H. and Kennedy, M.A., NMR structure and binding studies confirm that PA4608 from Pseudomonas aeruginosa is a PilZ domain and a c-di-GMP binding protein. Proteins: Struct. Funct. Genet., 2009. 66: p. 266-271. 24. Ko, J., Ryu, K.S., Kim, H., Shin, J.S., Lee, J.O., Cheong, C. and Choi, B.S., Structure of PP4397 reveals the molecular basis for different c-di-GMP binding modes by PilZ domain proteins. J. Mol. Biol., 2010. 398: p. 97-110. 25. Benach, J., Swaminathan, S.S., Tamayo, R., Handelman, S.K., Folta-Stogniew, E., Ramos, J.E., Forouhar, F., Neely, H., Seetharaman, J., Camilli, A. and Hunt, J. F., The structural basis of cyclic diguanylate signal transduction by PilZ domains. EMBO J., 2007. 56: p. 5153-5166. 26. Mccarthy, Y., Ryan, R.P., O'' donovan, K., He, Y.Q. and Jiang, B.L., The role of PilZ domain proteins in the virulence of Xanthomonas campestrris pv. campestris. Mol. Plant Pathol., 2008. 9: p. 819-824. 27. Kunkel, T.A., Rapid and efficient site-specific mutagenesis without phenotypic selection. Proc. Nat. Acad. Sci. USA, 1985. 82: p. 488-492. 28. Aslanidis, C., and de Jong, P.J., Ligation-independent cloning of PCR products (LIC-PCR). Nucl. Acids Res., 1990. 18: p. 6069-6074. 29. Otwinowski, Z., and Minor, W., Processing of the X-ray diffraction data collected in scillation mode. Methods Enzymol., 1997. 276: p. 307-326. 30. Rhodes, G., Crystallography made crystal clear: a guide for users of macromolecular models. Elsevier Science and Technology Books Press, 2000. 31. Miller, W.H., A Treaticse on Crystallography. British Library, Historical Print Editions, 1839. 32. Bragg, W.L., and Perutz, M.F., The structure of haemoglobin: Fourier projections on the 010 plane. Proc. R. Soc. Lond. A., 1954. 225: p. 315-329. 33. Hendrickson, W., and Ogata, C., Phase determination from multiwavelength anomalous diffraction measurements. Meth. Enzymol., 1997. 276: p. 494-523. 34. Hendrickson, W.A., Analysis of protein structure from diffraction measurement at multiple wavelengths. Trans. ACA, 1985. 21: p. 11-21. 35. Jan, D., Principles of Protein X-ray Crystallography. Springer Press., 1999. 36. Patterson, A.L., A Direct Method for the Determination of the Components of Interatomic Distances in Crystals. Z. Krist., 1935. A90: p. 517-542. 37. Abrahams, J.P., and Leslie, A.G.W., Methods used in the structure determination of bovine mitochondrial F1 ATPase. Acta Cryst., 1996. D52: p. 30-42. 38. Cowtan, K., Gaussian Likelihoods in real and reciprocal space. Prot. Cryst., 2000. 38. 39. de La Fortelle, E., and Bricogne, G., Maximum-likelihood heavy-atom parameter refinement for multiple isomorphous replacement and multi-wavelength anomalous diffraction methods. Methods Enzymol., 1997. 276: p. 472-494. 40. Miller, R., Gallo, S.M., Khalak, H.G. and Weeks, C.M., SnB: crystal structure determination via Shake-and-Bake. J. Appl. Cryst., 1994. 27: p. 613-621. 41. Terwilliger, T.C., Maximum likelihood density modification. Acta Cryst., 2000. D56: p. 965-972. 42. Terwilliger, T.C., Automated main-chain model-building by templatematching and iterative fragment extension. Acta Cryst., 2002. D59: p. 3444-3449. 43. Terwilliger, T.C.a.B., J., Automated MAD and MIR structure solution. Acta Cryst., 1999. D55: p. 849-861. 44. Brunger, A.T., Adams, P.D., Clore, G.M., Gros, P., Grosse-Kunstleve, R.W., Jiang, J.S., Kuszewski, J., Nilges, N., Pannu, N.S., Read, R.J., Rice, L.M., Simonson, T. and Warren, G.L., Crystallography & NMR System (CNS), A new software suite for macromolecular structure determination. Acta Cryst., 1998. D54: p. 905-921. 45. Collaborative Computational Project, N., The CCP4 Suite: Programs for Protein Crystallography. Acta Cryst., 1994. D50: p. 760-763. 46. McRee, D.E., XtalView/Xfit—a versatile program for manipulating atomic coordinates and electron density. J. Struct. Biol., 1999. 125: p. 156-165. 47. Winn, M.D., Isupovb, M.N. and Murshudo, G.N., Use of TLS parameters to model anisotropic displacements in macromolecular refinement. Acta Cryst., 2000. D57: p. 122-133. 48. Guex, N.a.P., M.C., SWISS-MODEL and the Swiss-PdbViewer: An environment for comparative protein modeling. Electrophoresis, 1997. 18: p. 2714-2723. 49. Laskowski, R.A., MacArthur, M.W., Moss, D.S. and Thornton, J.M., PROCHECK-a program to check the stereochemical quality of protein structures. J. App. Cryst., 1993. 26: p. 283-291. 50. Ramachandran, G.N., Ramakrishnan, C. and Sasisekharan, V., Stereochemistry of polypeptide chain configurations. J. Mol. Biol., 1963. 7: p. 95-99. 51. Svedberg, T., and PDEersen, K.O., The ultracentrifuge. Oxford University, London Press., 1940. 52. Hooke, R., Of a New Property in the Air. Micrograph. Observ., 1665. LVIII: p. 217-219. 53. Toepler, A., Beobachtungen nach einer neuen optischen Methode. Maximillan Cohen und Sohn, Bonn Press, 1864. 54. Lamm, O., Die Differentialgleichung der Ultrazentrifugierung. Ark. Mat. Astr. Fys., 1929. 21B: p. 1-4. 55. Schuck, P., Simultaneous radial and wavelength analysis with the Optima XL-A analytical ultracentrifuge. Progr. Colloid Polym. Sci., 1994. 94: p. 1-13. 56. Schuck, P., Sedimentation analysis of noninteracting and self-associating solutes using numerical solutions to the Lamm equation. Biophys. J., 1998. 75: p. 1503-1512. 57. Laue, T.M., Shah, B.D., Ridgeway, T.M. and Pelletier, S.L. Analytical Ultracentrifugation in Biochemistry and Polymer Science., ed. S. Harding, Rowe, A. and Horton, J. 1992: Royal Society of Chemistry, Cambridge Press. 99-125. 58. Dow, J.M., Crossman, L.,Findlay, K., He, Y.Q., Feng, J.X. and Tang, J.L., Biofilm dispersal in Xanthomonas campestris is controlled by cell-cell signaling and is required for full virulence to plants. Proc. Nat. Acad. Sci. USA, 2003. 100: p. 10995-11000. 59. Delcher, A.L., Harmon, D., Kasif, S., White, O., and Salzberg, S.L., Improved microbial gene identification with GLIMMER. Nucleic Acids Res., 1999. 27: p. 4636-4641. 60. Salzberg, S.L., Delcher, A.L., Kasif, S. and White,O., Microbial gene identification using interpolated Markov models. Nucleic Acids Res., 1998. 26: p. 544-548. 61. Carbonnelle, E., Helaine, S., Prouvensier, L., Nassif, X. and Pelicic, V., Type IV pilus biogenesis in Neisseria meningitidis: PilW is involved in a step occurring after pilus assembly, essential for fibre stability and function. Mol. Microbiol., 2005. 55: p. 54-64. 62. Guzzo, C.R., Salinas, R.K., Andrade, M.O. and Farah, C.S., PilZ Protein Structure and Interactions with PilB and the FimX EAL Domain: Implications for Control of Type IV Pilus Biogenesis. J. Mol. Biol., 2009. 393: p. 848-866. 63. Holm, L., and Sander, C.D., A network tool for protein structure comparison. Trends Biochem. Sci., 1995. 20: p. 478-480. 64. Konagurthu, A.S., Whisstock, J.C., Stuckey, P.J. and Lesk, A.M. , MUSTANG: A multiple structural alignment algorithm. Proteins: Struct., Funct., and Bioinform., 2006. 64: p. 559-574. 65. Barton, G.J., ALSCRIPT: a tool to format multiple sequence alignments. Prot. Eng., 1993. 6: p. 37-40. 66. Huguet, E., Hahn, K., Wengelnik, K. and Bonas, U., hpaA mutants of Xanthomonas campestris pv. vesicatoria are affected in pathogenicity but retain the ability to induce host-specific hypersensitive reaction. Mol. Microbiol., 1998. 29: p. 1379-1390. 67. Schweizer, H.D., Small broad-host-range gentamycin resistance gene cassettes for site-specific nsertion and deletion mutagenesis. Biotechniques, 1993. 15: p. 831-834. 68. Matthews, B.W., Solvent content of protein crystals. J. Mol. Biol., 1968. 33: p. 491-497. 69. Matthews, B.W., X-ray crystallographic studies of proteins. Annu. Rev. Phys. Chem., 1976. 27: p. 493-523. 70. Harbury, P.B., Zhang, T., Kim, P.S. and Alber, T., A switch between, two-, three-, and four-stranded coiled coils in GCN4 leucine zipper mutants. Science, 1993. 262: p. 1401-1406. 71. Liu, J., Deng, Y., Zheng, Q., Cheng, C.S. and Kallenbach, N.R., A parallel coiled-coil tetramer with offset helices. Biochem., 2006. 45: p. 15224-15231. 72. Lavigne, P., Preferential heterodimeric parallel coiled-coil formation by synthetic Max and c-Myc leucine zippers: a description of putative electrostatic interactions responsible for the specificity of heterodimerization. J. Mol. Biol., 1995. 254: p. 505-520. 73. Moll, J.R., Attractive interhelical electrostatic interactions in the PAR leucine zipper subfamily (VBP/TEF, HLF, and DBP) preclude heterodimerization with other B-ZIP subfamilies. J. Biol. Chem., 2000. 275: p. 34826-34832. 74. Negi, S.S., Catherine, H. S., Numan, O., Trevor, D. P. and Werner, B., InterProSurf: a web server for predicting interacting sites on protein surfaces. Bioinform., 2006. 23: p. 3397-3399. 75. Lee, B., The interpretation of protein structures: estimation of static accessibility. J. Mol. Biol., 1971. 79: p. 351-371. 76. Li, T.N., Chin, K.H., Liu, J.H., Wang, A.H.J. and Chou, S.H., Xc1028 from Xanthomonas campestris adopts a PilZ domain-like structure without a c-di-GMP switch. Proteins: Struct., Funct. and Bioinform., 2009. 75: p. 282-288. 77. Li, T.N., Chin, K.H., Fung, K.M., Yang, M.T., Wang, A.H.J. and Chou, S.H., A Novel Tetrameric PilZ Domain Structure from Xanthomonads. PLoS ONE, 2011. 6: p. e22036. 78. Kuhner, S., van Noort, V., Betts, M.J., Leo-Macias, A., Batisse, C., Rode, M., Yamada, T., Maier, T., Bader, S. and Beltran-Alvarez, P., Proteome organization in a genome-reduced bacterium. Science, 2009. 326: p. 1235-1240. 79. Rigaut, G., Shevchenko, A., Rutz, B., Wilm, M., Mann, M. and Seraphin, B., A generic protein purification method for protein complex characterization and proteome exploration. Nat. Biotechnol., 1999. 17: p. 1030-1032. 80. Hanahan, D., Studies on transformation of Escherichia coli with plasmids. J. Mol. Biol., 1983. 166: p. 557-580. 81. Studier, F.W., and Moffatt, B.A., Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. J. Mol. Biol., 1986. 189: p. 113-130. 82. Yang, B.T.a.T., Y.H., Production of exopolysaccharide and levels of protease and pectinase activity in pathogenic and non-pathogenic strains of Xanthomonas campestris pv. campestris. Botany Bull. Acad. Sinica, 1988. 29: p. 93-99. 83. Stols, L., Gu, M., Dieckman, L., Raffen, R., Collart, F.R., and Donnelly, M.I. , A new vector for high-throughput, ligation-independent cloning encoding a tobacco etch virus protease cleavage site. Prot. Expr. Purif., 2002. 25.
摘要: 細菌在浮游態與固著態之生活狀態間的轉換,受到細胞內二級信使 (3’-5’)-cyclic dimeric guanosine monophosphate (c-di-GMP) 濃度的嚴密調控,而 PilZ domain首先被發現能與c-di-GMP結合,以傳遞訊息並參與調控細胞的生理狀態。根據序列分析,PilZ domain 的 N 端具有由 5 個高度保留性殘基形成的 RxxxR 及D/NxSxxG 兩組序列,此特徵序列被證實是與c-di-GMP結合所需,然而有些 PilZ domain的保留性氨基酸序列有退化的現象。Xanthomonads 的四個 PilZ domain 蛋白中,有兩個完全缺乏或不具完整的保留性氨基酸序列。本研究以晶體 X-ray 繞射技術解析二個 Xc17 菌株的 PilZ domain 蛋白,Xc1028 及 Xc6012,的三度空間結構。Xc1028 是第四型纖毛系統的 PilZ 蛋白,完全缺乏 c-di-GMP 結合序列,Xc6012 是致病蛋白,其c-di-GMP 結合序列不完整,等溫滴定實驗結果顯示,Xc1028 與 Xc6012皆不直接與 c-di-GMP 結合。與具有完整的 c-di-GMP 結合特徵序列的典型 PilZ 蛋白 PA4608、PP4397、VCA0042 的結構比較,Xc1028 及 Xc6012 與這三個蛋白的 PilZ domain 整體結構相似,但由於 N 端二級結構的差異,造成 Xc1028 及 Xc6012 無法單獨與 c-di-GMP 結合。Xc6012 比已知的 PilZ domain 多二條
The transition between planktonic and sessile lifestyle for bacteria is highly regulated. Recently, the bacteria-specific second messenger (3'-5')-cyclic dimeric guanosine monophosphate (c-di-GMP) was found to be critically involved in the switch from such transition, and PilZ domain be one of the key receptors for this important second messenger. Currently, many PilZ domain-containing proteins have been identified, and several tertiary structures of PilZ domains capable of binding c-di-GMP with strong affinity have been determined. Sequences of such PilZ domains feature a c-di-GMP signature. Here we have used X-ray crystallography to determine structures of two pathogenic proteins Xc1028 and Xc6012 form X. campestris strain 17. Both of them are PilZ-domain proteins however do not possess a complete c-di-GMP signature. Comparing to the typical PilZ domains, Xc1028 and Xc6012 adopt a similar tertiary structure, however, significant structural differences are detected at the N-terminus of these PilZ-domain containing proteins that exhibit substantial difference in the c-di-GMP binding activity. Xc6012 tetramer comprises a tetramerization domain stabilized by a 12-helices bundle containing a parallel four-stranded coiled-coil located in the center, and four PilZ domains pointing outward. We further generated a series of Xc6012 variants and measured the unfolding temperatures and oligomeric states in order to investigate the nature of this novel tetramer.
URI: http://hdl.handle.net/11455/24081
其他識別: U0005-0802201208052200
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-0802201208052200
Appears in Collections:生物化學研究所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.