Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/24095
標題: 阿拉伯芥Bromodomain蛋白GTE12之功能性分析
Functional characterization of an Arabidopsis bromodomain protein GTE12
作者: 吳依珍
Wu, Yi-Jhen
關鍵字: Arabidopsis
阿拉伯芥
histone acetylation
epigenetic
組蛋白乙醯化
表觀遺傳
出版社: 生物化學研究所
引用: Ahringer, J. (2000). NuRD and SIN3 histone deacetylase complexes in development. Trends in Genetics 16, 351-356. Airoldi, C.A., Rovere, F.D., Falasca, G., Marino, G., Kooiker, M., Altamura, M.M., Citterio, S., and Kater, M.M. (2010). The Arabidopsis BET bromodomain factor GTE4 is involved in maintenance of the mitotic cell cycle during plant development. Plant Physiology 152, 1320-1334. Bezerra, I.C., Michaels, S.D., Schomburg, F.M., and Amasino, R.M. (2004). Lesions in the mRNA cap-binding gene ABA HYPERSENSITIVE 1 suppress FRIGIDA-mediated delayed flowering in Arabidopsis. Plant Journal 40, 112-119. Chapman, E.J., and Carrington, J.C. (2007). Specialization and evolution of endogenous small RNA pathways. Nature Reviews Genetics 8, 884-896. Chen, L.T., Luo, M., Wang, Y.Y., and Wu, K. (2010). Involvement of Arabidopsis histone deacetylase HDA6 in ABA and salt stress response. J Exp Bot 61, 3345-3353. Chinnusamy, V., Gong, Z.Z., and Zhu, J.K. (2008). Abscisic acid-mediated epigenetic processes in plant development and stress responses. J Integr Plant Biol 50, 1187-1195. Chua, Y.L., Channeliere, S., Mott, E., and Gray, J.C. (2005). The bromodomain protein GTE6 controls leaf development in Arabidopsis by histone acetylation at ASYMMETRIC LEAVES1. Gene Dev 19, 2245-2254. Clarke, J.H., Tack, D., Findlay, K., Van Montagu, M., and Van Lijsebettens, M. (1999). The SERRATE locus controls the formation of the early juvenile leaves and phase length in Arabidopsis. Plant Journal 20, 493-501. Cohen, R., Schocken, J., Kaldis, A., Vlachonasios, K.E., Hark, A.T., and McCain, E.R. (2009). The histone acetyltransferase GCN5 affects the inflorescence meristem and stamen development in Arabidopsis. Planta 230, 1207-1221. Duque, P., and Chua, N.H. (2003). IMB1, a bromodomain protein induced during seed imbibition, regulates ABA- and phyA-mediated responses of germination in Arabidopsis. Plant Journal 35, 787-799. Fang, Y., and Spector, D.L. (2007). Identification of nuclear dicing bodies containing proteins for microRNA biogenesis in living Arabidopsis plants. Current Biology 17, 818-823. Felsenfeld, G., and Groudine, M. (2003). Controlling the double helix. Nature 421, 448-453. Grigg, S.P., Canales, C., Hay, A., and Tsiantis, M. (2005). SERRATE coordinates shoot meristem function and leaf axial patterning in Arabidopsis. Nature 437, 1022-1026. Grigg, S.P., Galinha, C., Kornet, N., Canales, C., Scheres, B., and Tsiantis, M. (2009). Repression of Apical Homeobox Genes Is Required for Embryonic Root Development in Arabidopsis. Current Biology 19, 1485-1490. Han, M.H., Goud, S., Song, L., and Fedoroff, N. (2004). The Arabidopsis double-stranded RNA-binding protein HYL1 plays a role in microRNA-mediated gene regulation. PNAS 101, 1093-1098. Hugouvieux, V., Kwak, J.M., and Schroeder, J.I. (2001). An mRNA cap binding protein, ABH1, modulates early abscisic acid signal transduction in Arabidopsis. Cell 106, 477-487. Izaurralde, E., Lewis, J., McGuigan, C., Jankowska, M., Darzynkiewicz, E., and Mattaj, I.W. (1994). A nuclear cap binding protein complex involved in pre-mRNA splicing. Cell 78, 657-668. Jerzmanowski, A. (2007). SWI/SNF chromatin remodeling and linker histones in plants. Biochimica et Biophysica Acta 1769, 330-345. Kim, S., Yang, J.Y., Xu, J., Jang, I.C., Prigge, M.J., and Chua, N.H. (2008). Two cap-binding proteins CBP20 and CBP80 are involved in processing primary MicroRNAs. Plant Cell Physiologists 49, 1634-1644. Laubinger, S., Sachsenberg, T., Zeller, G., Busch, W., Lohmann, J.U., Ratsch, G., and Weigel, D. (2008). Dual roles of the nuclear cap-binding complex and SERRATE in pre-mRNA splicing and microRNA processing in Arabidopsis thaliana. PNAS 105, 8795-8800. Lobbes, D., Rallapalli, G., Schmidt, D.D., Martin, C., and Clarke, J. (2006). SERRATE: a new player on the plant microRNA scene. EMBO reports 7, 1052-1058. Lu, C., and Fedoroff, N. (2000). A mutation in the arabidopsis HYL1 gene encoding a dsRNA binding protein affects responses to abscisic acid, auxin, and cytokinin. Plant Cell 12, 2351-2365. Montgomery, T.A., and Carrington, J.C. (2008). Splicing and dicing with a SERRATEd edge. PNAS 105, 8489-8490. Papp, I., Mur, L.A., Dalmadi, A., Dulai, S., and Koncz, C. (2004). A mutation in the Cap Binding Protein 20 gene confers drought tolerance to Arabidopsis. Plant Molecular Biology 55, 679-686. Pien, S., and Grossniklaus, U. (2007). Polycomb group and trithorax group proteins in Arabidopsis. Biochimica et Biophysica Acta 1769, 375-382. Pieterse, C.M., Leon-Reyes, A., Van der Ent, S., and Van Wees, S.C. (2009). Networking by small-molecule hormones in plant immunity. Nature Chemical Biology 5, 308-316. Prigge, M.J., and Wagner, D.R. (2001). The Arabidopsis SERRATE gene encodes a zinc-finger protein required for normal shoot development. Plant Cell 13, 1263-1279. Servet, C., Silva, N.C.E., and Zhou, D.X. (2010). Histone Acetyltransferase AtGCN5/HAG1 Is a Versatile Regulator of Developmental and Inducible Gene Expression in Arabidopsis. Mol Plant 3, 670-677. Strahl, B.D., and Allis, C.D. (2000). The language of covalent histone modifications. Nature 403, 41-45. Tagami, Y., Motose, H., and Watanabe, Y. (2009). A dominant mutation in DCL1 suppresses the hyl1 mutant phenotype by promoting the processing of miRNA. RNA 15, 450-458. Voelker, T., Hoffer, P., Ivashuta, S., Pontes, O., Vitins, A., Pikaard, C., Mroczka, A., and Wagner, N. (2011). Posttranscriptional gene silencing in nuclei. PNAS 108, 409-414. Voisin, D., Nawrath, C., Kurdyukov, S., Franke, R.B., Reina-Pinto, J.J., Efremova, N., Will, I., Schreiber, L., and Yephremov, A. (2009). Dissection of the complex phenotype in cuticular mutants of Arabidopsis reveals a role of SERRATE as a mediator. PLoS Genetics 5, e1000703. Wagner, D. (2003). Chromatin regulation of plant development. Current Opinion in Plant Biology 6, 20-28. Wang, M.M., Soyano, T., Machida, S., Yang, J.Y., Jung, C., Chua, N.H., and Yuan, Y.A. (2011). Molecular insights into plant cell proliferation disturbance by Agrobacterium protein 6b. Gene Dev 25, 64-76. Winston, F., and Allis, C.D. (1999). The bromodomain: a chromatin-targeting module? Nature Structural Biology 6, 601-604. Wu, F., Yu, L., Cao, W., Mao, Y., Liu, Z., and He, Y. (2007). The N-terminal double-stranded RNA binding domains of Arabidopsis HYPONASTIC LEAVES1 are sufficient for pre-microRNA processing. Plant Cell 19, 914-925. Wu, K., Zhang, L., Zhou, C., Yu, C.W., and Chaikam, V. (2008). HDA6 is required for jasmonate response, senescence and flowering in Arabidopsis. J Exp Bot 59, 225-234. Yang, L., Liu, Z., Lu, F., Dong, A., and Huang, H. (2006). SERRATE is a novel nuclear regulator in primary microRNA processing in Arabidopsis. Plant Journal 47, 841-850. Zhou, C., Zhang, L., Duan, J., Miki, B., and Wu, K. (2005). HISTONE DEACETYLASE19 Is Involved in Jasmonic Acid and Ethylene Signaling of Pathogen Response in Arabidopsis. Plant Cell 17, 1196-1204.
摘要: 在真核生物體中,含有遺傳訊息的DNA會被組蛋白包裹成一個複雜的結構,此稱為染色質,染色質會經由組蛋白的修飾而調控基因的轉錄。有文獻指出bromodomain會結合組蛋白尾端上的乙醯基以調控基因的表現,阿拉伯芥中含有bromodomain的GTE (General Transcription Factor Group E)家族有十二個成員,分別命名為GTE1-GTE12。目前已知GTE1會調控訊息傳導路徑以促使種子發芽;GTE4會調控基因表現進而影響植物細胞數量;GTE6藉由正調控葉子對稱的基因,影響植物葉子的發育。實驗室利用酵母菌雙雜合篩選,得知GTE12和調控miRNA生成的SE (SERRATE)有交互作用,且進一步研究發現是GTE12蛋白的C端與SE有交互作用。在雷射共軛焦顯微鏡觀察中發現,SE和GTE12皆在細胞核中聚集形成小點且座落於相同的位置。為了得知GTE12在植物中的功能,實驗利用GTE12基因的啟動子GUS染色分析,發現GTE12基因表現在葉子、花序以及根部,其中以柱頭較為明顯。雖然在gte12突變株的鑑定分析中,並沒有發現明顯的外表型差異,但卻發現gte12突變株較易受真菌(Botrytis cinerea)的感染,因此推測GTE12參與植物的防禦反應。由於已知se突變株較易受真菌感染且茉莉酸反應會受抑制,所以SE可能藉由GTE12的結合,參與茉莉酸反應的表觀遺傳(epigenetic)調控,進而影響植物的防禦反應。
In eukaryotes, DNA containing the genetic message is wrapped into a complex structure with histones called chromatin. Chromatin can regulate gene transcription through histone modification. The Arabidopsis GTE (General Transcription Factor Group E) family has twelve members including GTE1 to GTE12. They all have a bromodomain which can recognize acetyl-lysine on the histone tail and regulate gene expression. It has been reported that GTE1 can regulate signal transduction pathway to promote seed germination; GTE4 can control gene expression to affect cell numbers; GTE6 can regulate leaves development by controlling genes involved in the establishment of symmetrical leaves. Using yeast two-hybrid screening, a clone with partial GTE12 cDNA was obtained and showed strong interaction with SE (SERRATE), a key regulator in miRNA processing pathway. Further characterization found that the C-terminal domain of GTE12 was involved in the interaction with SE. Using confocal laser scanning, the fluorescent signal of GTE12-YFP was observed in the nucleus as foci and co-localized with CFP-SE. In order to know the expression pattem of GTE12 promoter, a promoter-GUS staining assay was carried out and found that GTE12 was expressed in leaves, roots and flowers, especially in stigma. Although no developmental defect was observed in gte12 mutants, a susceptible phenotype was showed in gte12 mutants when infected with Botrytis cinerea. As a result, we suggest that GTE12 maybe involved in the plant defense system as it has been showed that se mutant was susceptible to B. cinerea infection, SE may bind with GTE12 to regulate plant defense system.
URI: http://hdl.handle.net/11455/24095
其他識別: U0005-2908201111212300
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2908201111212300
Appears in Collections:生物化學研究所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.