Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/24177
標題: 像素不擴張視覺機密分享技術之研究
A Study of Novel Visual Secret Sharing with Non-expansion Share Images
作者: 陳鴻豪
Chen, Hong-Hao
關鍵字: Visual secret sharing
視覺機密分享
Visual cryptography
non-expansion
meaningful shares
視覺密碼
像素不擴張
有意義分享影像
出版社: 資訊管理學系所
引用: [1] C. H. Yang, C. Y. Weng, S. J. Wang, and H. M. Sun, “Adaptive data hiding in edge areas of images with spatial LSB domain systems,” IEEE Transactions on Information Forensics and Security, vol. 3, no. 3, 2008, pp. 488-497. [2] C. C. Chang, W. C. Wu, and Y. H. Chen, “Joint coding and embedding techniques for multimedia images,” Information Sciences, vol. 178, no. 18, 2008, pp. 3543-3556. [3] C. C. Chang, Y. H. Chen, and C. C. Lin, “A data embedding scheme for color images based on genetic algorithm and absolute moment block truncation coding,” Soft Computing - A Fusion of Foundations, Methodologies and Applications, vol. 13, no. 4, 2009, pp. 321-331. [4] S. C. Shie and S. D. Lin, “Data hiding based on compressed VQ indices of images,” Computer Standard & Interfaces, vol. 31, no. 6, 2009, pp. 1143-1149. [5] E. J. Farn and C. C. Chen, “Novel steganographic method based on jig swap puzzle,” Journal of Electronic Imaging, vol. 18, no. 1, 2009, pp. 013003. [6] W. J. Chen, C. C. Chang, and T. H. N. Le, “High payload steganography mechanism using hybrid edge detector,” Expert Systems with Applications, vol. 37, no. , 20104, pp. 3292-3301. [7] M. Naor and A. Shamir, “Visual cryptography,” Advance in Cryptology: Eurpocrypt'94, Lecture Notes In Computer Science, Springer Verlag, Germany, vol. 950, 1995, pp. 1-12. [8] C. N. Yang and C. S. Laih, “New coloed visual secret sharing schemes,” Designs, Codes and Cryptography, vol. 20, no. 3, 2000, pp. 325-336. [9] S. J. Shyu, “Efficient visual secret sharing scheme for color images,” Pattern Recognition, vol. 39, no. 5, 2006, pp. 866-880. [10] O. Kafri and E. Keren, “Encryption of pictures and shapes by random grids,” Optics Letters, vol. 12, no. 6, 1987, pp. 377-379. [11] S. J. Shyu, “Image encryption by random grids,” Pattern Recognition, vol. 40, 2007, no. 3, pp. 1014-1031. [12] T. H. Chen and K. H. Tsao, “Visual secret sharing by random grids revisited,” Pattern Recognition, vol. 42, no. 9, 2009, pp. 2203-2217. [13] S. J. Shyu, “Image encryption by multiple random grids,” Pattern Recognition, vol. 42, no. 7, 2009, pp. 1582-1596. [14] S. K. Chen, “Friendly progressive visual secret sharing using generalized random grids,” Optical Engineering, vol. 48, no. 11, 2009, pp. 117001. [15] T. H. Chen, K. H. Tsao, and Y. T. Yang, “Friendly color visual secret sharing by random grids,” Fundamenta Informaticae, vol. 96, no. 1-2, 2009, pp. 61-70. [16] R. Ito, H. Kuwakado, and H. Tanaka, “Image size invariant visual cryptography,” IEICE Transactions on Fundamentals of Electronics Communications and Computer Sciences, vol. E82-A, no. 10, 1999, pp. 2172−2177. [17] C. N. Yang, “New visual secret sharing schemes using probabilistic method,” Pattern Recognition Letters, vol. 25, no. 4, 2004, pp. 481-494. [18] S. Cimato, R. D. Prisco, and A. D. Santis, “Probabilistic visual cryptography schemes,” The Computer Journal, vol. 49, no. 1, 2006, pp. 97-107. [19] Y. F. Chen, Y. K. Chan, C. C. Huang, M. H. Tsai, and Y. P. Chu, “A multiple-level visual secret-sharing scheme without image size expansion,” Information Sciences, vol. 177, no. 21, 2007, pp. 4696-4710. [20] H. Zhang, X. Wang, W. Cao, and Y. Huang, “Visual cryptography for general access structure using pixel-block aware encoding,” Journal of Computers, vol. 3, no. 12, 2008, pp. 68-75. [21] S. F. Tu and Y. C. Hou, “Design of visual cryptographic methods with smooth-looking decoded images of invariant size for grey-level images,” The Imaging Science Journal, vol. 55, no. 2, 2007, pp. 90-101. [22] Y. C. Hou and S. F. Tu, “A visual cryptography technique for chromatic images using multi-pixel encoding method,” Journal of Research and Practice in Information Technology, vol. 37, no. 2, 2005, pp. 179-191. [23] M. S Fu and O. C. Au, “Data hiding in halftone images by stochastic error diffusion,” IEEE International Conference on Acoustics, Speech and Signal Processing, vol. 3, 2001, pp. 1965-1968. [24] M. S. Fu and O. C. Au, “Steganography in halftone images: conjugate error diffusion,” Signal Processing, vol. 83, no. 10, 2003, pp. 2171-2178. [25] S. C. Pei and J. M. Guo, “Data hiding in halftone images with noise-balanced error diffusion,” IEEE Signal Processing Letters, vol. 10, no. 12, 2003, pp. 349-351. [26] Y. F. Chang, J. B. Feng, C. S. Tsai, Y. P. Chu, and H. C. Syu, “New data hiding scheme using pixel swapping for halftone images,” The Imaging Science Journal, vol. 56, no. 5, 2008, pp. 279-290. [27] C. N. Yang and T. S. Chen, “Size-adjustable visual secret sharing schemes,” IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, vol. E88-A, no. 9, 2005, pp. 2471-2474. [28] T. Hofmeister, M. Krause, and H. U. Simon, “Contrast-optimal k out of n secret sharing schemes in visual cryptography,” Theoretical Computer Science, vol. 240, no. 2, 2000, pp. 471-485. [29] M. Krause and H. U. Simon, “Determining the optimal contrast for secret sharing schemes in visual cryptography,” Combinatorics, Probability and Computing, vol. 12, no. 3, 2003, pp. 285-299. [30] C. Blundo, P. D'Arco, A. D. Santis, and D. R. Stinson, “Contrast optimal threshold visual cryptography schemes,” SIAM Journal on Discrete Mathematics, vol. 16, no. 2, 2003, pp. 224-261. [31] S. Cimato, R. D. Prisco, and A. D. Santis, “Contrast optimal colored visual cryptography schemes,” Proceedings of 2003 IEEE Information Theory Workshop, 2003, pp. 139-142. [32] S. Cimato, R. D. Prisco, and A. D. Santis, “Optimal colored threshold visual cryptography schemes,” Designs, Codes and Cryptography, vol. 35, no. 3, 2005, pp. 311-335. [33] G. Ateniese, C. Blundo, A. D. Santis, and D. R. Stinson, “Extended capabilities for visual cryptography,” Theoretical Computer Science, vol. 250, no. 1-2, 2001, pp. 143-161. [34] D. Wang, F. Yi, and X. Li, “On general construction for extended visual cryptography schemes,” Pattern Recognition, vol. 42, no. 11, 2009, pp. 3071-3082. [35] T. W. Yue and S. Chiang, “A neural-network approach for visual cryptography and authorization,” International Journal of Neural Systems, vol. 14, no. 3, 2004, pp. 175-187. [36] C. N. Yang and T. S. Chen, “Extended visual secret sharing schemes: improving the shadow image quality,” International Journal of Pattern Recognition and Artificial Intelligence, vol. 21, no. 5, 2007, pp. 879-898. [37] D. S. Tsai, T. Chen, and G. Horng, “On generating meaningful shares in visual secret sharing scheme,” The Imaging Science Journal, vol. 56, no. 1, 2008, pp. 49-55. [38] Z. Zhou, G. R. Arce, and G. D. Crescenzo, “Halftone visual cryptography,” IEEE Transactions on Image Processing, vol. 15. no. 8, 2006, pp. 2441-2453. [39] Z. Wang, G. R. Arce, and G. D. Crescenzo, “Halftone visual cryptography via error diffusion,” IEEE Transactions on Information Forensics and Security, vol. 4, no. 3, 2009, pp. 383-396. [40] H. C. Hsu, T. S. Chen, and Y. H. Lin, “The ringed shadow image technology of visual cryptography by applying diverse rotating angles to hid the secret sharing,” IEEE International Conference on Networking, Sensing and Control, vol. 2, 2004, pp. 996-1001. [41] J. B. Fang, H. C. Wu, C. S. Tsai, Y. F. Chang, and Y. P. Chu, “Visual secret sharing for multiple secrets,” Pattern Recognition, vol. 41, no. 12, 2008, pp. 3572-3581. [42] B. Yu, X. Xu, and L. Fang, “Multi-secret sharing threshold visual cryptography scheme,” International Conference on Computational Intelligence and Security Workshops, 2007, pp. 815-818. [43] H. C. Wu and C. C. Chang, “Sharing visual multi-secrets using circle shares,” Computer Standards & Interfaces, vol. 28, no. 1, pp. 123-135, 2005. [44] H. C. Hsu, J. Chen, T. S. Chen, and Y. H. Lin, “Special type of circular visual cryptography for multiple secret hiding,” The Imaging Science Journal, vol. 55, no. 3, 2007, pp. 175-179. [45] S. J. Shyu, S. Y. Huang, Y. K. Lee, R. Z. Wang, and K. Chen, “Sharing multiple secret in visual cryptography,” Pattern Recognition, vol. 40, no. 12, 2007, pp. 3633-3651. [46] C. N. Yang and C. S. Laih, “New colored visual secret sharing schemes,” Designs, Codes and Cryptography, vol. 20, no. 3, 2000, pp. 325-336. [47] Y. C. Hou, “Visual cryptography for color images,” Pattern Recognition, vol. 36, no. 7, 2003, pp. 1619-1629. [48] N. K. Prakash and S. Govindaraju, “Visual secret sharing schemes for color images using halftoning,” International Conference on Computational Intelligence and Multimedia Applications, vol. 3, 2007, pp. 174-178. [49] F. Liu, C. C. Wu, and X. J. Lin, “Colour visual cryptography schemes,” IET Information Security, vol. 2, no. 4, 2008, pp. 151-165. [50] H. C. Wu, H. C. Wang, and R. W. Yu, “Color visual cryptography scheme using meaningful shares,” Eighth International Conference on Intelligent Systems Design and Applications, vol. 3, 2008, pp. 173-178. [51] C. N. Yang and T. S. Chen, “Colored visual cryptography scheme based on additive color mixing,” Pattern Recognition, vol. 41, no. 10, 2008, pp. 3114-3129. [52] D. S. Tsai, T. H. Chen, and G. Horng, “A cheating prevention scheme for binary visual cryptography with homogeneous secret images,” Pattern Recognition, vol. 40, no. 8, 2007, pp. 2356-2366. [53] C. M. Hu and W. G. Tzeng, “Cheating prevention in visual cryptography,” IEEE Transactions on Image Processing, vol. 16, no. 1, 2007, pp. 36-45. [54] W. P. Fang and J. C. Lin, “Visual cryptography with extra ability of hiding confidential data,” Journal of Electronic Imaging, vol. 15, no. 2, 2006, pp. 023020. [55] W. P. Fang, “Non-expansion visual secret sharing in reversible style,” International Journal of Computer Science and Network Security, vol. 9, no. 2, 2009, pp. 204-208. [56] C. N. Yang, A. G. Peng, and T. S. Chen, “MTVSS: (M)isalignment (T)olerant (V)isual (S)ecret (S)haring on resolving alignment difficult,” Signal Processing, vol. 89, no. 8, 2009, pp. 1602-1624. [57] F. Liu, C. K. Wu, and X. J. Lin, “The alignment problem of visual cryptography schemes,” Designs, Codes and Cryptography, vol. 50, no. 2, 2009, pp. 215-227. [58] M. S. Wang and W. C. Chen, “Digital image copyright protection scheme based on visual cryptography and singular value decomposition,” Optical Engineering, vol. 46, no. 6, 2007, pp. 067006. [59] M. S. Wang and W. C. Chen, “A hybrid DWT-SVD copyright protection scheme based on k-means clustering and visual cryptography,” Computer Standards & Interfaces, vol. 31, no. 4, 2009, pp. 757-762. [60] W. P. Fang, “Friendly progressive visual secret sharing,” Pattern Recognition, vol. 41, no. 4, 2008, pp. 1410-1414. [61] S. J. Lin and J. C. Lin, “VCPSS: A two-in-one-decoding-options image sharing method combining visual cryptography (VC) and polynomial-style sharing (PSS),” Pattern Recognition, vol. 40, no. 12, 2007, pp. 3652-3666. [62] R.W. Floyd and L. Steinberg, “An adaptive algorithm for spatial grayscale,” Proceedings of the Society for Information Display, vol. 17, no. 2, 1976, pp. 75-77.
摘要: 視覺機密分享是由Naor與Shamir在1995年所提出,視覺機密分享技術將一張原始機密影像編碼成為二張或二張以上的分享影像,並且每一張分享影像無法單獨獲得機密資訊。管理者將所產生之分享影像分別分配給不同的參與者,若合格的參與者集合其所持有之分享影像互相疊合,即可以人類視覺系統顯現機密資訊,不需任何電腦計算。相反的,若為不合格的參與者集合其分享影像將無法獲得任何機密資訊。視覺機密分享主要的研究在於降低像素擴張率以及提高還原機密影像的對比度。因此,本論文提出二個像素不擴張的視覺機密分享技術,除了達到視覺機密分享之目的之外,且進一步提昇較佳之還原機密影像品質。第一個方法以像素交換為基礎,將主要機密影像與驗證影像同時嵌入二張掩護影像中,所產生的二張分享影像皆為有意義的分享影像,而這些有意義的資訊可以是常見的影像,用來掩護機密資訊,或是標誌、記號易於管理者管理眾多的分享影像。解密者只需將此二張分享影像疊合即可獲得主要機密影像。若解密者欲進一步驗證此還原影像,則將其中一張分享影像移動某特定單位,將可以肉眼獲得驗證資訊,該方法除了可以實作在分享二元機密影像上,還可以進一步應用於分享彩色機密影像。本論文所提出的第二個方法將一張灰階機密影像編碼成為二張與原始機密大小相同的分享影像,並且提供六種灰階變化程度,使得還原機密影像有較好的視覺品質。本論文方法的特性中,像素不擴張與高還原品質的特性,使還原影像保持原始影像的特性,因此解密者能更正確地辨認機密資訊,提高解密的正確性。此外可驗證與有意義且高品質的分享影像,使得分享影像不易吸引有意竊取者的注意且易於管理,加強了分享過程的安全性。
Visual secret sharing was proposed by Naor and Shamir in 1995. Visual secret sharing schemes encode a secret image into two or more share images, and single share image can not obtain any information about the secret image. The manager distributes these share images to different participants. The secret image can be recovered by stacking the qualified set of share images. On the contrary, nothing can be obtained if the set is unqualified. The main issues of visual secret sharing are how to reduce expansion rate and raise revealing contrast of the recovered secret image. Therefore, this thesis proposes two visual secret sharing schemes without pixel expansion and provides better quality of the recovered secret image. The first scheme is based on pixel swapping technique. This scheme embeds a main secret and an extra confidential image into two cover images. Both of the generated share images are meaningful. People can obtain the main secret image by stacking the share images together, and the extra confidential image can be revealed by shifting one of the share images for certain units for authentication. Except for sharing binary secret image, this scheme can also apply to share color secret image. The second scheme encodes a grayscale secret image into two share images with six kinds of gray levels. This scheme provides better visual quality of recovered secret image. In decoding process, the properties of non-expansion and high recovered image quality preserve the characteristics of original secret image; so that the recovered secret information can be recognized correctly, correctness is raised. Furthermore, the meaningful share images in the first scheme and high quality of share images do not attract to attackers and easy for management, security is enhanced.
URI: http://hdl.handle.net/11455/24177
其他識別: U0005-2106201013001700
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2106201013001700
Appears in Collections:資訊管理學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.