Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/2448
標題: 一個具四個吸附器之吸附式熱泵之分析與測試
Analysis and Testing of an Adsorption Heat Pump with Four Adsorbers
作者: 林永宸
Lin, Yong-Chen
關鍵字: adsorption heat pump
吸附式熱泵
COP
specific cooling power
fin tube
silica gel
SWS-1L composite adsorbent
冷卻性能係數
冷卻能力
鰭管
矽膠
SWS-1L複合吸附劑
出版社: 機械工程學系所
引用: 參考文獻 1. F. Meunier, “Solid sorption heat powered cycles for cooling and heat pumping applications”, Applied Thermal Engineering, Vol. 18, pp. 715-729, 1998. 2. N.C. Srivastava, I.W. Eames, “A review of adsorbents and adsorbates in solid-vapour adsorption heat pump systems”, Applied Thermal Engineering, Vol. 18, pp. 707-714, 1998. 3. S.G. Wang, R.Z. Wang, X.R. Li, “Research and development of consolidated adsorbent for adsorption systems”, Renewable Energy, Vol. 30, pp. 1425-1441, 2005. 4. L. Yong, K. Sumathy, “Review of mathematical investigation on the closed adsorption heat and cooling systems”, Renewable and Sustainable Energy Reviews, Vol. 6, pp. 305-337, 2002. 5. G. Cacciola, G. Restuccia, “Reversible adsorption heat pump: a thermodynamic model”, International Journal of Refrigeration, Vol. 18, pp.100-106, 1995. 6. G. Cacciola, A. Hajji, G. Maggio, G. Restuccia, “Dynamic simulation of a recuperative adsorption heat pump”, International Journal Energy, Vol. 11, pp. 1125-1137, 1993. 7. J.Y. Wu, R.Z. Wang, Y.X. Xu, “Dynamic analysis of heat recovery process for a continuous heat recovery adsorption heat pump”, Energy Conversion and Management, Vol. 43, pp. 2201-2211, 2002. 8. D. Wang, J. Wu, H. Shan, R. Wang, “Experimental study on the dynamic characteristics of adsorption heat pumps driven by intermittent heat source at heating mode”, Applied Thermal Engineering, Vol.25, pp. 927-940, 2005. 9. N. Ben Amar, L.M. Sun, F. Meunier, “Numerical analysis of adsorptive temperature wave regenerative heat pump”, Applied Thermal Engineering, Vol. 16, pp. 405-418, 1996. 10. B.K. Sward, M.D. LeVan, F. Meunier, “Adsorption heat pump modeling: the thermal wave process with local equilibrium”, Applied Thermal Engineering, Vol. 20, pp. 759-780, 2000. 11. L.M. Sun, Y. Feng, M. Pons, “Numerical investigation of adsorptive heat pump systems with thermal wave heat regeneration under uniform-pressure conditions”, International Journal Heat Mass Transfer, Vol. 40, pp. 281-293, 1997. 12. W. Zheng, W.M. Worek, G. Nowakowski, “Effect of design and operating parameters on the performance of two-bed sorption heat pump systems”, Journal of Energy Resources Technology, Vol. 117, pp. 67-74, 1995. 13. W. Zheng, W.M. Worek, “Performance of multi-bed sorption heat pump system”, International Journal of Energy Research, Vol. 20, pp. 339-350, 1996. 14. M.H. Chahbani, J. Labidi, J. Paris, “Effect of mass transfer kinetics on the performance of adsorptive heat pump systems”, Applied Thermal Engineering, Vol. 22, pp. 23-40, 2002. 15. M.H. Chahbani, J. Labidi, J. Paris, “Modeling of adsorption heat pumps with heat regeneration”, Applied Thermal Engineering, Vol. 24, pp. 431-447, 2004. 16. Y. Liu, K.C. Leong, “The effect of operating conditions on the performance of zeolite/water adsorption cooling systems”, Applied Thermal Engineering, Vol. 25, pp. 1403-1418, 2005. 17. R.Z. Wang, Y.X. Xu, J.Y. Wu, W. Wang, “Experiments on heat-regenerative adsorption refrigeration and heat pump”, International Journal of Energy Research, Vol. 22, pp. 935-941, 1998. 18. R.Z. Wang, J.Y. Wu, Y.X. Xu, Y. Teng, W. Shi, “Experiment on a continuous heat regenerative adsorption refrigerator using spiral plate heat exchanger as adsorbers”, Applied Thermal Engineering, Vol. 18, pp. 13-23, 1998. 19. J.Y. Wu, R.Z. Wang, Y.X. Xu, “Influence of adsorption and desorption capacity on operating process for adsorption heat pump” Applied Thermal Engineering, Vol. 22, pp. 471-476, 2002. 20. I.I. El-Sharkawy, K. Kuwahara, B.B. Saha, S. Koyama, K.C. Ng, “Experimental investigation of activated carbon fibers/ethanol pairs for adsorption cooling system application”, Applied Thermal Engineering, Vol. 26, pp. 859-865, 2006. 21. X.D. Yang, Q.R. Zheng, A.Z. Gu, X.S. Lu, “Experimental studies of the performance of adsorbed natural gas storage system during discharge”, Applied Thermal Engineering, Vol. 25, pp. 591-601, 2005. 22. M. Pons, D. Laurent, F. Meunier, “Experimental temperature fronts for adsorptive heat pump applications”, Applied Thermal Engineering, Vol. 16, pp. 395-404, 1996. 23. S.W. Wang, Z.Y. Liu, “A new method for preventing HP from frosting”, Renewable Energy, Vol. 30, pp. 753-761, 2005. 24. J.Y. San, “Analysis of the performance of a multi-bed adsorption heat pump using a solid-side resistance model”, Applied Thermal Engineering, Vol. 26, pp. 2219-2227, 2006. 25. S. Szarzynski, Y. Feng, M. Pons, “Study of different internal vapor transports for adsorption cycles with heat regeneration”, International Journal of Refrigeration, Vol.20, pp. 390-401, 1997. 26. R.G. Oliveira, V. Silveira, R.Z. Wang, “Experimental study of mass recovery adsorption cycle for ice making at low generation temperature”, Applied Thermal Engineering, Vol. 26, pp. 303-311, 2006. 27. M. Tokarev, L. Gordeeva, V. Romannikov, I. Glaznev, Y. Aristov, “New composite sorbent in mesopores for sorption cooling/heating”, International Journal of Thermal Sciences, Vol. 41, pp. 470-474, 2002. 28. Y.I. Aristov, M.M. Tokarev, G. Cacciola, G. Restuccia, “Selective water sorbents for multiple applications, 1. confined in mesopores of silica gel sorption properties”, Reaction Kinetics and Catalysis Letters, Vol. 59, pp. 325-333, 1996. 29. Y.I. Aristov, G. Restuccia, G. Cacciola, V.N. Parmon, “A family of new working materials for solid sorption air conditioning systems”, Applied Thermal Engineering, Vol. 22, pp. 191-204, 2002. 30. Y.I. Aristov, I.S. Glaznev, A.A. Freni, G. Restuccia, “Kinetics of water sorption on SWS-1L (calcium chloride confined to mesoporous silica gel): Influence of grain size and temperature”, Chemical Engineering Science, Vol. 61, pp. 1453-1458, 2006. 31. M.A. Alghoul, M.Y. Sulaiman, B.Z. Azmi, M.A. Wahab, “Advances on multi-purpose solar adsorption systems for domestic refrigeration and water heating”, Applied Thermal Engineering , Vol. 27, pp. 813-822, 2007. 32. M.A. Lambert, “Design of solar powered adsorption heat pump with ice storage”, Applied Thermal Engineering, Vol. 27, pp. 1612-1628, 2007. 33. M.A. Lambert, A. Beyene, “Thermo-economic analysis of solar powered adsorption heat pump”, Applied Thermal Engineering, Vol. 27, pp. 1593-1611, 2007. 34. J.Y. San, W.M. Lin, “Comparison among three adsorption paris for using as the working substances in a multi-bed adsorption heat pump”, Applied Thermal Engineering, Vol. 28, pp. 988-997, 2008. 35. 林瑋旻,吸附配對之特性對熱泵性能之影響,碩士論文,中興大學機械所,2006. 36. A. Freni, F. Russo, S. Vasta, M. Tokarev, Y.I. Aristov, G. Restuccia, “An advanced solid sorption chiller using SWS-1L”, Applied Thermal Engineering, Vol. 27, pp. 2200-2204, 2007. 37. R.Z. Wang, “Efficient adsorption refrigerators integrated with heat pipes”, Applied Thermal Engineering, Vol. 28, pp. 317-326, 2008. 38. 林俊宏,一個多床吸附式熱泵在非等模式操作時間下之性能,碩士論文,中興大學機械系,2008. 39. 許惠琦,以SWS-1L複合吸附劑/水為工作配對之一個吸附式熱泵之性能分析,碩士論文,中興大學機械系,2007. 40. J.Y. San,H.C. Hsu,“ Performance of a multi-bed adsorption heat pump using SWS-1L composite adsorbent and water as the working pair”, Applied Thermal Engineering, Vol. 29, pp. 1606-1613, 2009. 41. 吳良箴,雙塔式活性碳吸附系統對甲苯吸附性能之模擬分析,碩士論文,中興大學機械系,1996. 42. J.M. Smith, H.C. Van Ness, M.M. Abbott, Chemical Engineering Thermodynamics (sixth edition), Chapter 4, McGraw-Hill, 2001. 43. K.J. Sladek, E.R. Gilliland, R.F. Baddour, “Diffusion on surface. II.Correlation of diffusivities of physically and chemically adsorbed species”, Industrial and Engineering Chemistry Fundamentals, Vol. 13, pp. 100-105, 1974. 44. J.Y. San, Exergy Analysis of Desiccant Cooling System, doctoral dissertation, University of Illinois-Chicago, 1985. 45. D.M. Ruthven, Principles of Adsorption, Chapter 3, Wiley, 1984. 46. Y. Hirota, Y. Sugiyama, M. Kubota, F. Watanabe, N. Kobayashi, M. Hasatani,M. Kanamori,“Development of a suction-pump-assisted thermal and electrical hybrid adsorption heat pump”, Applied Thermal Engineering, Vol. 28, pp. 1687-1693, 2008. 47. K. Daou, R.Z. Wang, G.Z. Yang, Z.Z Xia,“Theoretical comparison of the refrigerating performances of a impregnated composite adsorbent to those of the host silica gel”, International Journal of Thermal Sciences, Vol. 47,pp. 68-75,2008. 48. 林威億,一個多床吸附式熱泵操作時最佳模式時間之研究,碩士論文,中興大學機械系,2009 49. I.S. Glazev, Yu.i. Aristov,“Kinetics of water adsorption on loose grains of SWS-1L under isobaric stages of adsorption heat pumps: The effect of residual air”,Internation Journal of Heat and Mass Transfer, Vol. 51, pp. 5823-5827,2008. 50. D.B. Riffel, U. Wittstadt, F.P. Schmidt, T. Nunez, F.A. Belo, A.P.F. Leite, F Ziegler,“Transient modeling of an adsorber using finned-tube heat exchanger”, International Journal of Heat and Mass Transfer, Vol. 53, pp. 1473-1482,2010. 51. B.N. Okunev, A.P. Gromov, L.I. Heifets, Yu.I. Aristov,“A new methodology of studying the dynamics of water sorption / desorption under real operating conditions of adsorption heat pumps: Modelling of coupled heat and mass transfer in a single adsorbent grain”, International Journal of Heat and Mass Transfer, Vol. 51, pp. 246-252,2008. 52. Yu.I. Aristov, B. Dawoud, I.S. Glaznev, A. Elyas,“A new methodology of studying the dynamics of water sorption / desorption under real operating conditions of adsorption heat pumps: Experiment”, International Journal of Heat and Mass Transfer, Vol. 51, pp. 4966-4972,2008. 53. B.N. Okunev, A.P. Gromov, V.L. Zelenko, I.S. Glaznev, D.S. Ovoshchnikov, L.I Heifets,“Effect of residual gas on the dynamics of water adsorption under isobaric stages of adsorption heat pumps: Mathematical modelling”, International Journal of Heat and Mass Transfer, Vol. 53, pp. 1283-1289,2010.
摘要: 摘要 本研究以模擬分析與實驗量測分別探討一個具四個鰭管式吸附器之熱泵之冷卻性能係數(COP)與冷卻能力( )。模擬分析乃使用具固體側質傳阻抗之模式,所考慮之吸附劑分別為一種普通密度型之矽膠與SWS-1L複合矽膠,冷媒則為水。分析之結果顯示,無論使用矽膠或SWS-1L做為吸附劑,非等模式時間操作下之COP與 値均較等模式時間操作下之COP與 値為高,同時系統均存在一個最佳之週期時間,此最佳週期時間對應著一個冷卻能力之最大值( )。實驗量測考慮等模式時間之操作,吸附劑為矽膠,當 75 時,最佳之週期時間約為48分鐘,此時 值為104.2 kJ/kg-hr,所相對應之COP值則為0.0303;當 85 時,最佳之週期時間亦約為48分鐘,此時 值為122.3 kJ/kg-hr,所相對應之COP值為0.03,亦即當再生溫度提高10℃後, 值能提升17.39%。實驗過程中發現,在預熱過程時,水蒸氣會於吸附器之內壁表面凝結成水,此原因可能造成熱泵量測之性能遠低於模擬分析之結果。
ABSTRACT 英文摘要 This work deals with a computer analysis and an experimental measurement of the COP and specific cooling power( ) of an adsorption heat pump. The heat pump has four fin-tube adsorbers. In the computer analysis, a solid-side mass diffusion resistance model was used.Two absorbents, SWS-1L composite silica gel and a regular density silica gel,were individually considered. The refrigerant was water. The result shows that, for both adsorbents, the COP and values at unequal-mode-time operation are higher than those at equal-mode-time operation. The system exists an optimum cycle time which corresponds to the maximun specific cooling power. In the experimental measurement, the silica gel was considered as the adsorbent. For equal mode times, at 75 , the optimum cycle time is about 48 minutes. The value is 104.2 kJ/kg-hr and the corresponding COP value is 0.0303. At 85 , the optimum cycle time is also about 48 minutes. The value is 122.3 kJ/kg-hr and the corresponding COP value is 0.03. That also means a 10 increase of the regeneration temperature resulting in a 17.39% increase of the value. From the experiment, it can be obsenved that, in the preheating process, water condenses on the inner surface of the adsorber. This was attributed to the cause for the measured performance being less than the simulation result.
URI: http://hdl.handle.net/11455/2448
其他識別: U0005-1407201013581600
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-1407201013581600
Appears in Collections:機械工程學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.