Please use this identifier to cite or link to this item:
標題: CMOS-MEMS 微機械式射頻開關
CMOS-MEMS micromechanical RF switches
作者: 蔡宗佑
Tsai, Zung-You
關鍵字: micro switches
micro inductors
出版社: 機械工程學系所
引用: [1]C. L. Dai, Tai. Y. W, P. H. Kao, “Modeling and fabrication of micro FET pressure sensor with circuits,” Sensors, No. 7, PP. 3386-3398, 2007. [2]P. H. Kao, C. L. Dai, C. C. Hsu, C. Y. Lee, “Fabrication and characterization of a tunable in-plane resonator with low driving voltage,” Sensors, No. 9, PP. 2062-2075, 2009. [3]M. C. Liu., C. L. Dai, C. H. Chan, C. C. Wu, “Manufacture of a Polyaniline Nanofiber Ammonia Sensor Integrated with a Readout Circuit Using the CMOS-MEMS Technique,” Sensors, No. 9, PP. 869-880, 2009. [4]J. J. Yao, “RF MEMS from a device perspective,” J. Micromech. Microeng, Vol. 10, No. 4, PP. R9-R38, 2000. [5]C. T. C. Nguyen, L. P. B. Katehi, G. M. Rebeiz, “Micromachined devices for wireless communications,” Proceedings of the IEEE, Vol. 86, No. 8, PP. 1756-1768, 1998. [6]邱建清,黃世疇,工程科技與教育學刊,2006。 [7]L. Chang, Foundations of MEMS, New Jersey Prentice Hall, 2006。 [8]楊志人,屏東科技大學碩士論文,2006。 [9]奈米科技研發中心,奈米辭典,PZT,2005。 [10]K. E. Petersen, “Micromechanical Membrane Switch on Silicon,” IBM J. Res. Develop, Vol. 23, No. 4, PP. 376-385, 1979. [11]J. J. Yao, M. F. Chang, “A surface micromachined miniature switch for telecommunications applications with signal frequencies from DC up to 4 GHz,” in Proc. Transducers’ 95, PP. 384-387, Jun. 1995. [12]D. Hah, E. Yoon, S. Hong, “A low-voltage actuated micromachined microwave switch using torsion springs and leverage,” IEEE Tans. Microw. Theory Tech., Vol. 48, No. 12, PP. 2340-2345, 2000. [13]J. Y. Park, G. H. Kim, K. W. Chung, J. U. Bu, “Monolithically integrated micromachined RF MEMS capacitive switches,” Sens. Acuators A, Phys., Vol. A89, No. 1–2, PP. 88-94, 2001. [14]R. Ramadoss1, S. Lee, V. M. Bright, Y. C. Lee, K. C. Gupta1, “Polyimide film based RF MEMS capacitive switches,” in Proc. 2002 IEEE MTT-S Int. Microwave Symp. Digest, Vol. 2, PP. 1233-1236, 2002. [15]G. M. Rebeiz, “RF MEMS: Theory, Design and Technology,” Hoboken, NJ: Wiley, 2003. [16]G. Wang, D. Thompson, E. M. Tentzeris, J. Papapolymerou, “Low cost RF MEMS ol. 3, PP. 1441-1444, 2004. [17]I. J. Cho, T. Song, S. H. Baek, E. Yoon, “A low-voltage and low-power RF MEMS series and shunt switches actuated by combination of electromagnetic and electrostatic forces,” IEEE Trans. Microw, Vol. 53, No. 7, PP. 2450-2457, 2005. [18]C. H. Hung, Q. Jiangyuan, “Design and process considerations for fabricating RF MEMS switches on printed circuit boards,” IEEE Electron Devices Society, Vol. 14, Issue 6, PP. 1311-1322, 2005. [19]C.L. Goldsmith, D.I. Forehand, Z. Peng, J.C.M. Hwang, J.L. Ebel, “High-Cycle Life Testing of RF MEMS Switches,” IEEE Intl Microwave Symp Dig, PP. 1805-1808, 2007. [20]S. Kang, H. C. Kim, K. Chun, “Single pole four throw RF MEMS switch with double stop comb drive,” Proceedings of the IEEE International Conference on Micro Electro Mechanical Systems, PP. 1036-1039, 2008. [21]T. H. Lin a, S. Paul a, S. Lu a, H. Lu, “A study on the performance and reliability of magnetostatic actuated RF MEMS switches,” Microelectronics Reliability, Vol. 49, No. 1, PP. 59-65, 2009. [22]V. Puyal, D. Dragomirescu, “Frequency Scalable Model for MEMS Capacitive Shunt Switches at Millimeter-Wave Frequencies,” IEEE Microwave Theory and Techniques Society, Vol. 57, Issue 11, PP. 2824-2833, 2009. [23]C.L. Dai, “A maskless wet etching silicon dioxide post-CMOS process and its application,” Microelectronic Engineering, Vol. 83, PP. 2543-2550, 2006. [24]D. Peroulis, S. P. Pacheco, K. Sarabandi, L. P. B. Katehi, “Electromechanical considerations in developing low-voltage RF MEMS switches,” IEEE Transactions on Microwave Theory and Techniques, Vol. 51, No. 1, PP. 259-270, 2003. [25]J. B. Muldavin and G. M. Rebeiz, “Nonlinear electro-mechanical modeling of MEMS switches,” IEEE MTT-S International Microwave Symposium Digest, Vol. 1, PP. 2119-2122, 2001. [26]Coventor Inc., CoventorWare Version 2008 Tutorials. [27]G. M. Rebeiz, RF MEMS Theory, Design, and Technology. New York, Wiley, 2003. [28] [29] [30J. N. Burghartz, M. Soyuer, and K. A. Jenkins, “Microwave Inductors and Capacitors in Standard Multilevel Interconnect Silicon Technology,” IEEE Transactions on Microwave Theory and Techniques, Vol. MTT-44, PP. 100-104, 1996. [31]Transene Company Inc., [32] [33] [34]David M. Pozar, Microwave engineering, 3rd ed. Hoboken, Wiley, 2005. [35]莊達人,VLSI製造技術,高立圖書有限公司,2003。 [36]行政院國家科學委員會,微機電系統技術與應用,精密儀器發展中心出版, 2003。 [37]黃進芳,微波工程,五南圖書有限公司,2004。 [38]彭宣榕,以蝕刻CMOS氧化層的後製程處理方式製作微機電射頻開關,國立中興大學碩士論文,2005。 [39]陳俊翰,低驅動電壓之微機電射頻開關,國立中興大學碩士論文,2006。 [40]陳盈良,結合電感的微機電射頻開關之設計與製作,2007。
摘要: 本研究利用標準的0.35μm 2P4M CMOS製程製作微機電射頻開關,並以靜電力作為驅動,開關是以電容耦合(Capacitive Coupling)的方式來進行運作,開關的結構包含架構上的金屬薄膜、訊號傳輸線、8個彈簧以及4個圓形螺旋電感。在電感結構部份,透過後製程來減少損失及有效增加工作頻率的範圍,此優點是不需要改變結構的狀態下,經後製程處理方式,即能夠將工作頻率與效能提昇。以有限元素軟體(Coventor Ware 2008)模擬微開關的機械性質,以及高頻分析軟體(ADS)模擬微開關的高頻特性。後製程處理採用反應性離子蝕刻(RIE)掏空電感下的矽基材,在以濕蝕刻方式蝕刻犧牲層,釋放懸浮結構以及電感結構下的介電層。實驗結果顯示微開關的插入損失與反射損失分別為-0.8dB與-10dB。開關驅動電壓約為10.75V。當電感結構未蝕刻介電層時隔離度為-23.5dB工作頻率在32GHz,而當蝕刻完介電層後,隔離度為-25dB工作頻率在35GHz。由上述結果表示,最大工作頻率提升範圍可達3GHz,提升比為7.5%;隔離度效能提昇1.5dB。
In this study, we present a RF (ratio frequency) MEMS (micro elector mechanical system) switch fabricated by the standard 0.35 μm 2P4M (double polysilicon four metal) CMOS (complementary metal oxide semiconductor) process. The switch is capacitive type and actuated by the static electricity force. The structure of the switch consists of a suspended metal membrane and a signal transmission line, eight springs and four micro circular spiral inductor. The inductor structures use a post-process to reduce losses and effectively increase the operating frequency range. The finite element method software, Coventor Ware 2008 is employed to simulate the switch mechanical properties. Advanced Design System is used to simulate the switch electrical characteristics. The post-process uses the reactive ion etching to etch the silicon substrate below the inductor structures, and then the wet etching etches the sacrificial layer. The suspension structure and the inductor structure in the switch are released. Experimental results show that the pull-in voltage of the switch is about 10.75 V. The insertion loss and return loss are the -0.8 dB and -10.5 dB, respectively. When the inductors have the dielectric, the isolation is -23.5 dB at 32 GHz. The isolation is -25 dB at 35 GHz when the inductors without the dielectric. These results indicated that the maximum operating frequency of the switch increases 3 GHz, raise more than 7.5%.
其他識別: U0005-1507201011165100
Appears in Collections:機械工程學系所



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.