Please use this identifier to cite or link to this item:
標題: CMOS Bio-MEMS葡萄糖微感測器
CMOS Bio-MEMS glucose micro sensors
作者: 洪晟倍
Hung, Cheng-Bei
關鍵字: CMOS Bio-MEMS
Self-assembled monolayer
Glucose oxidase
出版社: 機械工程學系所
引用: 參考文獻 [1]。 [2] 趙彬宇、李煥榮,糖尿病,台灣商務印書館,台北市,台灣,1997。 [3] 陳國群,最新糖尿病精要,藝軒圖書出版社,台北市,台灣,1986。 [4] J. Cheng, and L. J. Kricka, Biochip Technology, Harwood academic publishers, Australia, 2001. [5] D. Muller, “Studien uber ein neues Enzym Glykoseoxydase. l,” Biochemische Zeitschrift, vol. 199, pp.136-170, 1928. [6] L. C. Clark, Jr., and C. Lyons, “Electrode system for continuous monitoring in cardiovascular surgery,” Ann. NY Acad. Sci., vol. 148, pp.133-135, 1962. [7] C. Gao, Jin-Woo Choi, M. Dutta, S. Chilukuru, J. H. Nevin, J. Y. Lee, M. G. Bissell, and C. H. Ahn, “A fully integrated biosensor array for measurement of metabolic parameters in human blood,” Microtechnologies in Medicine & Biology 2nd Annual International IEEE-EMB Special Topic Conference, pp.223-226, 2002. [8] K. Ooe, Y. Hamamoto, T. Kadokawa, T. Iuchi, and Y. Hirano, “Evaluation of the MOSFET type enzyme biosensor,” BioMEMS and Nanotechnology, vol. 5275, pp. 177-185, 2004. [9] S. Zhang, N. Wang, Y. Niu, and C. Sun, “Immobilization of glucose oxidase on gold nanoparticles modified Au electrode for the construction of biosensor,” Sensors and Actuators B: Chemical, vol. 109, issue 2, pp. 367-374, 2005. [10] D. J. Macaya, M. Nikolou, S. Takamatsu, J. T. Mabeck, R. M. Owens, and G. G. Malliaras, “Simple glucose sensors with micromolar sensitivity based on organic electrochemical transistors,” Sensors and Actuators B: Chemical, vol. 123, issue 1, pp. 374-378, 2007. [11] D. Li, Q. He, Y. Cui, L. Duan, and J. Li, “Immobilization of glucose oxidase onto gold nanoparticles with enhanced thermostability,” Biochemical and Biophysical Research Communications, vol. 355, issue 2, pp. 488-493, 2007. [12] J. Liu, M. Agarwal, and K. Varahramyan, “Glucose sensor based on organic thin film transistor using glucose oxidase and conducting polymer,” Sensors and Actuators B: Chemical, vol. 135, issue 1, pp. 195-199, 2008. [13] A. I. Gopalan, K. P. Lee, D. Ragupathy, S. H. Lee, and J. W. Lee, “An electrochemical glucose biosensor exploiting a polyaniline grafted multiwalled carbon nanotube/perfluorosulfonate ionomer-silica nanocomposite,” Biomaterials, vol. 30, issue 30, pp 5999-6005, 2009. [14] A. Kausaite, A. Ramanaviciene, and A. Ramanavicius, “Polyaniline synthesis catalysed by glucose oxidase,” Polymer, vol. 50, issue 8, pp. 1846-1851, 2009. [15] X. Huang, S. Li, J. S. Schultz, Q. Wang, and Q. Lin, “A MEMS affinity glucose sensor using a biocompatible glucose-responsive polymer,” Sensors and Actuators B: Chemical, vol. 140, issue 2, pp. 603-609,2009. [16] A. Ulman, “An Introduction to ultrathin films, from Langmuir-Blodgett to self-assembly,” Academic Press, New York, pp. 440, 1991. [17] L. H. Dubois, and R. G. Nuzzo, “Synthesis, structure, and properties of model organic surfaces,” Annu. Rev. Phys. Chem, vol. 43, pp. 437-463, 1992. [18] R. Takao, H. Masahiko, K. Isao, T. Satoshi, N. Naoki, S. Hiroyuki, and K. Wolfgang, “High resolution X-ray photoelectron spectroscopy measurements of octadecanethiol self-assembled monolayers on Au(111),” Langmuir, vol. 14, no. 8, pp. 2092-2096, 1998. [19] 劉英俊,酵素工程,中央圖書出版社,台北市,台灣,1995。 [20] I. M. Roitt, P. J. Delves, Roitt免疫學基礎,丁桂鳳譯,高等教育出版社,台北市,台灣,2002。 [21] 林建中,應用高分子化學與材料,高立圖書出版社,台北市,台灣,1989。 [22] A. Ulman, “Formation and structure of self-sssembled monolayers,” Chem. Rev., vol. 96, pp. 1533-1554, 1996. [23] W. C. Bigelow, D. L. Pickett, and W. A. Zisman, “Oleophobic monolayers I : films adsorbed from solution in non-polar liquids," Journal of Colloid Science, vol. 1, pp. 513-538, 1946. [24] H. O. Finklea, S. Avery, and M. Lynch, “Blocking oriented monolayers of alkyl mercaptans on gold electrodes,” Langmuir, vol. 3, pp. 409-413, 1987. [25] R. G. Nuzzo, F. A. Fusco, and D. L. Allara, “Spontaneously organized molecular assemblies. 3. preparation and properties of solution adsorbed monolayers of organic disulfides on gold surfaces,” Journal of the American Chemical Society, vol. 109, pp. 2358-2368, 1987. [26] J. Sagiv, “Organized monolayers by adsorption. 1. Formation and structure of oleophobic mixed monolayers on solid surfaces,” Journal of the American Chemical Society, vol. 102, no. 1, pp. 92-98, 1980. [27] P. Fenter, A. Eberhardt, and P. Eisenberger, “Self-Assembly of n-Alkyl thiols as disulfides on Au(111),” Science, vol. 266, no. 5188, pp. 1216-1218, 1994. [28] E. Delamarche, B. Michel, H. Kang, and Ch. Gerber, “Thermal stability of self-assembled monolayers,” Langmuir, vol. 10, pp. 4103-4108, 1994. [29] P. Fenter, P. Eisenberger, Jun. Li, N. Camillone, S. Bernasek, G. Scoles, T. A. Ramanarayanan, and K. S. Liang, “Structure of octadecyl thiol self-assembled on the silver(111) surface: an incommensurate monolayer,” Langmuir, vol. 7, pp. 2013–2016, 1991. [30] A. Dhirani, M. A. Hines, A. J. Fisher, O. Ismail, and P. Guyot-Sionnest, “Structure of self-assembled decanethiol on Ag(111): a molecular resolution scanning tunneling microscopy study,” Langmuir, vol. 11, pp. 2609–2614, 1995. [31] H. Keller, P. Simak, W. Schrepp, and J. Dembowski, “Surface chemistry of thiols on copper: an efficient way of producing multilayers,” Thin Solid Films, vol. 244, issue 1-2, pp. 799-805, 1994. [32]何中庸編譯,振盪電路之設計與應用,全華圖書出版社,台北市,台灣,1999。 [33] CMOS Oscillators,, Fairchild Semiconductor, Inc. [34] L. Yao, H. H. Mohamad, G. Z. Ebrahim, S. Arghavan, C. Vamsy, and Z. Mohammed, “CMOS capacitive sensor system for bacteria detection using phage organisms,” Electrical and Computer Engineering of IEEE Conference, pp. 877–880, 2008. [35] N. P. Kapadia, D. Kristol, and C. R. Spillert “Effect of Endotoxin and Silver ion on the clotting time of blood,” Bioengineering of IEEE Conference, pp. 161-162, 2005.
摘要: 本論文利用標準TSMC 0.35 μm 2P4M CMOS Bio-MEMS製程,製作一含感測電路之葡萄糖生物感測器,其中包含一指叉狀電極結構與振盪電路。在結構上利用自組性單層薄膜技術將高分子11-mercaptoundecanoic acid (11-MUA)修飾在金層表面上,11-MUA的頭基為硫原子,官能基為羧基(-COOH),由於利用硫與金之間強的作用力使11-MUA吸附在金層表面上,再使用固定化酵素技術讓11-MUA尾端的羧基吸附感測元件葡萄糖氧化酵素(glucose oxsidase, GOD),所以11-MUA能夠用來做為感測元件葡萄糖氧化酵素與金層之間的接合橋樑。葡萄糖氧化酵素修飾到金層表面後,因為葡萄糖氧化酵素與葡萄糖具有高度的專一性,當葡萄糖氧化酵素吸附到葡萄糖時,會使電極與電極之間的介電係數發生改變,因此造成感測結構的電容變化,設計一振盪電路將電容變化轉換為頻率輸出,藉此來量測不同濃度的葡萄糖。 晶片設計的面積為1.561×1.82 mm2,由於在生物反應訊號屬於小訊號變化,所以感測區面積設計為1.5×1.43 mm2,利用大面積的感測區,提升訊號變化,使電路有較大的輸出訊號。根據實驗結果可得知,當葡萄糖濃度由1 mM上升至10 mM時,由頻譜分析儀所量測到的輸出頻率會由10.402 MHz上升至23.715 MHz,感測器的靈敏度約為1.3 MHz/mM。
This study uses the standard TSMC 0.35 μm 2P4M CMOS Bio-MEMS process to produce a glucose biosensor integrated with a sensing circuit on the chip. The glucose biosensor contains an inter-digitized electrode structure and an oscillator circuit. In the sensing structure we use self-assembled monolayer to modify polymer 11-mercaptoundecanoic acid (11-MUA) on the gold surface. The head group of 11-MUA is sulfur, and the functional groups is carboxyl (-COOH). Because there is a strong force between sulfur and gold, 11-MUA is adsorbed on the surface of the gold layer. The carboxyl end of 11-MUA adsorbs glucose oxidase (GOD), so 11-MUA is a bridge between the GOD and the gold layer. The sensing layer GOD on the gold surface adsorbs the glucose due to it have a high degree of specificity between GOD and glucose. After the GOD combines with glucose, the capacitance of the sensor produces a change due to the dielectrical change. We design an oscillator circuit to convert the capacitance variation into the output frequency. The total area of the sensor chip is about 1.6 × 1.8 mm2. A large sensing area is adopted to increase the signal amplitude. The output frequency is measured by the spectrum analyzer. According to the experimental results, the output frequency increases from 10.402 MHz to 23.715 MHz as the glucose concentration increases from 1 mM to 10 mM. The sensitivity of sensor is about 1.3 MHz/mM.
其他識別: U0005-1507201015153600
Appears in Collections:機械工程學系所



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.