Please use this identifier to cite or link to this item:
標題: 乳酸菌之培養條件對胞外多醣體產量 與特性之影響
Effect of fermentation conditions on production and characteristic of exopolysaccharide from lactic acid bacteria
作者: 翁嘉鞠
Chia-Chu, Weng
關鍵字: lactic acid bacteria
bile salts
出版社: 動物科學系所
引用: 簡君佑。2000。東海大學畜產學系碩士論文。篩選產黏乳酸菌以改善酸酪乳品質。台中。台灣。 林彣郁。2001。中興大學畜產學系碩士論文。乳酸菌和雙叉乳桿菌益生特性之探討。台中。台灣。 褚佩瑜。2001。生物化學速攻。藝軒圖書出版社。台北。台灣。4: 40-63。 陳智強。2004。國立臺灣大學食品科技研究所碩士論文。培養條件對乳酸菌胞外多醣生產及抗氧化性之影響。台北。台灣。 Abdelali, H., P. Cassand, V. Soussotte, B. Koch-Bocabeille, and J. F. Narbonne. 1995. Antimutagenicity of components of dairy products. Mutat. Res. 331: 133-141. Akalin, A. S., S. Gonc, and S. Duzel. 1997. Influence of yogurt and acidophilus yogurt on serum cholesterol levels in mice. J. Dairy Sci. 80: 2721-2725. Andaloussi, S. A., H. Talbaoui, R. Marczak, and R. Bonaly. 1995. Isolation and characterization of exocellular polysaccharides produced by Bifidobacterium longum. Appl. Microbiol. Biotechnol. 43: 995-1000. Ariga, H., T. Urashima, E. Michichata, M. Ito, N. Morizono, T. Kimura, and S. Takahashi. 1992. Extracellular polysaccharide from encapsulated Streptococcus salivarius subsp. thermophilus OR901 isolated from commercial yoghurt. J. Food Sci. 57: 625–628. Becker, A., F. Katzen, A. Pühler, and L. Ielpi. 1998. Xanthan gum biosynthesis and application: A biochemical/genetic perspective. Appl. Microbiol. Biotechnol. 50: 145-152. Begley, M., C. Hill, and C. G. M. Gahan. 2006. Bile salt hydrolase activity in probiotics. Appl. Environ. Microbiol. 72(3): 1729–1738. Bell, S., V. M. Goldman, B. R. Bistrian, and A. H. Arnold. 1999. Effect of β -glucan from oat and yeast on serum lipids. Crit. Rev. Food Sci. Nutr. 39(2): 189-202. Bello, F. D., J. Walter, C. Hertel, and W. P. Hammes. 2001. In vitro study of prebiotic properties of levan-type exopolysaccharides from lactobacilli and non-digestible carbohydrates using denaturing gradient gel electrophoresis. Syst. Appl. Microbiol. 24: 232-237. Bergmaier, D., C. P. Champagne, and C. Lacroix. 2003. Exopolysaccharide production during batch cultures with free and immobilized Lactobacillus rhamnosus RW-9595M. J. Appl. Microbiol. 95: 1049-1057. Boels, I. C., R. van Kranenburg, J. Hugenholtz, M. Kleerebezem, and W. M. de Vos. 2001. Sugar catabolism and its impact on the biosynthesis and engineering of exopolysaccharide production in lactic acid bacteria. Int. Dairy J. 11: 723-732. Boels, I. C., M. Kleerebezem, and W. M. de Vos. 2003. Engineering of carbon distribution between glycolysis and sugar nucleotide biosynthesis in Lactococcus lactis. Appl. Environ. Microbiol. 69: 1129-1135. Bogdanov, I. G., P. G. Dalev, A. I. Gurevich, M. N. Kolosov, V. P. Malekova, L. A. Plemyannikova, I. B. Sorokina. 1975. Antitumour glycopeptides from Lactobacillus bulgaricus cell wall. FEBS Lett. 57: 259-261. Bouzar, F., J. Cerning, and M. Desmazeaud. 1996. Exopolysaccharide production in milk by Lactobacillus delbrueckii ssp. bulgaricus CNRZ 1187 and by two colonial variants. J. Dairy Sci. 79: 205-211. Bouzar, F., J. Cerning, and M. Desmazeaud. 1997. Exopolysaccharide production and texture-promoting abilities of mixed-strain starter cultures in yogurt production. J. Dairy Sci. 80: 2310-2317. Buck, L. M., and S. E. Gilliland. 1994. Comparisons of freshly isolated strains of lactobacillus acidophilus, of human intestinal origin for ability to assimilate, cholesterol during growth. J. Dairy Sci. 77: 2925-2933. Cerning, J., C. Bouillanne, M. J. Desmazeaud, and M. Landon. 1986. Isolation and characterization of exocellular polysaccharide produced by Lactobacillus bulgaricus. Biotechnol. Lett. 8: 625-628. Cerning, J., C. Bouillanne, M. J. Desmazeaud, and M. Landon. 1988. Exocellular polysaccharide production by Streptococcus thermophilus. Biotechnol. Lett. 10: 255-260. Cerning, J., C. Bouillanne, and M. J. Desmazeaud. 1990. Comparison of exocellular polysaccharide production by thermophilic lactic acid bacteria. Sci. Aliments. 10: 443–451. Cerning, J. 1990. Exocellular polysaccharides produced by lactic acid bacteria. FEMS Microbiol. Rev. 87: 113-130. Cerning, J., C. Bouillanne, M. Landon, and M. Desmazeaud. 1992. Isolation and characterization of exopolysaccharides from slime-forming mesophilic lactic acid bacteria. J. Dairy Sci. 75: 692-699. Cerning, J., C. M. G. C. Renard, J. F. Thibault, C. Bouillanne, M. Landon, M. Desmazeaud and L. Topisirovic. 1994. Carbon source requirements for exopolysaccharide production by Lactobacillus casei CG11 and partial structure analysis of the polymer. Appl. Environ. Microbiol. 60: 3914-3919. Cerning, J., and V. M. E. Marshall. 1999. Exopolysaccharides produced by the dairy lactic acid bacteria. Recent Res. Dev. Microbiol. 3: 195–209. Chervaux, C., S. D. Ehrlich, and E. Maguin. 2000. Physiological study of Lactobacillus delbrueckii subsp. bulgaricus strains in a novel chemically defined medium. Appl. Environ. Microbiol. 66: 5306–5311. Cinquin, C., G. Le Blay, I. Fliss, and C. Lacroix. 2006. Comparative effects of exopolysaccharides from lactic acid bacteria and fructo-oligosaccharides on infant gut microbiota tested in an in vitro colonic model with immobilized cells. FEMS Microbiol. Ecol. 57: 226-238. Collins, M. D., B. A. Phillips, P. Zanoni. 1989. Deoxyribonucleic acid homology studies of Lactobacillus casei, Lactobacillus paracasei sp. nov., subsp. paracasei and tolerans, and Lactobacillus rhamnosus sp. nov., comb. nov. Int. J. Syst. Bacteriol. 39: 105–108. Conway, P. L., S. L. Gorbach, and B. R. Goldin. 1987. Survival of lactic acid bacteria in the human stomach and adhesion to intestinal cells. J. Dairy Sci. 70: 1-12. Dambekodi, P. C., and S. E. Gilliland. 1998. Incorporation of cholesterol into the cellular membrane of Bifidobacterium longum. J. Dairy Sci. 81: 1818-1824. Degeest, B., and L. De Vuyst. 1999. Indication that the nitrogen source influences both amount and size of exopolysaccharides produced by Streptococcus thermophilus LY03 and modelling of the bacterial growth and exopolysaccharide production in a complex medium. Appl. Environ. Microbiol. 65: 2863-2870. De Smet, I., P. de Boever, and W. Verstraete. 1998. Cholesterol lowering in pigs through enchanced bacterial bile salt hydrolase activity. Br. J. Nutr. 79: 185-194. De Vuyst, L., F. Vanderveken, S. van de Ven, and B. Degeest. 1998. Production by and isolation of exopolysaccharides from Streptococcus thermophilus grown in a milk medium and evidence for their growth-associated biosynthesis. J. Appl. Microbiol. 84: 1059-1068. De Vuyst, L., and B. Degeest. 1999. Heteropolysaccharides from lactic acid bacteria. FEMS Microbiol. Rev. 23: 153-177. De Vuyst, L., F. De Vin, F. Vaningelgem, and B. Degeest. 2001. Recent developments in the biosynthesis and applications of heteropolysaccharides from lactic acid bacteria. Int. Dairy J. 11: 687-707. De Vuyst, L., M. Zamfir, F. Mozzi, T. Adriany, V. Marshall, B. Degeest and F. Vaningelgem. 2003. Exopolysaccharide-producing Streptococcus thermophilus strains as functional starter cultures in the production of fermented milks. Int. Dairy J. 13: 707-717. Degeest B., and L. De Vuyst. 1999. Indication that the nitrogen source influences both amount and size of exopolysaccharides produced by Streptococcus thermophilus LY03 and modeling of the bacterial growth and exopolysaccharide production in a complex medium. Appl. Environ. Microbiol. 65: 2863–2870. Degeest, B., and L. De Vuyst. 2000. Correlation of activities of the enzymes α-phosphoglucomutase, UDP-galactose 4-epimerase, and UDP-glucose pyrophosphorylase with exopolysaccharide biosynthesis by Streptococcus thermophilus LY03. Appl. Environ. Microbiol. 66: 3519-3527. Degeest, B., F. Vaningelgem, and L. De Vuyst. 2001. Microbial physiology, fermentation kinetics and process engineering of heteropolysaccharides production by lactic acid bacteria. Int. Dairy J. 11: 747–758. Dierksen, K. P., W. E. Sandine, and J. E. Trempy. 1997. Expression of ropy and mucoid phenotypes in Lactococcus lactis. J. Dairy Sci. 80: 1528–1536. Duboc, P., and B. Mollet. 2001. Applications of exopolysaccharides in the dairy industry. Int. Dairy J. 11: 759-768. Dubois, M., K. A. Gilles, J. K. Hamilton, P. A. Rebers, and F. Smith. 1956. Colorimetric method for determination of sugar and related substances. Anal. Chem. 28: 350–356. Dudman, W. F. 1977. The role of surface polysaccharides in natural environments. Surface carbohydrates of the prokaryotic cell. London: Academic Press. 357–414. Dupont, I., D. Roy, and G. Lapointe. 2000. Comparison of exopolysaccharide production by strains of Lactobacillus rhamnosus and Lactobacillus paracasei grown in chemically defined medium and milk. J. Ind. Microbiol. Biotechnol. 24: 251-255. Escalante, A., J. Villegas, C. Wacher, M. García-Garibay, and A. Farrés. 2002. Activity of the enzymes involved in the synthesis of exopolysaccharide precursors in an overproducing mutant ropy strain of Streptococcus thermophilus. FEMS Microbiol. Lett. 209: 289-293. Faber, E. J., P. Zoon, J. P. Kamerling, and J. F. G. Vliegenthart. 1998. The exopolysaccharides produced by Streptococcus thermophilus Rs and Sts have the same repeating unit but differ in viscosity of their milk cultures. Carbohydr. Res. 310:269–276. Faber, E. J., J. P. Kamerling, and J. F. G. Vliegenthart. 2001. Structure of the extracellular polysaccharide produced by Lactobacillus delbrueckii subsp. bulgaricus 291. Carbohydr. Res. 331: 183-194. Floch. M. M., H. J. Binder, B. Filbum, and W. Tershengoren. 1972. The effect of bile acids on intestinal microflora. J. Clin. Nutr. 25: 1418-1426. Frengova, G. I., E. D. Simova, D. M. Beshkova, and Z. I. Simov. 2000. Production and monomer composition of exopolysaccharides by yogurt starter cultures. Can. J. Microbiol. 46(12): 1123-1127. Gancel, F., and G. Novel. 1994. Exopolysaccharide Production by Streptococcus salivarius ssp. thermophilus Cultures. 2. Distinct modes of polymer production and degradation among Clonal Variants. J. Dairy Sci. 77: 689-695. García-Garibay, M., and V. M. Marshall. 1991. Polymer production by Lactobacillus delbrueckii bulgaricus. J. Appl. Bacteriol. 70: 325–328. Gassem, M. A., K. A. Schmidt, and J. F. Frank. 1997. Exopolysaccharide production from whey lactose by fermentation with Lactobacillus delbrueckii ssp. bulgaricus. J. Food Sci. 62: 171-173. Gibson, G. R., and M. B. Roberfroid. 1995. Dietary modulation of the human colonic microbiota: Introducing the concept of prebiotics. J. Nutr. 125(6): 1401-1412. Gilliland, S. E., and M. L. Speck. 1977. Deconjugation of bile acids by intestinal lactobacilli. Appl. Environ. Microbiol. 33: 15-18. Grobben G. J., J. Sikkema, M. R. Smith, and J. de Bont. 1995. Production of extracellular polysaccharides by Lactobacillus delbrueckii ssp. bulgaricus NCFB 2772 grown in a chemically defined medium. J. Appl. Bacteriol. 79: 103-107. Grobben, G. J., W. H. M. van Casteren, H. A. Schols, A. Oosterveld, G. Sala, M. R. Smith, J. Sikkema, J. A. M. de Bont. 1997. Analysis of the exopolysaccharides produced by Lactobacillus delbrueckii subsp. bulgaricus NCFB 2772 grown in continuous culture on glucose and fructose. Appl. Microbiol. Biotechnol. 48: 516-521. Hassan, A. N., J. F. Frank, M. A. Farmer, K. A. Schmidt, and S. I. Shalabi. 1995. Formation of yogurt microstructure and three-dimensional visualization as determined by confocal scanning laser microscopy. J. Dairy Sci. 78: 2629-2636. Hassan, A. N., J. F. Frank, and K. B. Qvist. 2002. Direct observation of bacterial exopolysaccharides in dairy products using confocal scanning laser microscopy. J. Dairy Sci. 85: 1705–1708. Hassan, A. N., M. Corredig, J. F. Frank, and M. Elsoda. 2004. Microstructure and rheology of an acid-coagulated cheese (Karish) made with an exopolysaccharide-producing Streptococcus thermophilus strain and its exopolysaccharide non-producing genetic variant. J. Dairy Res. 71: 116–120. Higashimura, M., B. W. Mulder-Bosman, R. Reich, T. Iwasaki, and G. W. Robjin. 2000. Solution properties of Viilian, the exopolysaccharide from Lactococcus lactis subsp. cremoris SBT 0495. Biopolymers 54:143–158. Hood. S. K. and E. A. Zottola. 1987. Electron microscopic study of the adherence propertics of LactobacilIus acidophilus. J. Food Sci. 52: 791. Jolly, L., S. J. F. Vincent, P. Duboc, and J. R. Neeser. 2002. Exploiting exopolysaccharides from lactic acid bacteria. Antonie van Leeuwenhoek. 82: 367-374. Klaver, F. A. M., and R.V. der Meer. 1993. The assumed estimation of cholesterol removal by lactobacilli and Bifidobacterium bifidum is due to their bile salt deconjugation activity. Appl. Environ. Microbiol. 59: 1120–1124. Kahlon, T. S., and C. L. Woodruff. 2003a. In vitro binding of bile acids by rice bran, oat bran, barley and β-glucan enriched barley. Cereal Chem. 80: 260–263. Kahlon, T. S., and C. L. Woodruff. 2003b. In vitro binding of bile acids by various ready to eat breakfast cereals. Cereal Foods World. 48: 73–75. Kahlon, T. S., and Q. Shao. 2004. In vitro binding of bile acids by soy bean (Glycine max), black eye bean (Vigna unguiculata), garbanzo (Cicerarietinum) and lima bean (Phaseolus lunatus). Food Chem. 86: 435–440. Kahlon, T. S., and G. E. Smith. 2007. In vitro binding of bile acids by bananas, peaches, pineapple, grapes, pears, apricots and nectarines. Food Chem. 101: 1046–1051. Kimmel, S. A., and R. F. Roberts. 1998. Development of a growth medium suitable for exopolysaccharide production by Lactobacillus delbrueckii ssp. bulgaricus RR. Int. J. Food Microbiol. 40: 87-92. Kimoto, H., S. Ohmomo, and T. Okamoto. 2002. Cholesterol removal from media by lactococci. J. Dairy Sci. 85: 3182-3188. Kitazawa, H., T. Yamaguchi, and T. Itoh. 1992. B-cell mitogenic activity of slime products produced from slime-forming, encapsulated Lactococcus lactis ssp. cremoris. J. Dairy Sci. 75: 2946-2951. Kitazawa, H., T. Itoh, Y. Tomioka, M. Mizugaki, and T. Yamaguchi. 1996. Induction of IFN- γ and IL-1 α production in macrophages stimulated with phosphopolysaccharide produced by Lactococcus lactis ssp. cremoris. Int. Food Microbiol. 31: 99-106. Kitazawa, H., T. Harata, J. Uemura, T. Saito, T. Kaneko, T. Itoh. 1998. Phosphate group requirement for mitogenic activation of lymphocytes by an extracellular phosphopolysaccharide from Lactobacillus delbrueckii ssp. bulgaricus. Int. J. Food Microbiol. 40: 169-175. Kitazawa, H., Y. Ishii, J. Uemura, Y. Kawai, T. Saito, T. Kaneko, K. Noda, T. Itoh. 2000. Augmentation of macrophage functions by an extracellular phosphopolysaccharide from Lactobacillus delbrueckiissp. bulgaricus. Food Microbiol. 17: 109-118. Klaver, F. A., and R. van der Meer. 1993. The assumed assimilation of cholesterol by lactobacilli and Bifidobacterium bifidum is due to their bile salt-deconjugating activity. Appl. Environ. Microbiol. 59: 1120-1124. Kleerebezem, M., and J. Hugenholtz. 2003. Metabolic pathway engineering in lactic acid bacteria. Curr. Opin. Biotechnol. 14: 232-237. Klein, G., A. Pack, C. Bonaparte, and G. Reuter. 1998. Taxonomy and physiology of probiotic lactic acid bacteria. Int. J. Food Microbiol. 41: 103–125. Klimp, A. H., E. G. E. de Vries, G. L. Scherphof, and T. Daemen. 2002. A potential role of macrophage activation in the treatment of cancer. Crit. Rev. Oncol./Hematol. 44: 143-161. Knoshaug, E. P., J. A. Ahlgren, and J. E. Trempy. 2000. Growth associated exopolysaccharide expression in Lactococcus lactis subsp. cremoris Ropy352. J. Dairy Sci. 83: 633-640. Kojic, M., M Vujcic, A. Banina, P. Cocconcelli, J. Cerning, and L. Topisirovic. 1992. Analysis of exopolysaccharide production by Lactobacillus casei CG11, isolated from cheese. Appl. Environ. Microbiol. 58(12): 4086–4088. Korakli, M., M. G. Ganzle, and R. F. Vogel. 2002. Metabolism by bifidobacteria and lactic acid bacteria of polysaccharides from wheat and rye, and exopolysaccharides produced by Lactobacillus sanfranciscensis. J. Appl. Microbiol. 92: 958-965. Kruif, K. G., and R. Tuinier. 1999. Whey protein aggregates and their interaction with exopolysaccharides. Int. J. Food Sci. Technol. 34: 487-492. Landersjo, C., Z. Yang, E. Huttunen, and G. Widmalm. 2002. Structural studies of the exopolysaccharide produced by Lactobacillus rhamnosus strain GG (ATCC 53103). Biomacromolecules. 3: 880-884. Laws, A. P., and V. M. Marshall. 2001. The relevance of exopolysaccharides to the rheological properties in milk fermented with ropy strains of lactic acid bacteria. Int. Dairy J. 11: 709-721. Lehto, E. M., and S. Salminen. 1997. Adhesion of two Lactobacillus strains, one Lactococcus and one Propionibabacterium strain to cultured human intestinal caco-2 cell line. Biosci. Microflora. 16: 13-17. Lemoine, J., F. Chirat, J. M. Wieruszeski, G. Strecker, N. Favre, and J. R. Neeser. 1997. Structural characterization of the exocellular polysaccharides produced by Streptococcus thermophilus SFI39 and SFI12. Appl. Environ. Microbiol. 63: 3512-3518. Levander F., M. Svensson, and P. Rådström. 2002. Enhanced Exopolysaccharide Production by Metabolic Engineering of Streptococcus thermophilus. Appl. Environ. Microbiol. 66: 784–790. Liong, M. T., and N. P. Shah. 2005. Acid and bile tolerance and cholesterol removal ability of lactobacilli strains. J. Dairy Sci. 88: 55-66. Looijesteijn, P. J., and J. Hugenholtz. 1999. Uncoupling of growth and exopolysaccharide production by Lactococcus lactis subsp. cremoris NIZO B40 and optimization of its synthesis. J. Biosci. Bioengin. 88: 178-182. Looijesteijn, P. J., I. C. Boels, M. Kleerebezem, and J. Hugenholtz. 1999. Regulation of exopolysaccharide production by Lactococcus lactis subsp. cremoris by the sugar source. J. Appl. Environ. Microbiol. 65: 5003-5008. Looijesteijn, P. J., L. Trapet, E. de Vries, T. Abee, and J. Hugenholtz. 2001. Physiological function of exopolysaccharides produced by Lactococcus lactis .Int. J. Food Microbiol.64: 71-80. Macedo, M. G., C. Lacroix, N. J. Gardner, and C. P. Champagne. 2002a. Effect of medium supplementation on exopolysaccharide production by Lactobacillus rhamnosus RW-9595m in whey permeate. Int. Dairy J. 12: 419-426. Macedo, M. G., M. F. Laporte, and C. Lacroix. 2002b. Quantification of exopolysaccharide, lactic acid, and lactose concentrations in culture broth by near-infrared spectroscopy. J. Agric. Food Chem. 50: 1774–1779. Macura, D., and P. M. Townsley. 1984. Scandinavian ropy milk-identification and characterization of endogenous ropy lactic streptococci and their extracelllular excretion. J. Dairy Sci. 67: 735–744. Maeda, H., X. Zhu, K. Omura, S. Suzuki, and S. Kitamura. 2004. Effects of an exopolysaccharide (kefiran) on lipids, blood pressure, blood glucose, and constipation. BioFactors. 22(1-4): 197-200. Manson, J. E., H. Tosteson, P. M. Ridker, S. Satterfield, P. Hebert, G. T. O’Connor. 1992. The primary prevention of myocardial infarction. N. Engl. J. Med. 326: 1406–1416. Marshall, V. M., and H. L. Rawson. 1999. Effects of exopolysaccharide-producing strains of thermophilic lactic acid bacteria on the texture of stirred yoghurt. Int. J. Food Sci. Technol. 34: 137-143. Marshall, V. M., A. P. Laws, Y. Gu, F. Levander, P. Radstrom, L. De Vuyst, B. Degeest, F. Vaningelgem, H. Dunn, M. Elvin. 2001. Exopolysaccharide-producing strains of thermophilic lactic acid bacteria cluster into groups according to their EPS structure. Lett. Appl. Microbiol. 32: 433–437. Martensson, O., M. D. Chasco, Irastorza A., O. Holst, M. Rudling, E. Norin, T. Midtvedt, and R. Oste. 2002. Effects of fermented, ropy, non-dairy, oat-based products on serum lipids and the faecal excretion of cholesterol and short chain fatty acids in germfree and conventional rats. Nutr. Res. 22: 1461-1473. Miller, G. L. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31:426–428. Miller, J. M., and D. L. Rhoden. 1991. Preliminary evaluation of biolog, a carbon source utilization method for bacterial identification. J. Clin. Microbiol. 29(6): 1143-1147. Monsan, P., S. Bozonnet, C. Albenne, G. Joucla, R.-M. Willemot, M. Remaud-Simeon. 2001. Homopolysaccharides from lactic acid bacteria. Int. Dairy J. 11: 675-685. Morishita, T., Y. Deguchi, M. Yajima, T. Sakurai, and T. Yura. 1981. Multiple nutritional requirements of lactobacilli: Genetic lesions affecting amino acid biosynthetic pathways. J. Bacteriol. 148: 64-71. Morris, D. L. 1948. Quantitative determination of carbohydrates with Dreywood’s anthrone reagent. Science. 107: 254–255. Mozzi, F., G. Oliver, G. S. de Giori, and G. F. de Valdez. 1995. Influence of temperature on the production of exopolysaccharides by thermophilic lactic acid bacteria. Milchwissenschaft. 50: 80–82. Mozzi, F., G. S. de Giori, G. Oliver, and G. F. de Valdez. 1996. Exopolysaccharide production by Lactobacillus casei under controlled pH. Biotechnol. Lett. 18: 435–439. Mozzi, F., G. Rollan, G. S. de Giori, and G. F. de Valdez. 2001. Effect of galactose and glucose on the exopolysaccharide production and the activities of biosynthetic enzymes in Lactobacillus casei CRL 87. J. Appl. Microbiol. 91: 160-167. Mozzi, F., F. Vaningelgem, E. Hebert, R. V. D. Meulen, M. R. F. Moreno, G. F. de Valdez, and L. De Vuyst. 2006. Diversity of heteropolysaccharide-producing lactic acid bacterium strains and their biopolymers. Appl. Environ. Microbiol. 72: 4431-4435. Nakajima, H., Y. Suzuki, H. Kaizu, and T. Hirota. 1992. Cholesterol lowering activity of ropy fermented milk. J. Food Sci. 57(6): 1327-1329. Nishimura-Uemura, J., H. Kitazawa, Y. Kawai, T. Itoh, M. Oda, and T. Saito. 2003. Functional alteration of murine macrophages stimulated with extracellular polysaccharides from Lactobacillus delbrueckii ssp. bulgaricus Oll1073R-1. Food Microbiol. 20: 267-273. Noh, D. O., and S. E. Gilliland. 1993. Influence of bile on cellular integrity and β-galactosidase activity of Lactobacillus acidophilus. J. Dairy Sci. 76: 1253-1259. Noh, D. O., S. H. Kim, and S. E. Gilliland. 1997. Incorporation of cholesterol into the cellular membrane of Lactobacillus acidophilus ATCC 43121. J. Dairy Sci. 80: 3107-3113. Nordmark, E. L., Z. Yang, E. Huttunen, and G. Widmalm. 2005. Structural studies of an exopolysaccharide produced by Streptococcus thermophilus THS. Biomacromolecules. 6: 105-108. Pereira, D. I., and G. R. Gibson. 2002. Effects of consumption of probiotics and prebiotics on serum lipid levels in humans. Crit. Rev. Biochem. Mol. Biol. 37: 259-281. Perry, D. B., D. J. McMahon, and C. J. Oberg. 1997. Effect of exopolysaccharide-producing cultures on moisture retention in low fat Mozzarella cheese. J. Dairy Sci. 80: 799-805. Perry, D. B., D. J. McMahon, and C. J. Oberg. 1998. Manufacture of low fat Mozzarella cheese using exopolysaccharide-producing starter cultures. J. Dairy Sci. 81: 563-566. Petersen, B. L., R. I. Dave, D. J. McMahon, C. J. Oberg, and J. R. Broadbent. 2000. Influence of capsular and ropy exopolysaccharide-producing Streptococcus thermophilus on Mozzarella cheese and cheese whey. J. Dairy Sci. 83: 1952-1956. Petry, S., S. Furlan, M.-J. Crepeau, J. Cerning, and M. Desmazeaud. 2000. Factors affecting exocellular polysaccharide production by Lactobacillus delbrueckii subsp. bulgaricus grown in a chemically defined medium. Appl. Environ. Microbiol. 66: 3427-3431. Petry, S., S. Furlan, E. Waghorne, L. Saulnier, J. Cerning, and E. Maguin. 2003. Comparison of the thickening properties of four Lactobacillus delbrueckii subsp. bulgaricus strains and physicochemical characterization of their exopolysaccharides. FEMS Microbiol. Lett. 221: 285-291. Pigeon, R. M., E. P. Cuesta, and S. E. Gilliland. 2002. Binding of free bile acids by cells of yogurt starter culture bacteria. J. Dairy Sci. 85: 2705-2710. Pham, P. L., I. Dupont, D. Roy, G. Lapointe, and J. Cerning. 2000. Production of exopolysaccharide by Lactobacillus rhamnosus R and analysis of its enzymatic degradation during prolonged fermentation. J. Appl. Environ. Microbiol. 66: 2302-2310. Potera, C. 2006. Cell Scenario a New Look at Microarrays. Environ. Health Perspect. 114: 172-175. Rawson, H. L., and V. M. Marshall. 1997. Effect of "ropy" strains of Lactobacillus delbrueckii spp. bulgaricus and Streptococcus thermophilus on rheology of stirred yogurt. Int. J. Food Sci. Technol. 32: 213–220. Ricciardi, A. and F. Clementi. 2000. Exopolysaccharides from lactic acid bacteria: structure, production and technological applications. Ital. J. Food Sci. 12: 23-45. Rimada, P. S., and A. G. Abraham. 2003. Comparative study of different methodologies to determine the exopolysaccharide produced by kefir grains in milk and whey. Lait. 83: 79–87. Roberts, C. M., W. F. Fett, S. F. Osman, C. Wijey, J. V. O''connor, and D. G. Hoover. 1995. Exopolysaccharide production of Bifidobacterium longum BB-79. J. Appl. Bacteriol. 78(55): 463-468. Ruas-Madiedo, P., J. Hugenholtz, and P. Zoon. 2002a. An overview of the functionality of exopolysaccharides produced by lactic acid bacteria. Int. Dairy J. 12: 163-171. Ruas-Madiedo, P., R. Tuinier, M. Kanning, and P. Zoon. 2002b. Role of exopolysaccharides produced by Lactococcus lactis subsp. cremoris on the viscosity of fermented milks. Int. Dairy J. 12: 689-695. Ruas-Madiedo, P., and P. Zoon. 2003. Effect of exopolysaccharide-producing Lactococcus lactis strains and temperature on the permeability of skim milk gels. Colloids Surf. A Physicochem. Eng. Asp. 213:245–253. Ruas-Madiedo, P., and C. G. de los Reyes-Gavilan. 2005. Invited review: Methods for the screening, isolation, and characterization of exopolysaccharides produced by lactic acid bacteria. J. Dairy Sci. 88: 843-856. Ruijssenaars, H. J., F. Stingele, S. Hartmans. 2000. Biodegradability of food-associated extracellular polysaccharides. Curr. Microbiol. 40: 194-199. Scheinbach, S. 1998. Probiotics: Functionality and commercial status. Biotechnol. Adv. 16: 581-608. Sreekumar, O., and A. Hosono. 1998. The antimutagenic properties of a polysaccharide produced by Bifidobacterium longum and its cultured milk against some heterocyclic amines. Can. J. Microbiol. 44: 1029-1036. Stingele, F., J. R. Neeser, and B. Mollet. 1996. Identification and characterization of the eps (exopolysaccharide) gene cluster from Streptococcus thermophilus Sfi6. J. Bacteriol. 178:1680-1690. Stingele, F., S. J. F. Vincent, E. J. Faber, J. W. Newell, J. P. Kamerling, and J. R. Neeser. 1999. Introduction of the exopolysaccharide gene cluster from Streptococcus thermophilus Sfi6 into Lactococcus lactis MG1363: production and characterization of an altered polysaccharide. Mol. Microbiol. 32: 1287–1295. Sutherland, I. W. 2001. Microbial polysaccharides from Gram-negative bacteria. Int. Dairy J. 11: 663-674. Tanaka, H., K. Doesburg, T. Iwasaki, and I. Mierau. 1999. Screening of lactic acid bacteria for bile salt hydrolase activity. J. Dairy Sci. 82: 2530–2535. Taranto, M. P., M. Medici, G. Perdigon, A. P. Ruiz Holgado, and G. F. Valdez. 2000. Effect of Lactobacillus reuteri on the prevention of hypercholesterolemia in mice. J. Dairy Sci. 83: 401-403. Tavan, E., C. Cayuela, J.-M. Antoine, G. Trugnan, C. Chaugier, and P. Cassand. 2002. Effects of dairy products on heterocyclic aromatic amine-induced rat colon carcinogenesis. Carcinogenesis. 23(3): 477-483. Teggatz, J.A. and, H. .A. Morris. 1990. Changes in the rheology and microstructure of ropy yogurt during shearing. Food Struct. 9: 133-138. Tieking, M., M. Korakli, M. A. Ehrmann, M. G. Ganzle, and R. F. Vogel. 2003. In situ production of exopolysaccharides during sourdough fermentation by cereal and intestinal isolates of lactic acid bacteria. Appl. Environ. Microbiol. 69: 945-952. Toba T., H. Uemura, and T. Itoh. 1992. A new method for the quantitative determination of microbial extracellular polysaccharide production using a disposable ultrafilter membrane unit. Lett. Appl. Microbiol. 14: 30–32. Torino, M. I., F. Mozzi, and G. Font de Valdez. 2005. Exopolysaccharide biosynthesis by Lactobacillus helveticus ATCC 15807. Appl. Microbiol. Biotechnol. 68: 259-265. Tuinier, R., P. Zoon, C. Olieman, M. A. Cohen-Stuart, G. J. Fleer, and C. G. de Kruif. 1999. Isolation and physical characterization of an exocellular polysaccharide. Biopolymers. 49:1–9. Tuinier, R., W. H. M. van Casteren, P. J. Looijesteijn , H. A. Schols, A. G. J. Voragen , P. Zoon. 2001. Effects of structural modifications on some physical characteristics of exopolysaccharides from Lactococcus lactis. Biopolymers 59: 160-166. Tzianabos, A. O. 2000. Polysaccharide immunomodulators as therapeutic agents: Structural aspects and biologic function. Clin. Microbiol. Rev. 13: 523-533. Usman, and A. Hosono. 1999. Bile tolerance, taurocholate deconjugation, and binding of cholesterol by Lactobacillus gasseri strains. J. Dairy Sci. 82: 243-248. Van den Berg, D. J. C., A. Smits, B. Pot, A. M. Ledeboer, K. Kersters, J. M. A. Verbakel, and C. T. Verrips. 1993. Isolation, screening and identification of lactic acid bacteria from traditional food fermentation process and culture collections. Food Biotechnol. 7: 189–205. Van den Berg, D. J. C., G. W. Robijn, A. C. Janssen, M. L. F. Giuseppin, R. Vreeker, J. P. Kamerling, J. F.G. Vliegenthart, A. M. Ledeboer and C. T. Verrips. 1995. Production of a novel extracellular polysaccharide by Lactobacillus sake 0-1 and characterization of the polysaccharide. Appl. Environ. Microbiol. 61: 2840-2844. Van Geel-Schutten, G. H., E. J. Faber, E. Smit, K. Bonting, M. R. Smith, B. ten Brink, J. P. Kamerling, J. F. G. Vliegenthart, and L. Dijkhuizen. 1999. Biochemical and structural characterization of the glucan and fructan exopolysaccharides synthesized by Lactobacillus reuteri wild-type strain and by mutant strains. Appl. Environ. Microbiol. 65: 3008–3014. Van Kranenburg, R., J. D. Marugg, I. I. van Swam, N. J. Willem, and W. M. de Vos. 1997. Molecular characterization of the plasmid-encoded eps gene cluster essential for exopolysaccharide biosynthesis in Lactococcus lactis. Mol. Microbiol. 24: 387-397. Van Kranenburg, R., I. I. van Swam, J. D. Marugg, M. Kleerebezem, and W. M. de Vos. 1999. Exopolysaccharide biosynthesis in Lactococcus lactis NIZO B40: Functional analysis of the glycosyltransferase genes involved in synthesis of the polysaccharide backbone. J. Bacteriol. 181: 338-340. Van Marle, M. E. and P. Zoon. 1995. Permeability and rheological properties of microbially and chemically acidified skim milk gels. Neth. Milk Dairy J. 49: 47- 65. Vaningelgem, F., M. Zamfir, F. Mozzi, T. Adriany, M. Vancanney, J. Swings, and L. De Vuyst. 2004. Biodiversity of exopolysaccharides produced by Streptococcus thermophilus strains is reflected in their production and their molecular and functional characteristics. Appl. Environ. Microbiol. 70: 900–912. Vedamuthu, E. R., and J. M. Neville. 1986. Involvement of a plasmid in production of ropiness (mucoidness) in milk cultures by Streptococcus cremoris MS. Appl. Environ. Microbiol. 51: 677-682. Vincent, S. J., E. J. Faber, J. R. Neeser, F. Stingele, and J. P. Kamerling. 2001. Structure and properties of the exopolysaccharide produced by Streptococcus macedonicus Sc136. Glycobiology. 11: 131–139. Walker, D. K., and S. E. Gilliland. 1993. Relationships among bile tolerance, bile salt deconjugation, and assimilation of cholesterol by Lactobacillus acidophilus. J. Dairy Sci. 76: 956-961. Weintraub, A. 2003. Immunology of bacterial polysaccharide antigens. Carbohydr. Res. 338: 2539-2547. Welman, A. D., I. S. Maddox, and R. H. Archer. 2003. Screening and selection of exopolysaccharide-producing strains of Lactobacillus delbrueckii subsp. bulgaricus. J. Appl. Microbiol. 95: 1200-1206. Whitfield, C. 1988. Bacterial extracellular polysaccharides. Can. J. Microbiol. 34(4): 415-420. Yamamoto, Y., S. Murosaki, R., Yamauchi, K. Kato, and Y. Sone. 1994. Structural study on an exocellular polysaccharide produced by Lactobacillus helveticus TY1-2. Carbohydr. Res. 261: 67–78. Yang, Z., M. Staaf, E. Huttunen, and G. Widmalm. 2000. Structure of a viscous exopolysaccharide produced by Lactobacillus helveticus k16. Carbohydr. Res. 329: 465-469.
摘要: Lactobacillus acidophilus BCRC 14079、Lactobacillus delbrueckii subsp. bulgaricus BCRC 10696及Lactobacillus rhamnosus BCRC 16000在以MRSL (MRS+ 2% lactose)為培養基時,乳酸菌的胞外多醣與菌株生長期有一相關性,胞外多醣於菌株進入對數期開始累積,在穩定期末達最高的多醣生成量,S. thermophilus BCRC 14085在培養後第28小時達最高的多醣生成量,在培養後第28至32小時左右,當菌株邁入死滅期時,多醣量均下降。在以篩選產黏菌株的牛乳培養基(MYPL)中,各菌株在穩定期末,都有最高量的多醣生成,產量也高於以MRSL為培養基者。菌株於MRSL培養基於增殖的第8或第12小時有高分子量多醣(106)的生成,但在MYPL培養基中,則均為低分子量多醣(<103)的生成。隨著菌株多醣生成量的增加,菌株對培養基中膽鹽降低量也增加,可能是胞外多醣對膽鹽的吸附作用,使其隨菌體細胞離心析出。菌株的膽鹽去結合能力也隨其進入對數生長期增加,以在MRSL培養基菌株有較佳的膽鹽水解活性。菌株在MYPL培養基中,於耐酸、膽鹽及消化道試驗中存活率低。
The production of exopolysaccharide by lactic acid bacteria is growth-associated in MRSL (MRS+2% lactose) medium. A higher exopolysaccharide production can be found in MYPL medium (9% skim milk + 0.35% yeast extract+ 0.35% peptone+ 5% lactose), compared to the MRSL medium. The highest exopolysaccharide production can be achieved by the end of stationary phase in both media. There is high-molecular-mass exopolysaccharide synthesis in MRSL medium after incubation for 8 to 12 hours. The level of sodium cholate in the medium decreases as the cell growth and exopolysaccharide production increase, suggesting that there is an exopolysaccharide binding effect to the sodium cholate. Deconjugation activity of lactic acid bacteria is maximum in the late exponential phase of growth. The cell survival rate of lactic acid bacteria under the stress of acid, bile or gastrointestinal tract is low in MYPL medium.
其他識別: U0005-0506200718481700
Appears in Collections:動物科學系



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.