Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/24823
標題: 以雞腿骨蛋白開發具抗氧化與抗高血壓保健食品之研究
The study on development of chicken leg bone protein as functional food with antioxidative and antihypertensive effects
作者: 鄭富元
Cheng, Fu-Yuan
關鍵字: Byproduct
酵素水解
hydrolysis
antihypertension
antioxidative activity
chicken leg bone
heating extract
angiotensin converting enzyme inhibitor
peptidte
抗高血壓
抗氧化
雞腿骨
熱水抽出物
血管收縮素轉換酶抑制劑
胜肽
出版社: 動物科學系所
引用: 第二章 林重光。2004。女性消費者美容護膚保健食品通路及購買動機之研究。國立臺北大學企業管理學系碩士論文。台北,台灣。 林瑩禎。2003。保健食品市場回顧與展望。食品市場資訊 92: 13-21。 張文重。1976。蛋白質分解酵素。國立編譯館出版。台北,台灣。 陳俊榮。1999。談雞精的營養與功效。健康世界 283: 49-52。 劉伯康。1997。數種傳統食用植物抗氧化性之研究。國立中興大學食科學研究所碩士論文。台中。台灣。 Abbate M, A. Benigni, T. Bertani and G. Remuzzi. 1999. Nephrotoxicity of increased glomerular protein traffic. Nephrol. Dial. Transplant. 14: 304-312. Adler-Nissen, J. 1979. Determination of degree of hydrolysis of food protein hydrolysates by trinitrobenzenesulfonic acid. J. Agric. Food Chem. 27: 1256-1262. Antonios, T. F. T. and G. A. Macgregor. 1995. Angiotensin-converting enzyme-inhibitors in hypertension - potential problems. J. Hypertens. 13: S11-S16. Arakawa, K. 2004. What is the most important in treating hypertension? Int. Congr. Series 1262: 593-596. Arribas, S. M., A. Hinek and M. C. Gonz&aacute;lez. 2006. Elastic fibres and vascular structure in hypertension. Pharmacol. Ther. 111: 771-791. Astorg, P. 1997. Food carotenoids and cancer prevention: An overview of current research. Trends Food Sci. Technol. 8: 406-413. Atkinson, A. B. and J. I. S. Robertson. 1979. Captopril in the treatment of clinical hypertension and cardiac failure. Lancet 2: 836-839. Bannister, J. V., W. H. Bannister and G. Rotilio. 1987. Aspect of the structure, function and application of superoxide dismutase. Crit. Rev. Biochem. 22: 111-180. Becker, G. L. 1993. Preserving food and health: antioxidants make functional, nutritious preservatives. Food Process 12: 54-56. Benavente-Gaec&iacute;a, O., J. Castillo, F. R. Marin, A. Ortu&ntilde;o and J. A. D. R&iacute;o. 1997. Uses and properties of citrus flavonoids. J. Agric. Food Chem. 45: 4505-4515. Bergendi, L., L. Benes, Z. Durackova and M. Ferencik. 1999. Chemistry, physiology and pathology of free radicals. Life Sci. 65: 1865-1874. Bleser, P. J. D., G. Xu, K. Rombouts, V. Rogiers and A. Geerts. 1999. Glutathione levels discriminate between oxidative stress and transforming growth factor-β signaling in activated rat hepatic stellate cells. J. Biol. Chem. 274: 33881—33887. Brain, J. and R. Rosario. 2005. Hypertension: a review and rationale of treatment. Dis. Mon. 51: 548-614. Branthl, V., H. Teschemacher, A. Henschen and F. Lottspeich. 1979. Novel opioid peptides derived from casein (&szlig;-Casomorphins).I. Isolation from bovine casein peptone. Hoppe-Seyler’s Z. Physiol. Chem. 360: 1211-1216. Brew, K. 2003. Structure of human ACE gives new insights into inhibitor binding and design. Trends Pharmacol Sci. 24: 391-394. Burton, G. W. 1989. Antioxidant action of carotenoids. J. Nutr. 119: 109-111. Calabrese, E. J. and A. T. Canada. 1989. Catalase: its role in xenobiotic detoxification. Pharmacol. Ther. 44: 297–307. Chance B, H. Sies and A. Boveris. 1979. Hydroperoxide metabolism in mammalian organs. Physiol. Rev. 59: 527-605. Chen, H. M., K. Muramoto and F. Yamauchi. 1995. Structural analysis of antioxidative peptides from soybean β-conglycinin. J. Agric. Food Chem. 43: 574-578. Chen, H. M., K. Muramoto, F. Yamauchi, K. Fujimoto and K. Nokihara. 1998. Antioxidative properties of histidine-containing peptides designed from peptide fragments found in the digests of a soybean protein. J. Agric. Food Chem. 46: 49-53. Chobanian, A. V., G. L. Bakris, H. R. Black, W. C. Cushman, L. A. Green, J. L. Izzo, Jr, D. W. Jones, B. J. Materson, S. Oparil, J. T. Wright, Jr, E. J. Roccella. The seventh report of the Joint National Committee on prevention, detection, evaluation, and treatment of high blood pressure. Hypertension 42: 1206-1252. Chobert, J. M., C. Bertrand-Harb and M. G. Nicolas. 1988. Solubility and emulsifying properties of caseins and whey proteins modified enzymically by trypsin. J. Agric. Food Chem. 36: 883-892. Cheung, H. S., F. L. Wang, M. A. Ondetti, E. F. Sabo and D. W. Cushman. 1980. Binding of peptide substrates and inhibitors of angiotensin-converting enzyme: Importance of the COOH-terminal dipeptide sequence. J. Biol. Chem. 255: 401- 407. Clare, D. A. and H. E. Swaisgood. 2000. Bioactive milk peptides: A prospectus. J. Dairy Sci. 83:1187-1195. Clark, I. A., and W. B. Cowden. 1985. Free radical-induced pathology. Med. Res. Rev. 5: 297-332. Coates, D. 2003. The angiotensin converting enzyme (ACE). Int. J. Biochem. Cell Biol. 769-773. Cohen, M. L. 1985. Synthetic and fermentation-derived angiotensin converting enzyme inhibitors. Annu. Rev. Pharmacol. Toxicol. 25: 307-323. Corvol, P., A. Michaud, F. Soubrier and T. A. Williams. 1995. Recent advances in knowledge of the structure and function of the angiotensin I converting enzyme. J. Hypertens. Suppl. 13: 3-10. Darr, D. and I. Fridovich. 1994. Free radicals in cutaneous biology. J. Invest. Dermatol. 102: 671-675. Dive, V., J. Cotton, A. Yiotakis, A. Michaud, S. Vassiliou, J. Jiracek, G. Vazeux, M. T. Chauvet, P. Cuniasse and P. Corvol. 1999. RXP 407, a phosphinic peptide, is a potent inhibitor of angiotensin I converting enzyme able to differentiate between its two active sites. Proc. Nat. Acad. Sci. USA 96: 4330-4335. Dziuba, J., P. Minkiewicz and D. Nalecz. 1999. Biologically active peptides from plant and animal proteins. Pol. J. Food Nutr. Sci. 8: 3-16. Elliott, H. 2006. Epidemiology, aetiology and prognosis of hypertension. Medicine 34: 286-289. Erdos, E. G. and R. A. Skidgel. 1987. The angiotensin I–converting enzyme. Lab. Invest. 56: 345-348. Ezzati M, A. D. Lopez, A. Rogers S. V. Hoorn, and C. J. L. Murray.. 2002. Comparative risk assessment collaborative group: selected major risk factors and global and regional burden of disease. Lancet 360: 1347-1360. Ferreira, S. H., D. C. Bartelt and L. J. Greene. 1970. Isolation of bradykinin- potentiating peptides from Bothrops jararaca venom. Biochem. 9: 2583-2593. FitzGerald, R. J. and H. Meisel. 2000. Milk protein-derived peptide inhibitors of angiotensin-I-converting enzyme. Br. J. Nutr. 84: S33-S37. Fogari, R. and A. Zoppi. 2006. Antihypertensive drugs and fibrinolytic function. Am. J. Hypertens. 19: 1293-1299. Fragata M. and F. Bellemare. 1980. Model of singlet oxygen scavenging by α-tocopherol in biomembranes. Chem. Phys. Lipids 27: 93-99. Fridovich, I. 1978. The biology of oxygen radicals. Sci. 201: 875-880. Frlich, I. and P. Riederer. 1995. Free radical mechanisms in dementia of Alzheimer type and the potential for antioxidative treatment. Drug Res. 45: 443-449. Frokjaer, S. 1994. Use of hydrolysates for protein supplementation. Food Technol. 48: 86-88. Fujita, H., K. Yokoyama and M. Yoshikawa. 2000. Classification and antihypertensive activity of angiotensin I-converting enzyme inhibitory peptides derived from food proteins. J. Food Sci. 65: 564-569. Fukudome, S. and M. Yoshikawa. 1992. Opioid peptides derived from wheat gluten: their isolation and characterization. FEBS Lett. 296: 107-111. Gulgoz, Y. and J. Solms. 1976. Bitter peptides, occurrence and structure. Chem. Senses Flavour. 2: 71-84. Halliwell, B. and J. M. C. Gutteridge. 1990. Role of free radicals and catalytic metal ions in human disease. Methods Enzymol. 186: 1-85. Halliwell, B., J. M. C. Gutteridge and C. E. Cross. 1992. Free radicals, antioxidants and human disease : where are we now ? J. Lab. Clin. Med. 119: 598-620. Halliwell, B., M. Wasil and M. Grootveld. 1987. Biologically significant scavenging of the myeloperoxidase-derived oxidant hypochlorous acid by ascorbic acid. FEBS Lett. 213: 15-17. Halliwell, B., R. Aeschbach, J. L&ouml;liger and O. I. Aruoma. 1995. The characterization of antioxidants. Food Chem. Toxicol. 33: 601-617. Hubert, C., A. M. Houot, P. Corvol and F. Soubrier. 1991. Structure of the angiotensin I-converting enzyme gene. Two alternate promoters correspond to evolutionary steps of a duplicated gene. J. Biol. Chem. 266: 15377-15383. Hyun, C. K. and H. K. Shin. 2000. Utilization of bovine blood plasma proteins for the production of angiotensin I converting enzyme inhibitory peptides. Process Biochem. 36: 65-71. Imaida, K., S. Fukushima, T. Shivai, M. Ohtani, K. Nakanishi and N. Ito. 1983. Promoting activities of butylated hydroxyanisole and butylated hydroxytoluene of 2-stage urinary bladder carcinogenesis and inhibition of γ-glutamyl transpeptidase-positive foci development in the liver of rats. Carcinogenesis 4: 885-889. Jang, A. and M. Lee. 2005. Purification and identification of angiotensin converting enzyme inhibitory peptides from beef hydrolysates. Meat Sci. 69: 653-661. Je, J. Y., P. J. Park, J. Y. Kwon and S. K. Kim. 2004. A novel angiotensin I converting enzyme inhibitory peptide from Alaska pollack (Theragra chalcogramma) frame protein Hydrolysate J. Agric. Food Chem. 52: 7842-7845. Jones, D. P., L. Eklow, H. Thor and S. Orrenius. 1981. Metabolism of hydrogen peroxide in isolated hepatocytes: relative contributions of catalase and glutathione peroxidase in decomposition of endogenously generated H2O2. Arch. Biochem. Biophys. 210: 505-516. Jost, R and J. C. Monti. 1997. Partial enzymatic hydrolysis of whey proteins to improve functionality. J. Dairy Sci. 67: 2757-2774. Kato, H and T. Suzuki. 1971. Bradykinin-potentiating peptides from the venom of Akistrodon halys blomhoffii: isolation of five bradykinin potentiators and the amino acid sequences of two of them, potentiators B and C. Biochem. 10: 972-980. Kim, S. K., Y. T. Kim, H. G. Byun, K. S. Nam, D. S. Joo and F. Shahidi. 2001a. Isolation and characterization of antioxidative peptides from gelatin hydrolysate of Alaska pollack skin. J. Agric. Food Chem. 49: 1984-1989. Kim, S. K., Y. T. Kim, H. G. Byun, P. J. Park and H. Ito. 2001b. Purification and characterization of antioxidative peptides from bovine skin. J. Biochem. Mol. Bio. 34: 219-224. Kim, S. Y., J. Y. Je and S. K. Kim. 2007. Purification and characterization of antioxidant peptide from hoki (Johnius belengerii) frame protein by gastrointestinal digestion. J. Nutr. Biochem. 18: 31-38. Kinsella, J. E. and D. M. Whitehead. 1989. Protein in whey: chemical, physical, and functional properties in advances in food and nutrition research. Academic Press. pp.343-438. Kirkman, H. N. and G. F. Gaetani. 1984. Catalase: A tetrameric enzyme with four tightly bound molecules of NADPH. Proc. Natl. Acad. Sci. USA 81: 4343-4347. Kitts, D. D. and K.Weiler. 2003. Bioactive proteins and peptides from food sources. Applications of bioprocesses used in isolation and recovery. Curr. Pharm. Design 9: 1309-1323. Kohmura, M., N. Nio, K. Kubo, Y. Minoshima, E. Munekata and Y. Ariyoshi. 1989. Inhibition of angiotensin-converting enzyme by synthetic peptides of human β-casein. Agric. Biol. Chem. 53: 2107-2114. Korhonen, H. and A. Pihlanto. 2003. Food-derived bioactive peptides- Opportunities for designing future foods. Curr. Pharm. Design 9: 1297-1308. Krinsky, N. I. and S. M. Deneke. 1982. Interaction of oxygen and oxy-radicals with carotenoids. J. Natl. Cancer Inst. 59: 205-210. Lahl, W. J. and S. D. Braun. 1994. Enzymatic production of protein hydrolysates for food use. Food Technol. 48: 68-71. Lee, Y. S., T. Noguchi and H. Naito. 1983. Intestinal absorption of calcium in rats given diets containing casein or amino acid mixture: the role of casein phosphopeptides. Br. J. Nutr. 49: 67-76. Li, G., G. Le, Y. Shi and S. Shrestha. 2004. Angiotensin I-converting enzyme inhibitory peptides derived from food proteins and their physiological and pharmacological effects. Nutr. Res. 24: 469-486. Loukas, S., D. Varoucha, C. Zioudrou, R. A. Streaty and W. A. Klee. 1983. Opioid activities and structures of a-casein-derived exorphins. Biochem. 22: 4567-4573. Mahmoud, M. I. 1994. Physicochemical and functional properties of protein hydrolysates in nutritional products. Food Technol. 48: 89-95. Mart&iacute;nez-Cayuela, M. 1995. Oxygen free radicals and human disease. Biochimie 77: 147-161. Meisel, H. 2004. Multifunctional peptides encrypted in milk proteins. Biofactors 21: 55-61. Mendis, E., N. Rajapakse and S. K. Kim. 2005. Antioxidant properties of a radical-scavenging peptide purified from enzymatically prepared fish skin gelatin hydrolysate. J. Agric. Food Chem. 53: 581-587. Meng, Q. C. and S. Oparil. 1996. Purification and assay methods for angiotensin-converting enzyme. J. Chromatogr. A 743:105-122. Morimatsu, F., M. Ito, S. Budijanto, I. Watanabe, Y. Furukawa and S. Kimura. 1996. Plasma cholesterol-suppressing effect of papain hydrolyzed pork meat in rats fed a hypercholesterolemic diet. J. Nutr. Sci. Vitaminol. 42: 145-153. Murray, T. K. and B. E. Baker. 1952. Studies on protein hydrolysis: I. Preliminary observations on the taste of enzymic proteinhydrolyzates. J. Sci. Food Agric. 3: 470-475. Mutilangi, W. A. M., D. Panyam and A. Kilara. 2006. Functional properties of hydrolysates from proteolysis of heat-denatured whey protein isolate. J. Food Sci. 61: 270-275. Natesh, R., S. L. U. Schwager, E. D. Sturrock and K. R. Acharya. 2003. Crystal structure of the human angiotensin-converting enzyme-lisinopril complex. Nature 421: 551-554. Nielsen, P. H., H. Malmos, T. Damhus, B. Diderichsen, H. K. Nielsen, M. Simonsen, H. E. SchiV, A. Oestergaard, H. S. Olsen, P. Eigtved and T. K. Nielsen. 1994. Enzyme applications (industrial). 4th ed. Kirk-Othmer Encyclopedia of Chemical Technology, Vol. 9. John Wiley & Sons, Inc, New York, pp. 567-620. Okada, Y. and M. Okada. 1998. Scavenging effect of water soluble proteins in broad beans on free radicals and active oxygen species. J. Agric. Food Chem. 46: 401-406. Olempska-Beer, Z. S., R. I. Merker, M. D. Ditto and M. J. DiNovi. 2006. Food-processing enzymes from recombinant microorganisms—a review. Regul. Toxicol. Pharmacol. 45: 144-158. Ondetti, M. A., N. J. Williams, E. F. Sabo, J. Pluvec, E. R. Weaver and O. Kocy. 1971. Angiotensin-converting enzyme inhibitors from the venom of Bothrops jararaca: isolation, elucidation of structure and synthesis. Biochem. 10: 4033-4042. Packer, J. E., T. F. Slater and R. L. Willson. 1979. Direct observation of a free radical interaction between vitamin E and vitamin C. Nature 278: 737-738. Park, P. J., W. K. Jung, K. S. Nam, F. Shahidi and S. K. Kim. 2001. Purification and characterization of antioxidative peptides from protein hydrolysate of lecithin-free egg yolk. J. Am. Oil. Chem. Soc. 78:651-656. Parmley, W. W. 1998. Evolution of angiotensin-converting enzyme inhibitoion in hypertension, heart failure, and vascular protection. Am. J. Med. 105: 27-31. Pelle, E., D. Maes, G. A. Padulo, E. K. Kim and W. P. Smith. 1990. An in vitro model to test relative antioxidant potential:ultraviolet-induced lipid peroxidation in liposomes. Arch. Biochem. Biophys. 283: 234-240. Pihlanto, A. 2006. Antioxidative peptides derived from milk proteins. Int. Dairy J. 16: 1306–1314. Pryor, W. A. and N. Y. Ann. 1982. Free radical biology: xenobiotics, cancer, and aging. Acad. Sci. 393: 1- 22. Rajapakse, N., E. Mendis, H. G. Byun and S. K. Kim. 2005. Purification and in vitro antioxidative effects of giant squid muscle peptides on free radical-mediated oxidative systems. J. Nutr. Biochem. 16: 562-569. Rosemeyer, M. A. 1987. The biochemistry of glucose-6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase and glutathione reductase. Cell Biochem. Func. 5: 79-95. Rouseff, R. and S. Nagy. 1994. Health and nutritional benefits of citrus fruit components. Food Technol. 48: 125-139. Roxborough, H. E., C. Mercer, D. McMaster, A. P. Maxwell and I. S. Young. 1999. Plasma glutathione peroxidase activity is reduced in haemodialysis patient. Nephron. 81: 278-283. Saha, B. C. and K. Hayashi. 2001. Debittering of protein hydrolyzates. Biotechnol. Adv. 19: 355-370. Saiga, A., T. Okumura, T. Makihara, S. Katsuta, T. Shimizu, R. Yamada and T. Nishimura. 2006. Action mechanism of an angiotensin I-converting enzyme inhibitory peptide derived from chicken breast muscle. J. Agric. Food Chem. 54: 942-945. Saiga, A., T. Okumura, T. Makihara, S. Katsuta, T. Shimizu, R. Yamada and T. Nishimura. 2003. Angiotensin I-converting enzyme inhibitory peptides in a hydrolyzed chicken breast muscle extract. J. Agric. Food Chem. 51: 1741-1745. Saito, T., T. Nakamura, H. Kitazawa, Y. Kawai and T. Itoh. 2000. Isolation and structural analysis of antihypertensive peptides that exist naturally in gouda cheese. J. Dairy Sci. 83: 1434-1440. Saito, Y., K. Wanezaki, A. Kawato and S. Imayasu. 1994. Structure and activity of angiotensin I converting enzyme inhibitory peptides from sake and sake lees. Biosci. Biotech. Biochem. 58: 1767-1771. Schwenke, D. C. 1998. Antioxidants and atherosclerosis. J. Nutr. Biochem. 9: 424-445. Shah A and R. Arora. 2005. Tissue angiotensin-converting enzyme inhibitors: Are they more effective than serum angiotensin-converting enzyme inhibitors? Clin. Cardiol. 28: 551-555. Shimaoka T., C. Miyake and A. Yokota. 2003. Mechanism of the reaction catalyzed by dehydroascorbate reductase from spinach chloroplasts. Eur. J. Biochem. 270: 921-928. Sibony, M., J. M. Gasc, F. Soubrier, F. A. Gelas and P. Corvol. 1993. Gene expression and tissue localization of the two isoforms of ACE. Hypertension 21: 827-835. Stait, S. E. and D. S. Leake. 1996. The effects of ascorbate and dehydroascorbate on the oxidation of lowdensity lipoprotein. Biochem. J. 320: 373-381. Steve, B. R., A. Fernandez, C. Kneer, J. J. Cerda, M. I. Phillips and E. R. Woodward. 1988. Human intestinal brush border angiotensin- converting enzyme activity and its inhibition by antihypertensive ramipril. Gastroenterology 98: 942-944. Temple, N. J. and T. K. Basu. 1987. Protective effect of β-carotene against colon tumors in mice. J. Natl. Cancer Inst. 78: 1211-1214. Terao, J. 1989. Antioxidant activity of β-carotene-related carotenoids in solution. Lipids 24: 659-661. Terao, J. R. Yamauchi, H. Murakami, and S. Matsushita. 1980. Inhibitory effects of tocopherols and β-carotene on singlet oxygen-initiated photoxidation of methyl linoleate and soybean oil. J. Food Proc. Preserv. 4: 79-83. Ursula, C. and A. Mark. 2004. The renin-angiotensin-aldosterone system and the kidney: effects on kidney disease. Am. J. Med. 116: 263-272. Valletri, P. A., M. L. Billingsley and W. Lovenberg. 1985. Thermal denaturation of rat pulmonary and testicular angiotensin-converting enzyme isozymes. Effects of chelators and CoCl2. Biochem. Biophys. Acta. 839: 71-82. Vercruysse, L., J. V. Camp and G. Smagghe. 2005. ACE inhibitory peptides derived from enzymatic hydrolysates of animal muscle protein: a review. J. Agric. Food Chem. 53: 8106-8115. Vermeirssen, V., J. V. Camp and W. Verstraete1. 2004. Bioavailability of angiotensin I converting enzyme inhibitory peptides. Br. J. Nutr. 92: 357-366. Wilding, P., P. J. Lillford and J. M. Regenstein. 1984. Functional properties of proteins in foods. J. Chem. Tech. Biotechnol. 34B: 182-189. Wu, H. C., C. Y. Shiau, H. M. Chen and T. K. Chiou. 2003. Antioxidant activities of carnosine, anserine, some free amino acids and their combination. J. Food Drug Anal. 11: 148-153. Yamamoto, N., M. Ejiri and S. Mizuno. 2003. Biogenic peptides and their potential use. Curr. Pharm. Design 9: 1345-1355. Yashiro, A., S. Oda and M. Sugano. 1985. Hypocholesterolemic effect of soybean protein in rats and mice after peptic digestion. J. Nutr. 115: 1325-1336. Yong, S. H. and M. Karel. 1978. Reaction of histidine with methyl linoleate: Characterization of the histidine degradation product. J. Am. Oil Chem. Soc. 55:352-356. Zelko, I. N., T. J. Mariani and R. J. Folz. 2002. Superoxide dismutase multigene family: A comparison of the CuZn-SOD (SOD1), Mn-SOD (SOD2), and EC-SOD (SOD3) gene structures, evolution, and expression. Free Radic. Biol. Med. 33: 337-349. Zioudrou, C., R. A. Streaty and W. A. Klee. 1979. Opioid peptides derived from food proteins. J. Biol. Chem. 254: 2446-2449. 第三章 Ackermann, A., M. S. Fern&aacute;ndez-Alfonso, R. S. Rojas, T. Ortega, M. Paul and C. Gonz&aacute;lez, 1998. Modulation of angiotensin-converting enzyme by nitric oxide. Br. J. Pharmacol. 124: 291-298. Bauchart, C., D, R&eacute;mond, C. Chambon, P. P. Mirand, I. Savary-Auzeloux, C. Reyn&eacute;s and M. Morzel. 2006. Small peptides (<5 kDa) found in ready-to-eat beef meat. Meat Sci. 74: 658-666. Belitz, H.-D. and W. Grosch. 1999. Food chemistry. Berlin, Germany: Springer. Benjakul, S. and M. T. Morrissey. 1997. Protein hydrolysates from pacific whiting solid wastes. J. Agric. Food Chem. 45: 3423-3430. Brand-Williams, W., M. E. Cuveliver and C. Berset. 1995. Use of a freeradical method to evaluate antioxidant activity. Lebensm. Wiss. Technol. 28: 25-30. Chen, J. H. Lindmark-M&aring;nsson, L. Gorton and B. &Aring;kesson. 2003. Antioxidant capacity of bovine milk as assayed by spectrophotometric and amperometric methods. Int. Dairy J. 13: 927-935. Byun, H. G. and S. K. Kim. 2002. Structure and activity of angiotensin I converting enzyme inhibitory peptides derived from Alaskan pollack skin. J. Biochem. Mol. Biol. 35: 239-243. Chan, K. M., E. A. Decker and W. J. Means. 1993. Extraction and activity of carnosine a naturally occurring antioxidant in beef muscle. J. Food Sci. 58: 1-4. Cheng, F. Y., Y. T. Liu, T. C. Wan, L. C. Lin and R. Sakata. 2008. The development of angiotensin I converting enzyme inhibitor derived from chicken bone protein. Anim. Sci. J. (In press) Church, F. C., E. H. Swaisgood, D. H. Porter and G. L. Catignani. 1983. Spectrophotometric assay using o-phthaldialdeyhde for determination of proteolysis in milk and isolated milk protein. J. Dairy Sci. 66: 1219-1227. Cushman, D. W. and H. S. Cheung. 1971. Spectrophotometric assay and properties of the angiotensin-converting enzyme of rabbit lung. Biochem. Pharmacol. 20: 1637-1648. Decker, E. A. and B. Welch. 1990. Role of ferritin as alipid oxidation catalyst in muscle food. J. Agric. Food Chem. 38: 674-677. Dziezak, J. D. 1986. Preservatives: antioxidant. Food Technol. 40: 94-102. El-Adawy, T. A. and S. A. El-Kadousy. 1995. Changes in chemical composition, nutritional quality, physico-chemical and functional properties of peach kernel meal during detoxification. Food Chem. 52: 143-148. Geissler, C., M. Boroumand-Naini, M. Harada, T. Iino, K. Hirai, Y. Suwa, T. Tanaka and S. Iwata. 1996. Chicken extract stimulates haemoglobin restoration in iron deficient rats. Int. J. Food Sci. Nutr. 47: 351-360. Geissler, G., M. Boroumand-Naini and C. Tomassen. 1989. Large acute thermic response to chicken essence in humans. Nutr. Reports Int. 39: 547-556. Gopalakrishnan, J., E. A. Decker and W. J. Means. 1999. Antioxidant activity of mechanically separated pork extracts. Meat Sci. 52: 101-110. Hofmann, T., W. Bors and K. Stettmaier. 1999. Radical-assisted melanoidin formation during thermal processing of foods as well as under physiological conditions. J. Agric. Food Sci. 47: 391-396. Hyun, C. K. and H. K. Shin. 2000. Utilization of bovine blood plasma proteins for the production of angiotensin I converting enzyme inhibitory peptides. Proc. Biochem. 36: 65-71. Ikeda, T., Y. Nishijima, Y. Kiso, H. Shibata, H. Ono and T. Moritani. 2001. Effects of chicken essence tablets on resting metabolic rate. Biosci. Biotechnol. Biochem. 65: 2083-2086. Intarapichet, K. -O. and B. Maikhunthod. 2005. Genotype and gender differences in carnosine extracts and antioxidant activities of chicken breast and thigh meats. Meat Sci. 71: 634-642. Je, J. Y., P. J. Park, J. Y. Kwon and S. K. Kim. 2004. A novel angiotensin I converting enzyme inhibitory peptide from Alaska pollack frame protein hydrolysate. J. Agric. Food Chem. 52: 7842-7845. Kim, S. K., H. C. Lee, H. G. Byun and Y. J Jeon. 1996. Isolation and characterization of antioxidative peptides from enzymatic hydrolysates of yellowfin sole skin gelation. J. Kor. Fish. Soc. 29: 246-255. Kim, S. K., Y. T. Kim, H. G. Byun, P. J. Park and H. Ito. 2001. Purification and characterization of antioxidative peptides from bovine skin. J. Biochem. Mol. Bio. 34: 219-224. Korhonen, H. and A. Pihlanto. 2003. Food-derived bioactive peptides- opportunities for designing future foods. Curr. Pharm. Design 9: 1297-1308. Laemmli U. K. 1970. Cleavage of structural pectins during the assembly of the head of the bacteriophage T4. Nature 227: 680–685. Lin, L. C. and W. T. Chen. 2004. The study of antioxidant effects in melanins extracted from various tissues of animals. Asian Australas. J. Anim. Sci. 18: 277-281. Lin, L. C., K. H. Yu, T. C. Wan, F. Y. Cheng and R. Sakata. 2007. Assessment of antioxidantive capacity of animal bile and liver extracts. Fleischwirtschaft 2: 104-107. Linder, M., J. Fanni and M. Parmentier. 1996. Functional properties of veal bone hydrolysates. J. Food Sci. 61: 712-720. Lingnert, H. K., Vallentin and C. E. Eriksson. 1979. Measurement of antioxidative effect in model system. J. Food Process Preserv. 3: 87-103. Lo, H. I., D. Tsi, A. C. Tan, S. W. Wang and M. C. Hsu. 2005. Effects of postexercise supplementation of chicken essence on the elimination of exercise-induced plasma lactate and ammonia. Chin. J. Physiol. 48: 187-192. Maikhunthod, B. and K. -O. Intarapichet. 2005. Heat and ultrafiltration extraction of broiler meat carnosine and its antioxidant activity. Meat Sci. 71: 364-374. Man, Y. C., C. W. Yee, W. K. Shing, T. P. Lai, W. K. Ching and K. K. Kei. 2005. The enhancing effects of a chicken-meat extract on serum Ig concentrations in normal and scalded animals. Br. J. Nutr. 94:51-55. Mar&iacute;a, S. F. and C. Gonz&aacute;lez. 1999. Nitric oxide and the renin-angiotensin system. Is there a physiological interplay between the systems? J. Hypertens. 17: 1355-1361. Matsumura Y., S. Kita, H. Ono, Y. Kiso and T.Tanaka. 2002. Preventive effect of a chicken extract on the development of hypertension in stroke-prone spontaneously hypertensive rats. Biosci. Biotechnol. Biochem. 66: 1108-1110. Mavromichalis, I., J. L. Emmert, S. Aoyagi and D. H. Baker. 2000. Chemical composition of whole body, tissues, and organs of young chickens (Gallus domesticus). J. Food Comp. Anal. 13: 799-807. Mei, L., A. D. Crum and E. A. Decker. 1994. Development of lipid oxidation and inactivation of antioxidant enzymes in cooked pork and beef. J. Food Lipids 1: 273-283. Mito, K., M. Fujii, M. Kuwahara, N. Matsumura, T. Shimizu, S. Sugono and H. Karaki. 1996. Antihypertensive effect of angiotensin I-converting enzyme inhibitory peptides derived from hemoglobin. Euro. J. Pharmacol. 304: 93-98. Murase, H., A. Nagao and J. Terao. 1993. Antioxidant and emulsifying activity of N-(long-chain-acyl) histidine and N-(long-chain-acyl) carnosine. J. Agric. Food Chem. 41: 1601-1604. Nagai, H., M. Harada, M. Nakagawa, T. Tanaka, B. Gunadi, M. L. J. Setiabudi, J. L. A. Uktolseja and Y. Miyata. 1996. Effects of chicken extract on the recovery from fatigue caused by mental workload. Appl. Human Sci. 15: 281-286. Osborn, H. M., H. Brown, J. B. Adams and D. A. Ledward. 2003. High temperature reduction of metmyoglobin in aqueous muscle extracts. Meat Sci. 65: 631-637. Peterson, G. L. 1979. Review of the Folin phenol protein quantitation method of Lowry, Rosebrough, Farr, and Randall. Anal. Biochem. 100: 201-220. Piper, J. S., P. M. Kraan, T. Hafmans, J. Kamp, P. Buma, J. L. C.Susante, W. B. Berg, J. H. Veerkamp and T. H. Kuppevelt. 2002. Crosslinked type II collagen matrices: preparation, characterization, and potential for cartilage engineering. Biomaterials 23: 3183-3192. Purchas, R. W., S. M. Rutherfurd, P. D. Pearce, R. Vather and B. H. P. Wilkinson. 2004. Concentrations in beef and lamb of taurine, carnosine, coenzyme Q10, and creatine. Meat Sci. 66: 629–637. Robak, J. and I. R. Gryglewski. 1988. Flavonoids are scavengers of superoxide anions. Biochem. Pharmacol. 37: 837-841. Shi, X. and N. S. Dalal. 1991. Antioxidant behavior of caffeine: efficient scavenging of hydroxyl radicals. Food Chem. Toxicol. 29: 1-6 . Shimada, K., K. Fujikawa, K. Yahara and T. Nakamura. 1992. Antioxidative properties of xanthan on the autoxidation of soybean oil in cyclodextrin emulsion. J. Agric. Food Chem. 40: 945-948. Sim, M. K. 2001. Cardiovascular actions of chicken-meat extract in normo- and hypertensive rats. Br. J. Nutr. 86: 97-103. Spanier, A. M., K. W., Mcmillin and J. A. Miller. 1990. Enzyme activity levels in beef: effect of postmortem aging and end-point cooking temperature. J. Food Sci. 55: 318-322. Taylor, M. J. and T. Richardson. 1980. Antioxidant activity of skim milk: Effect of heat and resultant sulfhydryl groups. J. Dairy Sci. 63: 1783-1795. Tong, L. M., S. Sasaki, D. J. McClements and E. A. Decker. 2000. Mechanism of antioxidant activity of a high molecular weight fraction of whey. J. Agric. Food Sci. 48: 1473-1478. Tsi, D., A. Khow, T. Iino, Y. Kiso and H. Ono. 2003. Effect of Brand''s glucosamine with essence of chicken on collagen-induced arthritis in rats. Life Sci. 73: 2953-2962. Wettasinghe, M., T. Vasanthan, F. Temelli, and K. Swallow. 2000. Volatiles from roasted byproducts of the poultry-processing industry. J. Agric. Food Chem. 48: 3485-3492. Wu, H. C., B. S. Pan, C. L. Chang and C. Y. Shiau. 2005. Low-molecular- weight peptides as related to antioxidant properties of chicken essence. J. Food Drug Anal. 13: 176-183. Wu, H. C., C. Y. Shiau, H. M. Chen, and T. K. Chiou. 2003. Antioxidant activities of carnosine, anserine, some free amino acids and their combination. J. Food Drug Anal. 11: 148-153. Yu, L., S. Haley, J. Perret and M. Harris. 2002. Antioxidant properties of hard winter wheat extracts. Food Chem. 78: 457-461. 第四章 林彥志。2005。衍自雞胚胎中血管收縮素轉換酶抑制劑於in vitro與in vivo試驗中抗高血壓能力之評估。國立中興大學畜產學研究所碩士論文,台中,台灣。 胡燕君。2004。透抽水溶性蛋白質酵素水解物抗氧化特性之研究。海洋大學食品科學研究所碩士論文,基隆,台灣。 葉政霖。2002。鰺魚水解物中胜肽鑑定與降高血壓的效果。國立海洋大學食品科學研究所碩士論文,基隆,台灣。 Becker, G. L. 1993. Preserving food and health: antioxidants make functional, nutritious preservatives. Food Process 12: 54-56. Boldyrev, A. A., S. C. Gallant and G. T. Sukhich. 1999. Carnosine, the protective, anti-aging peptide. Biosci. Reports 19: 581-587. Brand-Williams, W., M. E. Cuveliver and C. Berset. 1995. Use of a freeradical method to evaluate antioxidant activity. Lebensm. Wiss. Technol. 28: 25-30. Byun, H. G. and S. K. Kim. 2002. Structure and activity of angiotensin I converting enzyme inhibitory peptides derived from Alaskan Pollack skin. J. Biochem. Mol. Biol. 35: 239-243. Chan, K. M. and E. A. Decker. 1994. Endogenous skeletal muscle antioxidants. Crit. Rev. Food Sci. Nutr. 34: 403-426. Chan, W. K. M., E. A. Decker, C. K. Chow and G. A. Boissonneault. 1994. Effect of dietary carnosine on plasma and tissue antioxidant concentrations and on lipid oxidation in rat skeletal muscle. Lipids 29: 461-466. Chen, H. M., K. Muramoto and F. Yamauchi. 1995. Structural analysis of antioxidative peptides from soybean β-conglycinin. J. Agric. Food Chem. 43: 574-578. Chen, H. M., K. Muramoto, F. Yamauchi, K. Fujimoto and K. Nokihara. 1998. Antioxidative properties of histidine-containing peptides designed from peptide fragments found in the digests of a soybean protein. J. Agric. Food Chem. 46: 49-53. Church, F. C., E. H. Swaisgood, D. H. Porter and G. L. Catignani. 1983. Spectrophotometric assay using o-phthaldialdehyde for determination of proteolysis in milk and isolated milk protein. J. Dairy Sci. 66: 1219-1277. Clare, D. A. and H. E. Swaisgood. 2000. Bioactive milk peptides: A prospectus. J. Dairy Sci. 83: 1187-1195. Cushman, D. W. and H. S. Cheung. 1971. Spectrophotometric assay and properties of the angiotensin-converting enzyme of rabbit lung. Biochem. Pharmacol. 20: 1637-1648. Decker, E. A., A. D. Crum and J. T. Calvert. 1992. Differences in the antioxidant mechanism of carnosine in the presence of copper and iron. J. Agric. Food Chem. 40: 756-759. Decker, E. A. and B. Welch. 1990. Role of ferritin as alipid oxidation catalyst in muscle food. J. Agric. Food Chem. 38: 674-677. Duh, P. D., Y. Y. Tu and G. C. Yen. 1999. Antioxidative activity of water extract of Harng Tyur (Chrysanthemum morifolium Ramat). Lebensm-Wiss Technol. 32: 269-277. Dziuba J., P. Minkiewicz and D. Nalecz. 1999. Biologically active peptides from plant and animal proteins. Pol. J. Food Nutr. Sci. 8: 3-16. Edwards, J. H. and W. F.Shipe. 1978. Characterization of plastein reaction products formed by pepsin, α-chymotrypsin, and papain treatment of egg albumin hydrolysates. J. Food Sci. 43: 1215-1218. Erdos, E. G. and R. A. Skidgel. 1987. The angiotensin I-converting enzyme. Lab. Invest. 56: 343-353. Frlich, I. and P. Riederer. 1995. Free radical mechanisms in dementia of Alzheimer type and the potential for antioxidative treatment. Drug Res. 45: 443-449. Geissler, C., M. Boroumand-Naini, M. Harada, T. Iino, K. Hirai, Y. Suwa, T. Tanaka and S. Iwata. 1996. Chicken extract stimulates haemoglobin restoration in iron deficient rats. Int. J Food Sci. Nutr. 47: 351-360. Gu&eacute;rard, F., L. Dufoss&eacute;, D. L. Broise and A. Binet. 2001. Enzymatic hydrolysis of proteins from yellowf
摘要: 台灣加入WTO後,國內雞肉加工型態有很大的改變,其最主要的原因為骨腿的進口。隨著去骨加工產品增加,加工過程中產生了大量的骨頭廢棄物,除部分做為飼料原料外,大多無法利用而當作廢棄物處理,這些廢棄骨頭含有肉屑、軟骨、骨髓等蛋白質含量很高,其一般組成份中,粗蛋白高達23.5%,如能針對其特性而加以開發利用,提高其附加價值,這些廢棄骨頭具有極佳的開發潛力。因此本研究嘗試利用雞腿骨開發具抗氧化與抗高血壓之保健食品。 以不同加熱溫度(80℃、90℃、100℃)與時間(5、10、15分鐘)萃取雞肉加工廠的副產物-雞腿骨,並分析熱水抽出物之可溶性蛋白質、胜肽含量、SDS電白質電泳、抗氧化性及血管收縮素轉換酶(Angiotensin I converting enzyme, ACE)抑制活性。結果顯示:熱水抽出物的可溶性蛋白質與胜肽含量皆會隨著加熱溫度上升與加熱時間增加而下降,在SDS蛋白質電泳方面則發現90℃、100℃分別加熱10與15分鐘後分子量55 kDa及45-40 kDa的蛋白質片段消失。此外90℃、100℃加熱15分鐘之熱水抽出物顯著的有較高的還原力、螯合亞鐵能力及抑制脂質過氧化能力(p<0.05)。在抑制ACE活性方面發現雖然各處理組皆具有抑制活性,惟其活性最高僅為21%。 分別利用Alcalase、Pepsin、Trypsin三種酵素水解雞腿骨蛋白12小時(酵素基質比為1%),水解期間每2小時收集水解液並冷凍乾燥之,進而分析其pH值、可溶性蛋白質、胜肽含量、血管收縮素轉換酶抑制能力與水解液之抗氧化性等變化,藉以探討活性胜肽製備之可行性。結果顯示Alcalase酵素水解雞腿骨蛋白後呈現出良好的抗氧化能力與ACE抑制活性,其中以水解四小時之水解液抗氧化性最佳(66.0 %),然而其ACE抑制活性卻是最低(40.7 %)。由以上結果得知在本實驗中,相同水解條件的水解液無法同時具備最佳的抗氧化性與ACE抑制活性,但以保健食品開發而言,不需挑選同時具備最佳活性的酵素水解液,可以選擇同時具有較佳的抗氧化性與ACE抑制活性來應用即可,因此以Alcalase水解雞腿骨8小時之水解液同時擁有較佳的ACE抑制活性(58.25 %)與抑制脂質過氧化能力(61.38 %),具有非常大之應用開發潛力。 提高各水解蛋白酶之酵素基質比為2%。結果顯示仍以Alcalase酵素水解液顯著有較佳之胜肽含量與ACE抑制活性,尤其以水解4小時之酵素水解液(A4H)具有最佳抑制活性(84.33%)其IC50值僅有0.545 mg/mL,屬於混合型抑制劑。將ACE最佳抑制活性之水解液(A4H)冷凍乾燥後以50 mg/kg bw餵予原發性高血壓鼠(spontaneously hypertension rat, SHR)顯著地降低其血壓最大達27mmHg。長期餵予SHR則發現具有遏止高血壓惡化與抑制心臟血管肥大的效果。另外經胜肽純化與LC/MS/MS序列分析發現A4H水解物內具有10個活性胜肽分別由5-10個胺基酸殘基所組成。由以上結果証實,雞腿骨有極佳之潛力開發具有生理活性之保健食品。
Taiwan had become a member of WTO (World Trade Organizations). Since that, the type of chicken meat processing has changed large because of importing chicken legs. Products such as fresh deboned chicken meat and processing foods are being sold in increasing quantities. As a result, more and more byproducts like chicken leg bones are generated during processing. Most of these can not be utilized and are regarded as industrial waste, although some parts are used as feed stuff. However, they contain high amounts of protein in the form of meat, cartilage and bone morrow, and high value about 23.5% of crude protein was observed in them, which represented high potentials for developing nutraceuticals. Thus, the aims of current study try to utilize the chicken leg bones and develop functional food with antioxidation, antihypertension or both of them. Different temperature (80℃、90℃、100℃) and time (5、10、15) were carried out to investigate properties of heat extraction of chicken leg bone by analyzing the soluble protein, peptide content, electrophoresis, antioxidative activities and ACE inhibitory activities. The results showed that the higher temperature and longer heating time resulted in decreasing soluble proteins and peptide contents in heat extraction. In electrophoresis, the fragments of 55 kDa and 40-45 kDa disappeared after heating by 90℃ or 100℃ for 10 or 15 minters individually. Moreover, the significantly higher activities of reducing ability, Fe2+ chelating ability and inhibition of linoleic acid peroxidation were discovered in extraction that was heated by 90℃ or 100℃ for 15 minters. In addition, all treatments exhibited ACE inhibitory activities, while the highest one only showed 21%. Chicken leg bone proteins were hydrolyzed by Alcalase, pepsin or trypsin (enzyme and substrate ratio was 1%) for 12 hrs. The hydrolysates were gathered in every 2 hrs and lyophilized to investigate the change of pH value, soluble protein, peptide content, ACE inhibitory activity and antioxidative activity. Chicken leg bone protein hydrolyzed by Alcalase resulted in strong antioxidative and ACE inhibitory activities. The highest antioxidative activity was found in the fourth hour hydrolysate (66.0%), while it showed the poor ACE inhibitory activity (40.7%). This indicated that it is difficult to generate hydrolysate with both strong antioxidative and ACE inhibitory activity at the same hydrolysis condition in this study. However, for development of functional food, to select both the strongest antioxidative and ACE inhibitory activity is not necessary, but to select the hydrolysis condition that could result in those of better activities. Therefore, the eighth hydrolysate with both strong antioxidative (58.25 %) and ACE inhibitory activity (61.38 %) meantime, shows high potential to be utilized. Hydrolysates from Alcalase-treated still presented the highest peptide content and ACE inhibitory activity when enzyme and substrate ratio was raised to 2%. The fourth hour hydrolysate (A4H) showed the strongest ACE inhibitory activity (84.33%), IC50 value (0.545 mg/mL) and belonged to mixed noncompetitive ACE inhibitor. After oral administration (50 mg/kg bw) in spontaneously hypertensive rats (SHRs), a maximal reducing activity about 27 mmHg was discovered. Moreover, it was found that long-term (8 weeks) A4H treatment could attenuate the development of hypertension and cardiac hypertrophy in SHRs. Furthermore, ten ACE inhibitory peptides consisted of 5 to 10 amino acid residues were separated from hydrolysate (A4H) by gel filtration chromatography. These results suggested that chicken leg bone had a high potential to be utilized for developing ACE inhibitor as a potential ingredient of functional food intended to alleviate hypertension.
URI: http://hdl.handle.net/11455/24823
其他識別: U0005-2311200717221400
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2311200717221400
Appears in Collections:動物科學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.