請用此 Handle URI 來引用此文件: http://hdl.handle.net/11455/24921
標題: 應用胚聚合法建立小鼠同源胚幹細胞
Efficient establishment of mouse isogeneic embryonic stem cells through embryo aggregation
作者: 石力
Stone, Lee
關鍵字: Blastomere
胚葉細胞
Embryo aggregation
Isogeneic embryonic stem cells
胚聚合
同源胚幹細胞
出版社: 動物科學系所
引用: 李坤雄、莊景凱、杜清富。2009。蛋白質誘發式幹細胞。中畜會誌 38(4):217-233。 Aasen, T., A. Raya, M. J. Barrero, E. Garreta, A. Consiglio, F. Gonzalez, R. Vassena, J. Bilic, V. Pekarik, G. Tiscornia, M. Edel, S. Boue, and J. C. Izpisua Belmonte. 2008. Efficient and rapid generation of induced pluripotent stem cells from human keratinocytes. Nat. Biotechnol. 26: 1276-1284. Allen, N. D., S. C. Barton, K. Hilton, M. L. Norris, and M. A. Surani. 1994. A functional analysis of imprinting in parthenogenetic embryonic stem cells. Development 120: 1473-1482. Anokye-Danso, F., C. M. Trivedi, D. Juhr, M. Gupta, Z. Cui, Y. Tian, Y. Zhang, W. Yang, P. J. Gruber, J. A. Epstein, and E. E. Morrisey. 2011. Highly efficient miRNA-mediated reprogramming of mouse and human somatic cells to pluripotency. Cell Stem Cell 8: 376-388. Aoi, T., K. Yae, M. Nakagawa, T. Ichisaka, K. Okita, K. Takahashi, T. Chiba, and S. Yamanaka. 2008. Generation of pluripotent stem cells from adult mouse liver and stomach cells. Science 321: 699-702. Baylis, F. 2009. For love or money? The saga of Korean women who provided eggs for embryonic stem cell research. Theor. Med. Bioeth. 30: 385-396. Bischoff, M., D. E. Parfitt, and M. Zernicka-Goetz. 2008. Formation of the embryonic-abembryonic axis of the mouse blastocyst: relationships between orientation of early cleavage divisions and pattern of symmetric/asymmetric divisions. Development 135: 953-962. Boediono, A., T. Suzuki, L. Y. Li, and R. A. Godke. 1999. Offspring born from chimeras reconstructed from parthenogenetic and in vitro fertilized bovine embryos. Mol. Reprod. Dev. 53: 159-170. Boland, M. J., J. L. Hazen, K. L. Nazor, A. R. Rodriguez, W. Gifford, G. Martin, S. Kupriyanov, and K. K. Baldwin. 2009. Adult mice generated from induced pluripotent stem cells. Nature 461: 91-94. Bradley, A., M. Evans, M. H. Kaufman, and E. Robertson. 1984. Formation of germ-line chimaeras from embryo-derived teratocarcinoma cell lines. Nature 309: 255-256. Bryja, V., S. Bonilla, and E. Arenas. 2006. Derivation of mouse embryonic stem cells. Nat. Protoc. 1: 2082-2087. Byrne, J. A., D. A. Pedersen, L. L. Clepper, M. Nelson, W. G. Sanger, S. Gokhale, D. P. Wolf, and S. M. Mitalipov. 2007. Producing primate embryonic stem cells by somatic cell nuclear transfer. Nature 450: 497-502. Cao, F., S. Lin, X. Xie, P. Ray, M. Patel, X. Zhang, M. Drukker, S. J. Dylla, A. J. Connolly, X. Chen, I. L. Weissman, S. S. Gambhir, and J. C. Wu. 2006. In vivo visualization of embryonic stem cell survival, proliferation, and migration after cardiac delivery. Circulation 113: 1005-1014. Chen, C. H., L. Stone, J. C. Ju, W. T. Lien, M. S. Liu, C. F. Tu, and K. H. Lee. 2008. Transgenic cloned mice expressing enhanced green fluorescent protein generated by activation stimuli combined with 6-dimethylaminopurine. Reprod. Domest. Anim. 43: 547-555. Chen, Z., Z. Liu, J. Huang, T. Amano, C. Li, S. Cao, C. Wu, B. Liu, L. Zhou, M. G. Carter, D. L. Keefe, X. Yang, and L. Liu. 2009. Birth of parthenote mice directly from parthenogenetic embryonic stem cells. Stem Cells 27: 2136-2145. Chung, Y., I. Klimanskaya, S. Becker, T. Li, M. Maserati, S. J. Lu, T. Zdravkovic, D. Ilic, O. Genbacev, S. Fisher, A. Krtolica, and R. Lanza. 2008. Human embryonic stem cell lines generated without embryo destruction. Cell Stem Cell 2: 113-117. Chung, Y., I. Klimanskaya, S. Becker, J. Marh, S. J. Lu, J. Johnson, L. Meisner, and R. Lanza. 2006. Embryonic and extraembryonic stem cell lines derived from single mouse blastomeres. Nature 439: 216-219. Cibelli, J. B., K. A. Grant, K. B. Chapman, K. Cunniff, T. Worst, H. L. Green, S. J. Walker, P. H. Gutin, L. Vilner, V. Tabar, T. Dominko, J. Kane, P. J. Wettstein, R. P. Lanza, L. Studer, K. E. Vrana, and M. D. West. 2002. Parthenogenetic stem cells in nonhuman primates. Science 295: 819. Collins, J. E., and T. P. Fleming. 1995. Epithelial differentiation in the mouse preimplantation embryo: Making adhesive cell contacts for the first time. Trends Biochem. Sci. 20: 307-312. De Vos, A., C. Staessen, M. De Rycke, W. Verpoest, P. Haentjens, P. Devroey, I. Liebaers, and H. Van de Velde. 2009. Impact of cleavage-stage embryo biopsy in view of PGD on human blastocyst implantation: A prospective cohort of single embryo transfers. Hum. Reprod. 24: 2988-2996. Delhaise, F., V. Bralion, N. Schuurbiers, and F. Dessy. 1996. Establishment of an embryonic stem cell line from 8-cell stage mouse embryos. Eur. J. Morphol. 34: 237-243. Dietrich, J. E., and T. Hiiragi. 2007. Stochastic patterning in the mouse pre-implantation embryo. Development 134: 4219-4231. Doetschman, T. C., H. Eistetter, M. Katz, W. Schmidt, and R. Kemler. 1985. The in vitro development of blastocyst-derived embryonic stem cell lines: Formation of visceral yolk sac, blood islands and myocardium. J. Embryol. Exp. Morphol. 87: 27-45. Drukker, M. 2008a. Immunological considerations for cell therapy using human embryonic stem cell derivatives. In StemBook. D. Mathis, ed. The Stem Cell Research Community, Cambridge, MA. Drukker, M. 2008b. Recent advancements towards the derivation of immune-compatible patient-specific human embryonic stem cell lines. Semin. Immunol. 20: 123-129. Eakin, G. S., and A. K. Hadjantonakis. 2006. Production of chimeras by aggregation of embryonic stem cells with diploid or tetraploid mouse embryos. Nat. Protoc. 1: 1145-1153. Eminli, S., J. Utikal, K. Arnold, R. Jaenisch, and K. Hochedlinger. 2008. Reprogramming of neural progenitor cells into induced pluripotent stem cells in the absence of exogenous Sox2 expression. Stem Cells 26: 2467-2474. Fang, Z. F., H. Gai, Y. Z. Huang, S. G. Li, X. J. Chen, J. J. Shi, L. Wu, A. Liu, P. Xu, and H. Z. Sheng. 2006. Rabbit embryonic stem cell lines derived from fertilized, parthenogenetic or somatic cell nuclear transfer embryos. Exp. Cell. Res. 312: 3669-3682. Feldheim, K. A., D. D. Chapman, D. Sweet, S. Fitzpatrick, P. A. Prodohl, M. S. Shivji, and B. Snowden. 2010. Shark virgin birth produces multiple, viable offspring. J Hered 101: 374-377. Fleming, T. P. 1987. A quantitative analysis of cell allocation to trophectoderm and inner cell mass in the mouse blastocyst. Dev. Biol. 119: 520-531. French, A. J., C. A. Adams, L. S. Anderson, J. R. Kitchen, M. R. Hughes, and S. H. Wood. 2008. Development of human cloned blastocysts following somatic cell nuclear transfer with adult fibroblasts. Stem Cells 26: 485-493. Fusaki, N., H. Ban, A. Nishiyama, K. Saeki, and M. Hasegawa. 2009. Efficient induction of transgene-free human pluripotent stem cells using a vector based on Sendai virus, an RNA virus that does not integrate into the host genome. Proc. Jpn. Acad. Ser. B. Phys. Biol. Sci. 85: 348-362. Garbutt, C. L., M. H. Johnson, and M. A. George. 1987. When and how does cell division order influence cell allocation to the inner cell mass of the mouse blastocyst? Development 100: 325-332. Geens, M., I. Mateizel, K. Sermon, M. De Rycke, C. Spits, G. Cauffman, P. Devroey, H. Tournaye, I. Liebaers, and H. Van de Velde. 2009. Human embryonic stem cell lines derived from single blastomeres of two 4-cell stage embryos. Hum. Reprod. 24: 2709-2717. Gonzalez, S., E. Ibanez, and J. Santalo. 2010. Establishment of mouse embryonic stem cells from isolated blastomeres and whole embryos using three derivation methods. J. Assist Reprod. Genet. 27: 671-682. Gonzalez, S., E. Ibanez, and J. Santalo. 2011. Influence of E-cadherin-mediated cell adhesion on mouse embryonic stem cells derivation from isolated blastomeres. Stem Cell Rev. 7: 494-505. Green, R. M. 2007. Can we develop ethically universal embryonic stem-cell lines? Nat. Rev. Genet. 8: 480-485. Handyside, A. H., E. H. Kontogianni, K. Hardy, and R. M. Winston. 1990. Pregnancies from biopsied human preimplantation embryos sexed by Y-specific DNA amplification. Nature 344: 768-770. Hochedlinger, K., and K. Plath. 2009. Epigenetic reprogramming and induced pluripotency. Development 136: 509-523. Hsieh, Y. C., P. Intawicha, K. H. Lee, Y. T. Chiu, N. W. Lo, and J. C. Ju. 2011. LIF and FGF cooperatively support stemness of rabbit embryonic stem cells derived from parthenogenetically activated embryos. Cell Reprogram 13: 241-255. Hsieh, Y. C., P. Intawicha, N. W. Lo, K. H. Lee, and J. C. Ju. 2010. Characterization and applications of embryonic stem cells derived from parthenogenetically activated embryos- A review. J. Agri. Assoc. China 11: 580-601. Humpherys, D., K. Eggan, H. Akutsu, K. Hochedlinger, W. M. Rideout, 3rd, D. Biniszkiewicz, R. Yanagimachi, and R. Jaenisch. 2001. Epigenetic instability in ES cells and cloned mice. Science 293: 95-97. Hwang, W. S., S. I. Roh, B. C. Lee, S. K. Kang, D. K. Kwon, S. Kim, S. J. Kim, S. W. Park, H. S. Kwon, C. K. Lee, J. B. Lee, J. M. Kim, C. Ahn, S. H. Paek, S. S. Chang, J. J. Koo, H. S. Yoon, J. H. Hwang, Y. Y. Hwang, Y. S. Park, S. K. Oh, H. S. Kim, J. H. Park, S. Y. Moon, and G. Schatten. 2005. Patient-specific embryonic stem cells derived from human SCNT blastocysts. Science 308: 1777-1783. Jedrusik, A., D. E. Parfitt, G. Guo, M. Skamagki, J. B. Grabarek, M. H. Johnson, P. Robson, and M. Zernicka-Goetz. 2008. Role of Cdx2 and cell polarity in cell allocation and specification of trophectoderm and inner cell mass in the mouse embryo. Genes Dev. 22: 2692-2706. Johnson, W. H., N. M. Loskutoff, Y. Plante, and K. J. Betteridge. 1995. Production of four identical calves by the separation of blastomeres from an in vitro derived four-cell embryo. Vet. Rec. 137: 15-16. Kang, L., J. Wang, Y. Zhang, Z. Kou, and S. Gao. 2009. iPS cells can support full-term development of tetraploid blastocyst-complemented embryos. Cell Stem Cell 5: 135-138. Kao, C. F., C. Y. Chuang, C. H. Chen, and H. C. Kuo. 2008. Human pluripotent stem cells: Current status and future perspectives. Chin. J. Physiol. 51: 214-225. Kaufman, M. H., E. J. Robertson, A. H. Handyside, and M. J. Evans. 1983. Establishment of pluripotential cell lines from haploid mouse embryos. J. Embryol. Exp. Morphol. 73: 249-261. Kelly, S. J. 1977. Studies of the developmental potential of 4- and 8-cell stage mouse blastomeres. J. Exp. Zool. 200: 365-376. Kelly, S. J., J. G. Mulnard, and C. F. Graham. 1978. Cell division and cell allocation in early mouse development. J. Embryol. Exp. Morphol. 48: 37-51. Kim, J. B., V. Sebastiano, G. Wu, M. J. Arauzo-Bravo, P. Sasse, L. Gentile, K. Ko, D. Ruau, M. Ehrich, D. van den Boom, J. Meyer, K. Hubner, C. Bernemann, C. Ortmeier, M. Zenke, B. K. Fleischmann, H. Zaehres, and H. R. Scholer. 2009. Oct4-induced pluripotency in adult neural stem cells. Cell 136: 411-419. Kim, K., A. Doi, B. Wen, K. Ng, R. Zhao, P. Cahan, J. Kim, M. J. Aryee, H. Ji, L. I. Ehrlich, A. Yabuuchi, A. Takeuchi, K. C. Cunniff, H. Hongguang, S. McKinney-Freeman, O. Naveiras, T. J. Yoon, R. A. Irizarry, N. Jung, J. Seita, J. Hanna, P. Murakami, R. Jaenisch, R. Weissleder, S. H. Orkin, I. L. Weissman, A. P. Feinberg, and G. Q. Daley. 2010. Epigenetic memory in induced pluripotent stem cells. Nature 467: 285-290. Kim, K., P. Lerou, A. Yabuuchi, C. Lengerke, K. Ng, J. West, A. Kirby, M. J. Daly, and G. Q. Daley. 2007. Histocompatible embryonic stem cells by parthenogenesis. Science 315: 482-486. Kishigami, S., S. Wakayama, N. V. Thuan, H. Ohta, E. Mizutani, T. Hikichi, H. T. Bui, S. Balbach, A. Ogura, M. Boiani, and T. Wakayama. 2006. Production of cloned mice by somatic cell nuclear transfer. Nat. Protoc. 1: 125-138. Klimanskaya, I., Y. Chung, S. Becker, S. J. Lu, and R. Lanza. 2006. Human embryonic stem cell lines derived from single blastomeres. Nature 444: 481-485. Klimanskaya, I., N. Rosenthal, and R. Lanza. 2008. Derive and conquer: Sourcing and differentiating stem cells for therapeutic applications. Nat. Rev. Drug Discov. 7: 131-142. Kurotaki, Y., K. Hatta, K. Nakao, Y. Nabeshima, and T. Fujimori. 2007. Blastocyst axis is specified independently of early cell lineage but aligns with the ZP shape. Science 316: 719-723. Lee, K. H., C. K. Chuang, S. F. Guo, and C. F. Tu. 2011. Simple and efficient derivation of mouse embryonic stem cell lines using differentiation inhibitors or proliferation stimulators. Stem Cells Dev.: doi:10.1089/scd.2011.0021. Liebaers, I., S. Desmyttere, W. Verpoest, M. De Rycke, C. Staessen, K. Sermon, P. Devroey, P. Haentjens, and M. Bonduelle. 2010. Report on a consecutive series of 581 children born after blastomere biopsy for preimplantation genetic diagnosis. Hum. Reprod. 25: 275-282. Liu, H., F. Zhu, J. Yong, P. Zhang, P. Hou, H. Li, W. Jiang, J. Cai, M. Liu, K. Cui, X. Qu, T. Xiang, D. Lu, X. Chi, G. Gao, W. Ji, M. Ding, and H. Deng. 2008. Generation of induced pluripotent stem cells from adult rhesus monkey fibroblasts. Cell Stem Cell 3: 587-590. Liu, J., E. Van den Abbeel, and A. Van Steirteghem. 1993. The in-vitro and in-vivo developmental potential of frozen and non-frozen biopsied 8-cell mouse embryos. Hum. Reprod. 8: 1481-1486. Loveland, B., C. R. Wang, H. Yonekawa, E. Hermel, and K. F. Lindahl. 1990. Maternally transmitted histocompatibility antigen of mice: A hydrophobic peptide of a mitochondrially encoded protein. Cell 60: 971-980. Maherali, N., R. Sridharan, W. Xie, J. Utikal, S. Eminli, K. Arnold, M. Stadtfeld, R. Yachechko, J. Tchieu, R. Jaenisch, K. Plath, and K. Hochedlinger. 2007. Directly reprogrammed fibroblasts show global epigenetic remodeling and widespread tissue contribution. Cell Stem Cell 1: 55-70. Moore, N. W., C. E. Adams, and L. E. Rowson. 1968. Developmental potential of single blastomeres of the rabbit egg. J. Reprod. Fertil. 17: 527-531. Motosugi, N., T. Bauer, Z. Polanski, D. Solter, and T. Hiiragi. 2005. Polarity of the mouse embryo is established at blastocyst and is not prepatterned. Genes Dev. 19: 1081-1092. Nagy, A., M. Gertsenstein, K. Vintersten, and R. Behringer. 2003. Surgical procedures. In Manipulating the mouse embryo, a laboratory manual. A. Nagy, M. Gertsenstein, K. Vintersten and R. Behringer, ed. Cold Spring Harbor Lab. Press, New York. Nakagawa, M., M. Koyanagi, K. Tanabe, K. Takahashi, T. Ichisaka, T. Aoi, K. Okita, Y. Mochiduki, N. Takizawa, and S. Yamanaka. 2008. Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. Nat. Biotechnol. 26: 101-106. Neaves, W. B., and P. Baumann. 2011. Unisexual reproduction among vertebrates. Trends Genet 27: 81-88. Noggle, S., H.-L. Fung, A. Gore, H. Martinez, K. C. Satriani, R. Prosser, K. Oum, D. Paull, S. Druckenmiller, M. Freeby, E. Greenberg, K. Zhang, R. Goland, M. V. Sauer, R. L. Leibel, and D. Egli. 2011. Human oocytes reprogram somatic cells to a pluripotent state. Nature 478: 70-75. Nussbaum, J., E. Minami, M. A. Laflamme, J. A. Virag, C. B. Ware, A. Masino, V. Muskheli, L. Pabon, H. Reinecke, and C. E. Murry. 2007. Transplantation of undifferentiated murine embryonic stem cells in the heart: Teratoma formation and immune response. FASEB J 21: 1345-1357. Ogawa, K., H. Matsui, S. Ohtsuka, and H. Niwa. 2004. A novel mechanism for regulating clonal propagation of mouse ES cells. Genes Cells 9: 471-477. Okita, K., T. Ichisaka, and S. Yamanaka. 2007. Generation of germline-competent induced pluripotent stem cells. Nature 448: 313-317. Okita, K., N. Nagata, and S. Yamanaka. 2011. Immunogenicity of induced pluripotent stem cells. Circ. Res. 109: 720-721. Park, I. H., R. Zhao, J. A. West, A. Yabuuchi, H. Huo, T. A. Ince, P. H. Lerou, M. W. Lensch, and G. Q. Daley. 2008. Reprogramming of human somatic cells to pluripotency with defined factors. Nature 451: 141-146. Piotrowska-Nitsche, K., A. Perea-Gomez, S. Haraguchi, and M. Zernicka-Goetz. 2005. Four-cell stage mouse blastomeres have different developmental properties. Development 132: 479-490. Plachta, N., T. Bollenbach, S. Pease, S. E. Fraser, and P. Pantazis. 2011. Oct4 kinetics predict cell lineage patterning in the early mammalian embryo. Nat. Cell. Biol. 13: 117-123. Poueymirou, W. T., W. Auerbach, D. Frendewey, J. F. Hickey, J. M. Escaravage, L. Esau, A. T. Dore, S. Stevens, N. C. Adams, M. G. Dominguez, N. W. Gale, G. D. Yancopoulos, T. M. DeChiara, and D. M. Valenzuela. 2007. F0 generation mice fully derived from gene-targeted embryonic stem cells allowing immediate phenotypic analyses. Nat. Biotechnol. 25: 91-99. Revazova, E. S., N. A. Turovets, O. D. Kochetkova, L. B. Kindarova, L. N. Kuzmichev, J. D. Janus, and M. V. Pryzhkova. 2007. Patient-specific stem cell lines derived from human parthenogenetic blastocysts. Cloning Stem Cells 9: 432-449. Rideout, W. M., 3rd, K. Hochedlinger, M. Kyba, G. Q. Daley, and R. Jaenisch. 2002. Correction of a genetic defect by nuclear transplantation and combined cell and gene therapy. Cell 109: 17-27. Roby, K. F., C. C. Taylor, J. P. Sweetwood, Y. Cheng, J. L. Pace, O. Tawfik, D. L. Persons, P. G. Smith, and P. F. Terranova. 2000. Development of a syngeneic mouse model for events related to ovarian cancer. Carcinogenesis 21: 585-591. Rossant, J. 1976. Postimplantation development of blastomeres isolated from 4- and 8-cell mouse eggs. J. Embryol. Exp. Morphol. 36: 283-290. Rossant, J., and P. P. L. Tam. 2009. Blastocyst lineage formation, early embryonic asymmetries and axis patterning in the mouse. Development 136: 701-713. Senger, P. L. 2003. Pathways to pregnancy and parturition. 2nd ed. Current Conceptions, Pullman, WA. Snyder, E. Y., Loring, and J. F. 2006. Beyond fraud — stem-cell research continues. N. Engl. J. Med. 354: 321-324. Spindle, A. 1982. Cell allocation in preimplantation mouse chimeras. J. Exp. Zool. 219: 361-367. Stadtfeld, M., and K. Hochedlinger. 2010. Induced pluripotency: History, mechanisms, and applications. Genes Dev. 24: 2239-2263. Stadtfeld, M., M. Nagaya, J. Utikal, G. Weir, and K. Hochedlinger. 2008. Induced pluripotent stem cells generated without viral integration. Science 322: 945-949. Suda, Y., M. Suzuki, Y. Ikawa, and S. Aizawa. 1987. Mouse embryonic stem cells exhibit indefinite proliferative potential. J. Cell Physiol. 133: 197-201. Sung, L. Y., C. C. Chang, T. Amano, C. J. Lin, M. Amano, S. B. Treaster, J. Xu, W. F. Chang, Z. P. Nagy, X. Yang, and X. C. Tian. 2010. Efficient derivation of embryonic stem cells from nuclear transfer and parthenogenetic embryos derived from cryopreserved oocytes. Cell Reprogram 12: 203-211. Suomalainen, E. 1962. Significance of Parthenogenesis in the Evolution of Insects. Annu. Rev. Entomol. 7: 349-366. Surani, M. A., and S. C. Barton. 1984. Spatial distribution of blastomeres is dependent on cell division order and interactions in mouse morulae. Dev. Biol. 102: 335-343. Takahashi, K., and S. Yamanaka. 2006. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126: 663-676. Tang, P. C., W. A. Ritchie, I. Wilmut, and J. D. West. 2000. The effects of cell size and ploidy on cell allocation in mouse chimaeric blastocysts. Zygote 8: 33-43. Tang, P. C., and J. D. West. 2000. The effects of embryo stage and cell number on the composition of mouse aggregation chimaeras. Zygote 8: 235-243. Tarkowski, A. K., W. Ozdzenski, and R. Czolowska. 2001. How many blastomeres of the 4-cell embryo contribute cells to the mouse body? Int. J. Dev. Biol. 45: 811-816. Tarkowski, A. K., W. Ozdzenski, and R. Czolowska. 2005. Identical triplets and twins developed from isolated blastomeres of 8- and 16-cell mouse embryos supported with tetraploid blastomeres. Int. J. Dev. Biol. 49: 825-832. Tarkowski, A. K., and J. Wroblewska. 1967. Development of blastomeres of mouse eggs isolated at the 4- and 8-cell stage. J. Embryol. Exp. Morphol. 18: 155-180. Tesar, P. J. 2005. Derivation of germ-line-competent embryonic stem cell lines from preblastocyst mouse embryos. Proc. Natl. Acad. Sci. USA 102: 8239-8244. Tsunoda, Y., T. Yasui, Y. Okubo, K. Nakamura, and T. Sugie. 1987. Development of one or two blastomeres from eight-cell mouse embryos to term in the presence of parthenogenetic eggs. Theriogenology 28: 615-623. Utikal, J., N. Maherali, W. Kulalert, and K. Hochedlinger. 2009. Sox2 is dispensable for the reprogramming of melanocytes and melanoma cells into induced pluripotent stem cells. J. Cell Sci. 122: 3502-3510. Wakayama, S., T. Hikichi, R. Suetsugu, Y. Sakaide, H. T. Bui, E. Mizutani, and T. Wakayama. 2007. Efficient establishment of mouse embryonic stem cell lines from single blastomeres and polar bodies. Stem Cells 25: 986-993. Wakayama, T., V. Tabar, I. Rodriguez, A. C. Perry, L. Studer, and P. Mombaerts. 2001. Differentiation of embryonic stem cell lines generated from adult somatic cells by nuclear transfer. Science 292: 740-743. Warren, L., P. D. Manos, T. Ahfeldt, Y. H. Loh, H. Li, F. Lau, W. Ebina, P. K. Mandal, Z. D. Smith, A. Meissner, G. Q. Daley, A. S. Brack, J. J. Collins, C. Cowan, T. M. Schlaeger, and D. J. Rossi. 2010. Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA. Cell Stem Cell 7: 618-630. Watts, P. C., K. R. Buley, S. Sanderson, W. Boardman, C. Ciofi, and R. Gibson. 2006. Parthenogenesis in Komodo dragons. Nature 444: 1021-1022. Wernig, M., C. J. Lengner, J. Hanna, M. A. Lodato, E. Steine, R. Foreman, J. Staerk, S. Markoulaki, and R. Jaenisch. 2008. A drug-inducible transgenic system for direct reprogramming of multiple somatic cell types. Nat. Biotechnol. 26: 916-924. Wernig, M., A. Meissner, R. Foreman, T. Brambrink, M. Ku, K. Hochedlinger, B. E. Bernstein, and R. Jaenisch. 2007. In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature 448: 318-324. Willadsen, S. M. 1980. The viability of early cleavage stages containing half the normal number of blastomeres in the sheep. J. Reprod. Fertil. 59: 357-362. Willadsen, S. M. 1981. The development capacity of blastomeres from 4- and 8-cell sheep embryos. J Embryol Exp Morphol 65: 165-172. Willadsen, S. M., and C. Polge. 1981. Attempts to produce monozygotic quadruplets in cattle by blastomere separation. Vet. Rec. 108: 211-213. Wilmut, I., A. E. Schnieke, J. McWhir, A. J. Kind, and K. H. Campbell. 1997. Viable offspring derived from fetal and adult mammalian cells. Nature 385: 810-813. Woltjen, K., I. P. Michael, P. Mohseni, R. Desai, M. Mileikovsky, R. Hamalainen, R. Cowling, W. Wang, P. Liu, M. Gertsenstein, K. Kaji, H.-K. Sung, and A. Nagy. 2009. piggyBac transposition reprograms fibroblasts to induced pluripotent stem cells. Nature 458: 766-770. Yu, J., K. Hu, K. Smuga-Otto, S. Tian, R. Stewart, Slukvin, II, and J. A. Thomson. 2009. Human induced pluripotent stem cells free of vector and transgene sequences. Science 324: 797-801. Zhao, T., Z.-N. Zhang, Z. Rong, and Y. Xu. 2011a. Immunogenicity of induced pluripotent stem cells. Nature 474: 212-215. Zhao, T., Z. N. Zhang, Z. Rong, and Y. Xu. 2011b. Immunogenicity of induced pluripotent stem cells. Nature 474: 212-215. Zhou, H., S. Wu, J. Y. Joo, S. Zhu, D. W. Han, T. Lin, S. Trauger, G. Bien, S. Yao, Y. Zhu, G. Siuzdak, H. R. Schöler, L. Duan, and S. Ding. 2009. Generation of induced pluripotent stem cells using recombinant proteins. Cell Stem Cell 4: 381-384. Zhou, T., C. Benda, S. Duzinger, Y. Huang, X. Li, Y. Li, X. Guo, G. Cao, S. Chen, L. Hao, Y.-C. Chan, K.-M. Ng, J. Cy Ho, M. Wieser, J. Wu, H. Redl, H.-F. Tse, J. Grillari, R. Grillari-Voglauer, D. Pei, and M. A. Esteban. 2011. Generation of induced pluripotent stem cells from urine. J. Am. Soc. Nephrol.: doi: 10.1681/ASN.2011010106.
摘要: 單一胚葉細胞分離(single blastomere biopsy)法為著床前基因診斷(preimplantation genetic diagnosis, PGD)時需要進行的步驟。經由此方式自八細胞期胚所取出的單一胚葉細胞,可以應用於胚幹細胞之建立。但此方法由於效率過低而未受到廣泛應用。本研究嘗試以小鼠模式,利用胚嵌合的方式提高單一胚葉細胞建立成胚幹細胞的成功率。試驗一首先經由聚合1個表現綠色螢光蛋白(green fluorescent protein, GFP)及7個來自不同胚胎、不表現GFP之八細胞期胚葉細胞(1/8GFP+7x1/8),將所得之嵌合胚用以建立來自單一胚葉細胞的胚幹細胞(single blastomere derived embryonic stem cells, sbESCs)。所得內含多株sbESCs之嵌合胚幹細胞,藉由其中GFP的表現追蹤sbESCs的成功率,我們發現16.7%(8/48)的GFP胚葉細胞可建立為sbESCs。為了進一步提高sbESCs之建立效率,試驗二接著利用較早胚期之四細胞期胚為載體胚(carrier)與單一胚葉細胞進行聚合(1/8GFP+4C),此法可使sbESCs建立效率提升至53.1%。最後,為避免未來若推廣至臨床應用時,使用受精載體胚所必然引發的道德爭議。試驗三利用孤雌生殖(parthenogenetic, PA)胚為載體,並綜合試驗一及試驗二的結果,自2個帶有不同基因標記GFP及Cre之八細胞期胚胎分別取出1個胚葉細胞,注入1個四細胞期孤雌生殖胚中(1/8GFP+1/8Cre+4CPA)產生嵌合胚供胚幹細胞建立;同時,將取出1個胚葉細胞的胚胎進行胚移植至代理孕母子宮。結果顯示,以此方法可成功同時獲得仔鼠及其同源sbESCs,配對成功率為19.4%。本研究提供了一個高效率的方法,可以同時獲得個體及同源胚幹細胞株,用來進行再生醫療研究時,組織相容性問題等相關研究的評估;更可以提供一個較不具道德爭議的方法,取得相對安全又具有免疫相容性的多能性幹細胞。
Single blastomere biopsy, which has been routinely used for preimplantation genetic diagnosis (PGD) in human clinics, can be used for establishment of single blastomere-derived embryonic stem cells (sbESCs) without embryo destruction. However, it's application was hindered by the low derivation rate. Thus, we sought to improve the efficiency of sbESCs by mouse chimeric embryo formation. To this end, I first reconstructed 8 single blastomeres, which were isolated differently from 8 individual embryos (including one GFP-positive embryo) for derivation of sbESCs(1/8GFP+7x1/8). By tracing GFP fluorescence, we found that 16.7% of the GFP single blastomeres were able to give raise to sbESCs from 1/8GFP+7x1/8 chimera formation. To further improve sbESCs derivation rate, we reconstructed single blastomere of 8-celled embryos with an intact 4-celled embryo for ES cell derivation(1/8GFP+4C). With this method, 53.1% of 1/8 single blastomere gave rise to sbES cell lines. As the use of normal fertilized embryo as blastomere carrier may cause ethical concern in human. In third experiment, I biopsied single blastomeres from 8-celled embryo each which carried Cre, or GFP-transgene and injected into a 4-celled parthenogenetic embryo to create 1/8GFP+1/8Cre+4CPA chimeric embryo. Mean while the biopsied embryos were transferred to foster mothers; chimeric embryos were used for sbESCs derivation. My result showed that 19.4% isogeneic mouse and sbESCs could be obtained successfully. Taken together, my results demonstrated a high efficiency method to derive isogenic sbESCs and this approach provide an alternative strategy to generate immune-compatible ESCs for cell-based transplantation.
URI: http://hdl.handle.net/11455/24921
其他識別: U0005-0602201209521500
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-0602201209521500
顯示於類別:動物科學系

文件中的檔案:
沒有與此文件相關的檔案。


在 DSpace 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。