Please use this identifier to cite or link to this item:
標題: 不同家禽來源之油脂中共軛亞麻油酸對乳癌細胞抑制效果之評估
Evaluation of Inhibitory Efficiency for Human Breast Tumor Cell by Fatty Acids and Conjugated Linoleic Acids Extracted from Different Poultries
作者: 賴昭瑾
Lai, Chao-Chin
關鍵字: conjugated linoleic acid
fatty acid
breast tumor cell
出版社: 動物科學系所
引用: 王理書。巧妙處理鳥類蛋及肉中的n-3長鏈不飽和脂肪酸的組成(下)。2000。中國畜牧雜誌 32(4):16-24。 王莉芳。2006。以不織布貼附膠原蛋白/玻尿酸/幾丁聚醣複合基質之雙層敷料製備及其生物相容性之研究。碩士論文。國立中興大學。台灣。台中。 沈芳秀。2003。評估幾丁聚醣的抗癌潛力與相關機轉探討。碩士論文。國立成功大學。台灣。台南。 翁彭傑。彭俊明。陳玉燕。許碧蘭。黃東裕。盧虹佑 編譯。2003。哈伯氏生物化學。藝軒圖書出版社,台北市。 陳佳靜。2002。餵飼盤固草與早期禁食對白羅曼鵝對其生長性狀及屠體品質之影響。國立中興大學。碩士論文。台灣。台中。 陳秀媛。2005。共軛亞麻油酸對於前脂肪細胞引起程式化凋亡的機制探討。碩士論文。國立海洋大學。台灣。基隆。 許振忠。鴕鳥的營養與飼料。2003。中國畜牧雜誌。 許振忠。畜牧(一)。1995,pp.181;pp.201-205。東大書局,台北市。 詹士賢。2000。不同品種鴨屠體脂肪分布及其對烤鴨風味之影響。國立中興大學。碩士論文。台灣。台中。 楊安光。2003。以狼尾草調配完全混合日糧餵飼白羅曼鵝對其生長性狀及屠體品質之影響。國立中興大學。碩士論文。台灣。台中。 楊志明。2005。組織工程。九州圖書出版社,台北市。 劉春榮。1988。火雞的飼養與食用,pp.3;pp.217-218。五洲出版社。文笙書局。台北。 鄭文玲。2003。共軛亞麻油酸在脂多醣體誘發RAW264.7 巨噬細胞發炎反 應相關事件之影響。中山醫學大學。碩士論文。台灣。台中。 Albright, C. D., E. Klem, A. A. Shah, and P. Gallagher. 2005. Breast cancer cell-targeted oxidative stress: Enhancement of cancer cell uptake of conjugated linoleic acid, actination of p53, and inhibition of proliferation. Exp. Mol. Pathol. 79: 118-125. A. O. A. C. 1990. Official methods of analysis. 15 th ed. Association of Official Analytical Chemist. Virginia, U. S. A. Austic, R. E. and M. C. Nesheim. Poultry production. 13th ed. 1990. pp. 175-176. Lea & Febiger, Philadelphia, U.K. Avis, I., S. H. Hong, A. Martinez, T. Moody, Y. H. Choi, J. Trepel, R. Das, M. Jett, and J. L. Mulshine. 2001. Five-lipoxygenase can mediate apoptosis in human breast cancer cell lines through complex eicosanoid interactions, FASEB J. 15: 2007-2009. Bauman, D. E., L. H. Baumgard, B. A. Corl, and J. M. Griinari. 1999. Biosynthesis of conjugated linoleic acid in ruminant. Proc. Am. Soc. Anim. Sci. Belury, M. A. 2002. Inhibition of carcinogenesis by conjugated linoleic acid-potential mechanism of action. J. Nutr. 132: 2995-2998. Beppu, F., M. Hosokawa, L. Tanaka, H. Kohno, T. Tanaka, and K. Miyashita. 2006. Potent inhibitory effect of trans-9, trans-11 isomer of conjugated linoleic acid in the growth of human colon cancer cells. J. Nutr. Biochem. 17: 830-836. Bhattacharya, A. J. Banu, M. Rahman, J. Causey, and G. Fernandes. 2006. Biological effects of conjugated linoleic acids in health and disease. J. Nutr. Biochem. 17: 789-810. Birkedal-Hansen, H. 1995. Proteolytic remodeling of extracellular matrix. Curr. Opin. Cell Biol. 7: 728-735. Bissonauth, V., Y. Chouinard, J. Marin, N. Leblanc, D. Richard, and H. Jacques. 2006. The effects of t10, c12 CLA isomer compared with c9, t11 CLA isomer on lipid metabolism and body composition in hamsters. J. Nutr. Biochem. 17: 597-603. Blankson, H, J. A. Stakkestad, H. Fagertun, E. Thom, J. Wadstein, and O. Gudmundsen. 2000. Conjugated linoleic acid reduces body fat mass in overweight and obese humans. J. Nutr. 130: 2943–2948. Cantor, A. H., E. A. Decker, and V. P. Collins. 1992. Fatty acids in poultry and egg production. In: Chow C. K. 2007. Fatty acids in foods and their health implication. pp.125-130. Taylor and Francis CRC Press. Castellini, C., A. Mugnai, and D. Bosco. 2002. Effect of organic production system on broiler carcass and meat quality. Meat Sci. 60: 219-225. Cave, W. T. 1996. Dietary ω-3 polyunsaturated fats and breast cancer. Nutr. 12: S39-S42. Chin, S., W. Liu, J. Storkson, Y. Ha, and M. Pariza. 1992. Dietary sources of conjugated dienoic isomers of linoleic acid, a newly recognized class of anticarcinogens. J. Food. Comp. Anal. 5: 185-197. Chujo, H., M. Yamasaki, S. Nou, N. Koyanagi, H. Tachibana, and K. Yamada. 2003. Effect of conjugated linoleic acid isomers on growth factor-induced proliferation of human breast cancer cells. Cancer Lett. 202: 81-87. Durgam, V. R. and G. Fernandes. 1997. The growth inhibitory effect of conjugated linoleic acid on MCF-7 cells is related to estrogen response system. Cancer Lett. 116: 121-130. Enser, M., K. G. Hallett, B. Hewett, G. A. J. Fursey, J. D. Wood, and G. Harrington. 1998. Fatty acid content and composition of UK beef and lamb muscle in relation to production system and implications for human nutition. Meat Sci. 49: 329-341. Escher, P. and W. Wahli. 2000. Peroxisome proliferator-activated receptors: insight into multiple cellular functions. Mutation Res. 448: 121-138. Evans, M. E., J. M. Brown, and M. K. Mcintosh. 2002. Isomer-specific effects of conjugated linoleic acid (CLA) on adiposity and lipid metabolism. J. Nut. Biochem. 13: 508-516. Fajas, L., M. B. Debril, and J. Auwerx. 2001. Peroxisome proliferators- activated receptor-γ: from adipogenesis to carcinogenesis. J. Mol. Endocrinol. 27: 1-9. Fite, A., M. Goua, K. Wahle, A. Schofield, A. Hutcheon, and S. Heys. 2007. Potentiation of the anti-tumour effect of docetaxel by conjugated linoleic acids (CLAs) in breast cancer cells in vitro. Prostaglandins, Leukotrienes and Essential Fatty Acids 77: 87-96. Frische, J. and H. Steinhart. 1998. Amounts of conjugated linoleic acid (CLA) in German foods and evaluation of daily intake. Eur. Food Res. Technol. 206: 77-82. Fukuda, S., H. Furuya, Y. Suzuki, N. Asanuma, and T. Hino. 2005. A new strain of Butyrivibrio fibrisolvens that has high ability to isomerize linoleic acid to conjugated linoleic acid. J. Gen. Appl. Microbiol. 51: 105-113. Fukuda, S., Y. Suzuki, M. Murai, N. Asanuma, and T. Hino. 2006. Isolation of a novel strain of Butyrivibrio fibrisolvens that isomerizes linoleic acid to conjugated linoleic acid without hydrogenation, and its utilization as a probiotic for animals. J. Appl. Microbiol. 100: 787-794. Girolami, A., I. Marsico, G. D’Andrea, A. Braghieri, F. Napolitano, and G. F. Cifuni. 2003. Fatty acid profile, cholesterol content and tenderness of ostrich meat as influenced by age at slaughter and muscle type. Meat Sci. 64: 309-315. Goodwin, C. J., S. J. Holt, S. Downes, and N. J. Marshall. 1995. Microculture tetrazolium assays: a comparison between two new tetrazolium salts, XTT and MTS. J. Immunol. Methods 179: 95-103. Guo, D. D., H. S. Moon, R. Arote, J. H. Seo, J. S. Quan, Y. J. Choi, and C. S. Cho. 2007. Enhanced anticancer effect of conjugated linoleic acid by conjugation with Pluronic F127 on MCF-7 breast cancer cells. Cancer Lett. 254: 244-254. Ha, Y. L., N. K. Grimm, and M. W. Pariza. 1989. Newly recognized anticarcinogenic fatty acids: Identification and quantification in natural and processed cheeses. J. Agric. Food Chem. 37: 75-81. Ha, Y. L., J. Storkson, and M. W. Pariza. 1990. Inhibition of benzo(a)pyrene- induced mouse forestomach neoplasia by conjugated dienoic derivatives of linoleic acid. Cancer Res. 50: 1097-1101. Hargis, P. S. and M. E. Van Elswyk. 1993. Manipulating the fatty acid composition of poultry meat and eggs for the health conscious consumer. World''s Poultry Sci. J. 49: 251-264. Horbanczuk, J., J. Sales, T. Celeda, A. Konecka, G. Zinba, and P. Kawka. 1998. Cholesterol content and fatty acid composition of ostrich meat as influenced by subspecies. Meat Sci. 50: 385-388. Hoffman, L. C., M. Joubert, T. S. Brand, and M. Manley. 2005. The effect of dietary fish oil rich in n-3 fatty acids on the organolepic, fatty acid and physicochemical characertistics of ostrich meat. Meat Sci. 70: 45-53. Hur, S. J., B. W. Ye, J. L. Lee, Y. L. Ha, G. B. Park, and S. T. Joo. 2004. Effects of conjugated linoleic acid on color and lipid oxidation of beef patties during cold storage. Meat Sci. 66: 771-775. Ip, C., S. P. Briggs, A. D. Haegele, H. J. Thompson, J. Storkson, and J. A. Scimeca. 1996. The efficacy of conjugated linoleic acid in mammary cancer prevention is independent of the level or type of fat in the diet. Carcinog. 17: 1045-1050. Jones J. M. Factor influencing poultry meat quality. In: Johnston, D. E., M. K. Knight, and D. A. Ledward. 1992. The chemistry of muscle-based foods. pp. 34-36. Royal Society of Chemistry. Kenneally, P. M., G. Schwarz, N. G. Eransen, and E. K. Arendt. 1998. Lipolytic starter culture effects on production of free fatty acids in fermented sausage. J. Food Sci. 63: 538-543. Kerr, J. F., A. H. Wyllie, and A. R. Currie. 1972. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. J. Cancer 26: 239-257. Kim, J., N. E. Hubbard, V. Ziboh, and K. L. Erickson. 2005a. Conjugated linoleic acid reduction of murine mammary tumor cell growth through 5-hydroxy- eicisatetraenoic acid. Biochim. Biophys. Acta 1687: 103-109. Kim, J., N. E. Hubbard, V. Ziboh, and K. L. Erickson. 2005b. Attenuation of breast tumor cell growth by conjugated linoleic acid via inhibition of 5-lipoxygenase activating protein. Biochim. Biophys. Acta 1736: 244- 250. Klurfeld, D. M. 1995. Fat effects in experimental tumorigenesis. J. Nutr. Biochem. 6: 201-205. Kramer, J. K. G., V. Fellner, M. E. R. Dugan, F. D. Sauer, M. M. Mossoba, and M. P. Yurawecz. 1997. Evaluating acid and base catalysts in the methylation of milk and rumen fatty acids with special emphasis on conjugated dienes and total trans fatty acids. Lipids 32: 1219–1228. Kuzuya M. and A. Iguchi. 2003. Role of matrix metalloproteinases in vascular remodeling. J. Athe. Thro. 10: 275-282. Lee, K. N., D. Kritchevsky, and M. W. Pariza. 1994. Conjugated linoleic acid and atherosclerosis in rabbits. Atherosclerosis 108: 19-25. Li, Y. and B. A. Watkins. 1998. Conjugated linoleic acids alter bone fatty acid composition and reduce ex vivo prostaglandin E2 biosynthesis in rats fed n-6 or n-3 fatty acids. Lipids 33: 417-425. Lin, H., T. Boylston, M. Chang, L. Luedecke, and T. Shultz. 1995. Survey of the conjugated linoleic acid contents of dairy products. J. Dairy Sci. 78: 2358-2365. Ma, D. W., A. A. Wierzbicki, C. J. Field, and M. T. Clandinin. 1999. Conjugated linoleic acid in canadian dairy and beef products. J. Agric. Food Chem. 47: 1956-1960. Maggiora M., M. Bologna, M. P. Ceru, L. Possati, A. Angelucci, A. Cimini, A. Miglietta, F. Bozzo, C. Margiotta, G. Muzio, and R. A. Canuto. 2004. An overview of the effect of linoleic acids and conjugated-linoleic acids on the growth of several human tumor cell lines. Int. J. Cancer 112: 909-919. Majumder, B., K. W. Wahle, S. Moir, A. Schofield, S. N. Choe, A. Farquharson, I. Grant, and S. D. Heys. 2002. Conjugated linoleic acids (CLAs) regulate the expression of key apoptotic genes in human breast cancer cells. FASEB J. 16: 1447-1449. Makrs, H. L. Genetics of growth and development. In: Hunton P. 1995. World animal science, C9: Poultry production. pp. 174-179. Elsevier, New York. McGuire, M. A. and M. K. McGuire. 2000. Conjugated linoleic acid (CLA): A ruminant fatty acid with beneficial effects on human health. Proc. Am. Soc. Anim. Sci. pdf. Miller, A., C. Stanton, and R. Devery. 2001. Modulation of arachidonic acid distribution by conjugated linoleic acid isomers and linoleic acid in MCF-7 and SW480 cancer cells. Lipids 36: 1161-1168. Nagata, S. 1997. Apoptosis by death factors. Cell 88: 355-365. Qi, C, Y. Zhu, and J. K. Reddy. 2000. Peroxisome proliferator-activated receptors, coactivators, and downstream targets. Cell Biochem. Biophys. 32: 187-204. Ochoa, J. J., A. J. Farquharson, I. Grant, L. E. Moffat, S. D. Heys, and K. W. Wahle. 2004. Conjugated linoleic acids decrease prostate cancer cell proliferation: different molecular mechanisms for cis-9, trans-11 and trans-10, cis-12 isomers. Carcinog. 25: 1185-1189. Paleari, M. A., S. Camisasca, G. Beretta, P. Renon, P. Corsico, G.Bertolo, and G. Crivelli. 1998. Ostrich meat: Physico-chemical characteristics and comparison with turkey and bovine meat. Meat Sci. 48: 205-210. Pariza, P. W., S. H. Ashoor, F. S. Chu, and D. B. Lund. 1979. Effects of temperature and time on mutagen formation in panfried hamburger. Cancer Lett. 7: 63-69. Pariza, P. W. and W. A. Hargraves. 1985. A beef-derived mutagenesis modulator inhibits initiation of mouse epidermal tumors by 7,12- dimethylbenz[a]anthracene. Carcinog. 6: 591-593. Pariza, M. W., P. Yeonhwa, and E. C. Mark. 2000. Mechanisms of action of conjugated linoleic acid: evidence and speculation. Fed. Proc. Soc. Exp. Biol. Med. 223: 8-13. Parkhurst, C. R. and Mountney G. J. 1988. Poultry meat and egg production. pp.206-247. Chapman & Hall, New York, U. S. A. Park, Y. and M. W. Pariza. 1998. Evidence that commercial calf and horse sera can contain substantial amounts of trans-10, cis-12 conjugated linoleic acid. Lipids 33: 817-819. Park, Y., K. T. Albright, J. M. Storkson, W. Liu, M. E. Cook, and M. W. Pariza. 1999. Evidence that the trans-10, cis-12 isomer of conjugated linoleic acid induces body composition changes in mice. Lipids 34: 243-248. Park, Y. and M. W. Pariza. 2007. Mechanisms of body fat modulation by conjugated linoleic acid (CLA). Food Res. Int. 40: 311-323. Reed, J. C. 2000. Mechanisms of apoptosis. Am. J. Pathol. 157: 1415-1430. Riss, T. L. and R. A. Moravec. 1992. Comparison of MTT, XTT, and a novel tetrazolium compound MTS for in vitro proliferation and chemosensitivity assays. Mol. Biol. Cell (Suppl.) 3: A184. Sales, J. 1996. Histological, biophysical, physical and chemical characteristics of different ostrich muscles. J. Sci. Food Agric. 70: 109-114. Sauer, L. A., D. E. Blask, and R. T. Dauchy. 2007. Dietary factors and growth and metabolism in experimental tumors. J. Nutr. Biochem.18: 637-649. Schmid, A., M. Cloolmb, R. Sieber, and G. Bee. 2006. Conjugated linoleic acid in meat and meat products: A review. Meat Sci. 73: 29-41. Sehat, N., M. P. Yurawecz, J. A. G. Roach, M. M. Mossoba, and J. K. G. Kramer, and Y. Ku. 1998. Silver-ion high-performance liquid chromatographic separation and identification of conjugated linoleic acid isomers. Lipids 33: 217-221. Shultz, T. D., B. P. Chew, W. R. Seaman, and L. O. Luedecke. 1992. Inhibitory effect of conjugated dienoic derivatives of linoleic acid and beta-carotene on the in vitro growth of human cancer cells. Cancer Lett. 63: 125-133. Soel, S., O. Choi, M. Bang, J. Yoon Park, and W. Kim. 2007. Influence of conjugated linoleic acid isomers on the metastasis of colon cancer cells in vitro and in vivo. J. Nutr. Biochem. 18: 650-657. Statistical Analysis System, 2003. Version 9.1, SAS Institute Inc., Cary, North Carolina, United States of America. Tong, W. G., X. Z. Ding, and T. E. Adrian. 2002. The mechanisms of lipoxygenase inhibitor-induced apoptosis in human breast cancer cells. Biochem. Biophys. Res. Commun. 296: 942-948. Wahle, K. W. J., S. D. Heys, and D. Rotondo. 2004. Conjugated linoleic acids: are they beneficial or detrimental to health? Prog. Lipid Res. 43: 553-587. Wang, L. S., Y. W. Huang, Y. Sugimoto, S. Liu, H. L. Chang, W. Ye, S. Shu, and Y. C. Lin. 2006. Conjugated linoleic acid (CLA) up-regulates the estrogen-regulated cancer suppressor gene, protein tyrosine phosphatase gamma (PTPgama), in human breast cells. Anticancer Res. 26: 27-34. Yan, H. J., E. J. Lee, K. C. Nam, B. R. Min, and D. U. Ahn. 2006. Dietary functional ingredients-performance of animals and quality storage stability of irradiated raw turkey breast. Poult. Sci. 85: 1829-1837. Yang, M. and M. E. Cook. 2003. Dietary conjugated linoleic acid decreased cachexia, macrophage tumor necrosis factor-α production, and modifies splenocyte cytokines production. Exp. Biol. Med. 228: 51-58.
摘要: 本研究目的係以鵝、鴕鳥與火雞(Go/Os/Tu)屠體之胸肉、腿肉及腹內脂肪為原料,將胸肉及腿肉測定一般化學組成分析,而後萃取腿肉及腹內脂肪之脂肪酸,進行其脂肪酸組成及共軛亞麻油酸(conjugated linoleic acid, CLA)含量之分析。此外,選用腹內脂肪所萃取的脂肪酸進行in vitro試驗,首先,將腹脂脂肪酸預先溶於甲醇溶劑調製成5%脂肪酸甲醇溶液(5%fatty acid-methanol solution, FAMS),再將5%脂肪酸甲醇溶液與培養液A(RPMI 1640+10%胎牛血清+ 1%抗生素)預混成不同濃度(0.025%, 0.05%, 0.075%及0.1%)的培養液B(FAME+培養液A),最終以培養液B與人類乳癌細胞-MCF-7及正常細胞-MCF-10A共同培養48小時,藉由測定癌細胞存活率(cell viability),以探討不同禽類之油脂其脂肪酸與CLA對於乳癌細胞生長之抑制作用。 結果顯示:比較不同禽類的胸肉及腿肉之一般化學組成中,火雞的胸肉及腿肉的水分含量顯著低於其他禽類部位肉。粗脂肪含量方面,鵝腿肉與火雞腿肉顯著高於胸肉部位及鴕鳥腿肉。粗蛋白含量因部位不同而有所差異,鵝及火雞胸肉的粗蛋白含量顯著高於腿肉。灰分含量方面,鵝肉顯著較其他禽類組別高。比較不同禽類之間其脂肪酸組成與含量,發現鵝、火雞與鴕鳥每克腹脂中CLA含量分別為0.42、0.16及0.12%,鵝腿肉脂肪酸組成以棕櫚酸(C16:0)及亞麻油酸(C18:2)含量較多;火雞腿肉的脂肪酸組成以油酸(C18:1)及亞麻油酸(C18:2)較多;鴕鳥腿肉的脂肪酸組成以油酸(C18:1)及亞麻油酸(C18:2)較多。由於腿肉中脂肪含量少,其CLA含量太微量而無法以GC測定之。腹內脂肪之脂肪酸組成方面,鵝腹脂肪以亞麻油酸(C18:2)及次亞麻油酸(C18:3)含量較為豐富;火雞腹脂脂肪以油酸(C18:1)及亞麻油酸(C18:2)含量較高;鴕鳥腹脂肪含有較多種類的脂肪酸,以亞麻油酸(C18:2)、棕櫚酸(C16:0)及次亞麻油酸(C18:3)含量較豐富。禽類脂肪酸對乳癌細胞存活率之抑制作用方面,對照正常細胞MCF-10A的細胞存活率,脂肪酸處理組濃度於0.05%以下並未顯著降低其細胞存活率(98%以上);而各個濃度的禽類脂肪酸處理組對於乳癌細胞MCF-7皆有抑制其細胞活性之效果,且隨脂肪酸濃度提高,其細胞存活率越低,而鴕鳥脂肪酸每一處理組濃度其抑制效果皆顯著高於其他禽類處理組。 總結,鵝、鴕鳥與火雞之脂肪酸具有抗腫瘤細胞表現及生長的潛力,然而,此三種禽類對於乳癌細胞的抑制效果不盡相同,可能為CLA混合物中異構物組成不同,因而造成抗癌功效有所差異。因此,此三種禽類脂肪酸其CLA異構物之結構及比例值得未來進一步分析與純化,以利作為機能性保健食品利用之基礎。
The purpose of this study was to investigate the chemical content of goose breast and thigh, turkey breast and thigh, and ostrich thigh, and fatty acid composition and CLA (conjugated linleic acid) mixture content of thigh meat and abdominal fat of goose, turkey and ostrich were also analyzed. Moreover, a 5% fatty acid-methanol solution (FAMS) was prepared by fatty acid of abdominal fat from goose, turkey and ostrich. Then, different concentrations (0.025, 0.05, 0.075, and 0.1%) of test solutions (medium B) prepared by 5% FAMS and medium A containing RPMI 1640, 10% FBS and 1% PSA. Finally, it evaluated anticariogenic efficiency of all test solutions were by inhibition of cell viability of human breast cancer cell (MCF-7) and human breast epithelial cell (MCF-10A) in this research. The results were as follow: in aspect of the moisture content of breast and thigh meat, turkey had significantly lower value than those of goose and ostrich. The thigh meat of goose and turkey had higher crude fat content than breast meat and thigh meat of ostrich. The thigh meat had lower crude protein content than breast meat of goose and turkey. The highest ash content of breast and thigh meat was found in goose. In aspect of the fatty acid composition in thigh muscle and abdominal fat, the higher fatty acids concentration of goose thigh meat were palmitic acid (C16:0) and linoleic acid (C18:2); in turkey thigh meat were oleic acid (C18:1) and linoleic acid (C18:2); in ostrich thigh meat were oleic acid (C18:1) and linoleic acid (C18:2), respectively. In abdominal fat part, the higher fatty acid concentration in goose, turkey, and ostrich were linoleic acid (C18:2) and α-linoleic acid (C18:3); oleic acid (C18:1) and linoleic acid (C18:2), as well as palmitic acid (C16:0), linoleic acid (C18:2) and α-linoleic acid (C18:3), individually. However, CLA mixture content of abdominal fat from goose, turkey and ostrich was 0.42, 0.16 and 0.12% / per gram fat, respectively. In aspect of the inhibition of breast tumor cell viability, no significant inhibiting efficiency on MCF-10A cell found in 0.05% concentration of fatty acid-methanol solution from all three poultries. A significantly reduced number for MCF-7 cell viability was found in all treatments. The higher concentration of FAMS, the better inhibition of breast tumor cell proliferation. The FAMS of ostrich had better inhibition efficiency on MCF-7 cell growth in three poultry species in this study. In conclusion, different inhibiting efficiency on breast tumor cell were found in fatty acid from different poultry species and might be caused by ratio of CLA isomer and concentration in these three poultries is important and these basic data also can be applied in health food in future.
其他識別: U0005-2008200817194800
Appears in Collections:動物科學系



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.