Please use this identifier to cite or link to this item:
標題: 以廢棄雞爪開發具抗氧化與降高血壓效果酵素水解物 之研究
The study on development of enzymatic hydrolysates with antioxidative and antihypertensive effects obtained from waste chicken feet
作者: 李宗哲
Lee, Tsung-Che
關鍵字: waste
chicken feet
出版社: 動物科學系所
引用: 丁予安。1999。臨床高血壓學。藝軒圖書出版社。台北。台灣。 林亮全,吳顯欽。2000。國產烏骨雞與白肉雞肉之化學組成及特性之 探討。台灣農業化學與食品科學38: 295-301。 施介人,江文德,朱燕華。1999。以酵素連續生產具有特殊機能性的 大豆蛋白水解產物。食品工業月刊37: 360-370。 陳怡宏。2001。蛋白質酵素水解物與醫療調理營養。食品工業月刊33: 58-63。 陳俊榮。1999。談雞精的營養與功效。健康世界283: 49-52。 廖俊旺。2006。製作組織切片、組織切片染色與判讀。實驗動物技術 操作實驗技術手冊pp:72-99。國立中興大學獸醫學系。台中。 劉振軒、何逸僊、張文發、祝志平、王綉真。1996。組織病理染色技 術與圖譜:組織化學染色。台灣養豬科學研究所。苗栗。 鄭富元。2007。以雞腿骨蛋白開發具抗氧化與抗高血壓保健食品之研 究。國立中興大學動物科學研究所博士論文,台中,台灣。 鄭慧文。1996。新世紀健康食品:食補VS.藥補。宏欣文化出版。台 北,台灣。 Abbate, M., A. Benigni, T. Bertani and G. Remuzzi. 1999. Nephrotoxicity of increased glomerular protein traffic. Nephrol. Dial. Transplant. 14: 304-312. Adler-Nissen, J. 1986. Enzymatic hydrolysis of food protein. Elsevier Applied Science Pub. New York. Allen, R. G. and M. Tresini. 2000. Oxidative stress and gene regulation. Free Radic. Biol. Med. 28: 463-499. Antonios, T. F. T. and G. A. Macgregor. 1995. Angiotensin-converting enzyme-inhibitors in hypertension - potential problems. J. Hypertens. 13: S11-S16. Astorg, P. 1997. Food carotenoids and cancer prevention: An overview of current research. Trends Food Sci. Technol. 8: 406-413. Atkinson, A. B. and J. I. S. Robertson. 1979. Captopril in the treatment of clinical hypertension and cardiac failure. Lancet. 2: 836-839. Bannister, J. V., W. H. Bannister and G. Rotilio. 1987. Aspect of the structure, function and application of superoxide dismutase. Crit. Rev. Biochem. 22: 111-180. Becker, G. L. 1993. Preserving food and health: antioxidants make functional, nutritious preservatives. Food Process 12: 54-56. Beckman, K. B. and B. N. Ames. 1998. The free radical theory of aging matures. Physiol. Rev. 78: 547-571. Betts, M. J. and R. B. Russell. Amino acid properties and consequences of subsitutions. In Bioinformatics for Geneticists, edited by M. R. Barnes and I. C. Gray. Wiley, New York. pp. 289-316. Bradford, M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254. Brain, J. and R. Rosario. 2005. Hypertension: a review and rationale of treatment. Dis. Mon. 51: 548-614. Brewster, U. C. and M. A. Perazella. 2004. The rennin-angiotensin-aldosterone system and the kidney: Effect on kidney disease. Am. J. Med. 116: 263-272. Byun, H. G. and S. K. Kim. 2002. Structure and activity of angiotensin I converting enzyme inhibitory peptides derived from Alaska pollack skin. J. Biochem. Mol. 35: 239-243. Calabrese, E. J. and A. T. Canada. 1989. Catalase: its role in xenobiotic detoxification. Pharmacol. Ther. 44: 297-307. Chance, B., H. Sies and A. Boveris. 1979. Hydroperoxide metabolism in mammalian organs. Physiol. Rev. 59: 527-605. Chen, H. M., K. Muramoto and F. Yamauchi. 1995. Structural analysis of antioxidative peptides from soybean β-conglycinin. J. Agric. Food Chem. 43: 574-578. Chen, H. M., K. Muramoto, F. Yamauchi, K. Fujimoto and K. Nokihara. 1998. Antioxidative properties of histidine-containing peptides designed from peptide fragments found in the digests of a soybean protein. J. Agric. Food Chem. 46: 49-53. Cheung, H. S., F. L. Wang, M. A. Ondetti, E. F. Sabo and D. W. Cushman. 1980. Binding of peptide substrates and inhibitors of angiotensin-converting enzyme: Importance of the COOH-terminal dipeptide sequence. J. Biol. Chem. 255: 401-407. Chobanian, A. V., G. L. Bakris and H. R. Black. 2003. The seventh report of the joint national committee on prevention, detection, evaluation, and treatment of high blood pressure. J. Am. Med. Assoc. 289: 2560-2572. Chobanian, A. V., G. L. Bakris, H. P. Black, W. C. Cushman, L. A. Green, J. L. Izzo, Jr, D. W. Jones, B. J. Materson, S. Oparil, J. T. Wright, Jr, E. J. Roccella. 2003. The seventh report of the Joint National Committee on prevention, detection, evaluation, and treatment of high blood pressure. Hypertension 42: 1206-1252. Chung, H. S., F. L. Wang, M. A. Ondetti, E. F. Sabo and D. W. Cushman. 1980. Binding of peptide substrates and inhibitors of angiotensinconverting enzyme: Importance of the COOH-terminal dipeptide sequence. J. Biol. Chem. 255: 401-407. Church, F. C., E. H. Swaisgood, D. H. Porter, and G. L. Catignani. 1983. Spectrophotometric assay using 0-phthaldialdehyde for determination of proteolysis in milk and isolated milk protein. J. Dairy Sci. 66: 1219-1277. Corvol, P., A. Michaud, F. Soubrier and T. A. Williams. 1995. Recent advances in knowledge of the structure and function of the angiotensin I converting enzyme. J. Hypertens. Suppl. 13: 3-10. Cushman, D. W. and H. S. Cheung. 1971. Spectrophotometric assay and properties of the angiotensin-converting enzyme of rabbit lung. Biochem. Pharmacol. 20: 1637-1648. Decker, E. A. and B. Welch. 1990. Role of ferritin as lipid oxidation catalyst in muscle food. J. Agric. Food Chem. 38: 674-677. Ding, Y. A., D. J. Wang, S. M. Shieh and P. K. Sung. 1988. The effect of anti-hypertensive drugs on serum lipids and lipoprotein: Diuretics, part II. Medical Digest 7: 602-609. Ding Y. A. 1992. Calcium channel blockers-clinical uses and future implication. Taiwan Med. J. 35: 84-196. Ding, Y. A. 1994. Tissue renin-angiotensin system and its implication for cardiovascular disease. Acta. Cardiol. Sin. 10: 193-197. Dinis, T. C. P., V. M. C. Madeira and L. M. Almeida. 1994. Action of phenolic derivatives (acetqaminophen, salicylate, and 5-amino salicylate ) as inhibitors of membrane lipid peroxidation and as peroxyl radical scavengers. Arch. Biochem, Biophys. 315: 161-169. Diplock, A. T., J. L. Charleux, G. C. Willi, F. J. Joe, C. R. Evans, M. Roberfroid, W. Stahl and J. V. Ribes. 1998. Functional food science and defense against reactive oxidative species. British J. Nutr. 80: S77-S112. Dive, V., J. Cotton, A. Yiotakis, A. Michaud, S. Vassilious, J. Jiracek, G. Vazeux, M. T. Chauvet, P. Cuniasse and P. Corvol. 1999. RXP 407, a phosphinic peptide, is a potent inhibitor of angiotensin I converting enzyme able to differentiate between its two active sites. Proc. Nat. Acad. Sci. USA 96: 4330-4335. Eich, R. H., R. J. Peters, R. P. Cuddy, H. Smulyan, and R. H. Lyons. 1962. The hemodynamics in labile hypertension. Am. Heart 63:188-195. El-Adawy, T. A. and S. A. El-Kadousy. 1995. Changes in cemical composition, nutritional quality, physico-chemical and functional properties of peach kernel meal during detoxification. Food Chem. 52: 143-148. Elliott, H. 2006. Eipidemiology, aetiology and prognosis of hypertension. Medicine 34: 286-289. Erdos, E. G. 1975. Angiotensin-I converting enzyme. Circ. Res. 36:247-255. Ezzati, M., A. D. Lopez, A. Rogers, S. V. Hoorn and C. J. L. Murray. 2002. Comparative risk assessment collaborative group: selected major risk factors and global and regional burden of disease. Lancet 360: 1347-1360. Ferreira, S. H., D. C. Bartelt and L. J. Greene. 1970. Isolation of bradykinin-potentiating peptides from Bothrops jararaca venom. Biochemistry 9: 2583-2593. FitzGerald, R. J. and H. Meisel. 2000. Milk protein-derived peptide inhibitors of angiotensin-I-converting enzyme. Br. J. Nutr. 84: S33-S37. Fragata, M. and F. Bellemare. 1980. Model of singlet oxygen scavenging by α-tocopherol in biomembranes. Chem. Phys. Lipids 27: 93-99. Frokjaer, S. 1994. Use of hydrolysates for protein supplementation. Food Technol. 48: 86-88. Fujita, H. and M. Yashikawa. 1999. LKPNM: a prodrug-type ACE-inhibitory peptide derived from fish protein. Immunopharmacology 44: 123-127. Fujita, H., K. Yokoyama and M. Yoshikawa. 2000. Classification and antihypertensive activity of angiotensin I-converting enzyme inhibitory peptides derived from food proteins. J. Food. Sci. 65: 564-569. Guérard, F., L. Dufossé, D. L. Broise and A. Binet. 2001. Enzymatic hydrolysis of proteins from yellowfin tuna (Thunnus albacares) wastes using Alcalase. J. Mol. Catal. B: Enzym. 11: 1051-1059. Guerard, F., L. Guimas and A. Binet. 2002. Production of tuna waste hydrolysates by a commercial neutral protease preparation. J. Mol. Catal. B: Enzym. 19-20: 489-498. Halliwell, B., M. Wasil and M. Grootveld. 1987. Biologically significant scavenging of the myeloperoxidase-derived oxidant hypochlorous acid by ascorbic acid. FEBS Lett. 213: 15-17. Halliwell, B. and J. M. C. Gutteridge. 1989. Free radicals in biology and medicine. 2nd ed. Clarendon Press, Oxford. Halliwell, B. and J. M. C. Gutteridge. 1990. Role of free radicals and catalytic metal ions in human disease. Methods Enzymol. 186: 1-85. Halliwell, B., J. M. C. Gutteridge and C. E. Cross. 1992. Free radicals, antioxidants and human disease: where are we now? J. Lab. Clin. Med. 119: 598-620. Harman, D. 1956. Aging: a theory based on free radical and radiation chemistry. J. Gerontol. 11(3): 298–300. Heo, S. J., E. J. Park, K. W. Lee and Y. J. Jeon. 2005. Antioxidant activities of enzymatic extracts from brown seaweeds. Bioresour. Technol. 96: 1613-1623. Hooper, N. M. and A. J. Turner. 1987. Isolation of two differentially glycosylated forms of peptidyl-dipeptidase A (angiotensin converting enzyme) from pig brain: a re-evaluation of their role in neuropeptide metabolism. Biochem. J. 241: 625-633. Hubert, C., A. M. Houot, P. Corvol and F. Soubrier. 1991. Structure of the angiotensin I-converting enzyme gene. Two alternate promoters correspond to evolutionary steps of a duplicated gene. J. Biol. Chem. 266: 15377-15383. Hyslop, P. A., D. B. Hinshaw and W. A. Halsey. 1988. Mechanisms of oxidant-mediated cell injury: the glycolytic and mitochondrial pathways of ADP phosphorylation are major intracellular targets inactivated by hydrogen peroxide. J. Biol. Chem. 263: 1665-1675. Imaida, K., S. Fukushima, T. Shivai, M. Ohtani, K. Nakanishi and N. Ito. 1983. Promoting activities of butylated hydroxyanisole and butylated hydroxytoluene of 2-stage urinary bladder carcinogenesis and inhibition of γ-glutamyl transpeptidase-positive foci development in the liver of rats. Carcinogenesis 4: 885-889. Jacob, R. A. 1994. Nutrition, health and antioxidants. INFORM. 5: 1271-1275. Jang, A. and M. Lee. 2005. Purification and identification of angiotensin converting enzyme inhibitory peptides from beef hydrolysates. Meat Sci. 69: 653-661. Je, J. Y., P. J. Park, J. Y. Kwon and S. K. Kim. 2004a. A novel angiotensin I converting enzyme inhibitory peptide from Alaska pollack (Theragra chalcogramma) frame protein hydrolysate. J. Agric. Food Chem. 52: 7842-7845. Je, J. Y., P. J. Park, J. Y. Kwon and S. K. Kim. 2004b. A novel angiotensin I converting enzyme inhibitory peptide from Alaska Pollack frame protein hydrolysate. J. Agric. Food Chem. 52: 634-642. Johnson J. A. C. and M. R. Etzel. 1995. Properties of Lactobacillus helveticus CNRZ-32 attenuated by spray-drying, freeze-drying, or freezing. J. Dairy Sci. 78: 761 - 768. Jones, D. P., L. Eklow, H. Thor and S. Orrenius. 1981. Metabolism of hydrogen peroxide in isolated hepatocytes: relative contributions of catalase and glutathione peroxidase in decomposition of endogenously generated H2O2. Arch. Biochem. Biophys. 210: 505-516. Kamat, J. P., K. K. Boloor and T. P. A. Devasagayam. 2000. Chlorophylin as an effective antioxidant against membrane damage in vitro and ex vivo. B. B. A. 1487: 113-127. Kato, H. and T. Suzuki. 1971. Bradykinin-potentiating peptides from the venom of Akistrodon halys blomhoffii: isolation of five bradykinin potentiators and the amino acid sequences of two of them, potentiators B and C. Biochemistry 10: 972-980. Kim, S. K., Y. T. Kim, H. G. Byun, K. S. Nam, D. S. Joo and F. Shahidi. 2001a. Isolation and characterization of antioxidative peptides from gelatin hydrolysate of Alaska pollack skin. J. Agric. Food Chem. 49: 1984-1989. Kim, S. K., Y. T. Kim, H. G. Byun, P. J. Park and H. Ito. 2001b. Purification and characterization of antioxidative peptides from bovine skin. J. Biochem. Mol. Bio. 34: 219-224. Kim, S. Y., J. Y. Je and S. K. Kim. 2007. Purification and characterization of antioxidant peptide from hoki (Johnius belengerii) frame protein by gastrointestinal digestion. J. Nutr. Biochem. 18: 31-38. Klompong, V., S. Benjakul, D. Kantachote and F. Shahidi. 2007. Antioxidative activity and functional properties of protein hydrolysate of yellow stripe trevally (Selaroides leptolepis) as influenced by the degree of hydrolysis and enzyme type. Food Chemistry 102: 1317-1327. Kohmura, M., N. Nio, K. Kubo, Y. Minoshima, E. Munekata and Y. Ariyoshi. 1989. Inhibition of angiotensin-converting enzyme by synthetic peptides of human β-casein. Agric. Biol. Chem. 53: 2107-2114. Krinsky, N. I. and S. M. Deneke. 1982. Interaction of oxygen and oxy-radicals with carotenoids. J. Natl. Cancer Inst. 59: 205-210. Laemmli, U. K. 1970. Cleavage of structural pectins during the assembly of the head of the bacteriophage T4. Nature 227: 680-685. Lahl, W. J. and S. D. Braun. 1994. Enzymatic production of protein hydrolysates for food use. Food Technol. 48: 68-71. Lander, H. M. 1997. An essential role for radicals and derived species in signal transduction. FASEB J 11: 118-124. Li, G. H., G. W. Le, Y. H. Shi and S. Shrestha. 2004. Angiotensin I-converting enzyme inhibitory peptides derived from food proteins and their physiological and pharmacological effects. Nutr. Res. 24: 469-486. Lin, Y. K. and D. C. Liu. 2006. Comparison of physical-chemical properties of type I collagen from different species. Food Chem. 99: 244-251. Lingnert, H. K., Vallentin and C. E. Eriksson. 1979. Measurement of antioxidative effect in model system. J. Food Process Preserv. 3: 87-103. Lisa, K., K. Catherine and F. William. 1998. Mechanism of action and the substrate-dependent pH maximum shift of the α-amylase of Bacillus coagulans. Carbohydr. Res. 309: 311-318. Mahmoud, M. I., W. T. Malone and C. T. Cordle. 1992. Enzymatic hydrolysis of casein: Effect of degree of hydrolysis on antigenicity and physical properties. J. Food Sci. 57: 1223-1229. Mahmoud, M. I. 1994. Physicochemical and functional properties of protein hydrolysates in nutritional products. Food Technol. 48: 89-95. Martínez-Cayuela, M. 1995. Oxygen free radicals and human disease. Biochimie 77: 147-161. Maruyama, S. and H. Suzuki. 1982. A peptide inhibitor of angiotensin I converting enzyme in the tryptic hydrolysates of casein. Agric. Biol. Chem. 46: 1393-1394. Masuda, O., Y. Nakamura and T. Takano. 1996. Antihypertensive peptides are present in aorta oral administration of sour milk containing these peptides to spontaneously hypertensive rats. J. Nutr. 126: 3063-3068. Mavromichalis, I., J. L. Emmert, S. Aoyagi and D. H. Baker. 2000. Chemical composition of whole body, tissues, and organs of young chickens (Gallus domesticus). J. Food Comp. Anal. 13: 799-807. Meisel, H., A. Goepfert and S. Günther. 1997. ACE-inhibitory activities in milk products. Milchwissenschaft 52: 307-311. Mendis, E., N. Rajapakse and S. K. Kim. 2005. Antioxidant properties of a radical-scavenging peptide purified from enzymatically prepared fish skin gelatin hydrolysate. J. Agric. Food Chem. 53: 581-587. Meng, Q. C. and S. Oparil. 1996. Purification and assay methods for angiotensin-converting enzyme. J. Chromatogr. A 743: 105-122. Messeril, F. H., M. A. Weber and H. R. Bruamer. 1996. Angiotensin II receptor inhibition. A new therapeutic principle. Arch. Int. Med. 156: 1957-1965. Mito, K., M. Fujii, M. Kuwahara, N. Matsumura, T. Shimizu, S. Sugono and H. Karaki. 1996. Antihypertensive effect of angiotensin I-converting enzyme inhibitory peptides derived from hemoglobin. Euro. J. Pharmacol. 304: 93-98. Natesh, R., S. L. U. Schwager, E. D. Sturrock and K. R. Acharya. 2003. Crystal structure of the human angiotensin-converting enzyme-lisinopril complex. Nature 421: 551-554. Noguchi, M., M. Yamashita, S. Arai and M. Fujimaki. 1975. On the bitter-masking activity of a glutamic acid-rich oligopeptide fraction. J. Food Sci. 40: 367-369. Ockerman, H. W. and C. L. Hansen. 1988. Animal by-product processing. Ellis Horwoow Ltd. Chivester, England. Ondetti, M. A., N. J. Williams, E. F. Sabo, J. Pluvec, E. R. Weaver and O. Kocy. 1971. Angiotensin-converting enzyme inhibitors from the venom of Bothrops jararaca: isolation, elucidation of structure and synthesis. Biochemistry 10: 4033-4039. Ondetti, M. A., B. Rubin and D. W. Cushman. 1977. Design of specific inhibitors of angiotensin-converting enzyme: a new class of orally active antihypertensive agents. Sci. 196(4428): 441-446. Ondetti, M. A. and D. W. Cushman. 1981. Inhibition of the rennin-angiotensin system: a new approach to the therapt of hypertension. J. Med. Chem. 24: 355-361. Oshima, G., H. Shimabukuro and K. Nagasawa. 1979. Peptide inhibitors of angiotensin I-converting enzyme in digests of gelatin by bacterial collagenase. Biochem. Biophys. Acta. 566: 128-137. Oyaizu, M. 1988. Antioxidative activities of browning products of glucosamine fractionated by organic solvent and thin-layer chromatography. Nippon Shokuhin Kogyo Gakkaishi 35: 771-775. Packer, J. E., T. F. Slater and R. L. Willson. 1979. Direct observation of a free radical interaction between vitamin E and vitamin C. Nature 278: 737-738. Park, P. J., W. K. Jung, K. S. Nam, F. Shahidi and S. K. Kim. 2001. Purification and characterization of antioxidative peptides from protein hydrolysate of lecithin-free egg yolk. J. Am. Oil. Chem. Soc. 78: 651-656. Pelle, E., D. Maes, G. A. Padulo, E. K. Kim and W. P. Smith. 1990. An in vitro model to test relative antioxidant potential: ultraviolet-induced lipid peroxidation in liposomes. Arch. Biochem. Biophys. 283: 234-240. Peterson, G. L. 1979. Review of the Folin phenol protein quantitation method of Lowry, Rosebrough, Farr, and Randall. Anal. Biochem. 100: 201-220. Pihlanto, A. 2006. Antioxidative peptides derived from milk proteins. Int. Dairy J. 16: 1306-1314. Rajapakse, N., E. Mendis, H. G. Byun and S. K. Kim. 2005. Purification and in vitro antioxidative effects of giant squid muscle peptides on free radical-mediated oxidative systems. J. Nutr. Biochem. 16: 562-569. Rival, S. G., C. G. Boeriu and H. J. Wichers. 2001. Caseins and casein hydrolysates. 2. Antioxidative properties and relevance to lipoxygenase inhibition. J. Agric. Food Chem. 49: 295-302. Robak, J., and I. R. Gryglewski. 1988. Flavonoids are scavengers of superoxide anions. Biochem. Pharma. 37: 837-841. Roberts, P. R., J. D. Burney, K. W. Black and G. P. Zaloga. 1999. Effect of chain length on absorption of biologically active peptides from gastrointestinal tract. Digestion 60: 332-337. Rosemeyer, M. A. 1987. The biochemistry of glucose-6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase and glutathione reductase. Cell Biochem. Func. 5: 79-95. Roxborough, H. E., C. Mercer, D. McMaster, A. P. Maxwell and I. S. Young. 1999. Plasma glutathione peroxidase activity is reduced in haemodialysis patient. Nephron. 81: 278-283. Saiga, A., S. Tanabe and T. Nishimura. 2003. Antioxidant activity of peptides obtained from porcine myofibrillar proteins by protease treatment. J. Agric. Food Chem. 51: 3661-3667. Saiga, A., T. Okumura, T. Makihara, S. Katsuta, T. Shimizu, R. Yamada and T. Nishimura. 2006. Action mechanism of an angiotensin I-converting enzyme inhibitory peptide derived from chicken breast muscle. J. Agric. Food Chem. 54: 942-945. Saito, Y., K. Wanezaki, A. Kawato and S. Imayasu. 1994. Structure and activity of angiotensin I converting enzyme inhibitory peptides from sake and sake lees. Biosci. Biotech. Biochem. 58: 1767-1771. Schwenke, D. C. 1998. Antioxidants and atherosclerosis. J. Nutr. Biochem. 9: 424-445. Shah, A. and R. Arora. 2005. Tissure angiotensin-converting enzyme inhibitors: Are they more effective than serum angiotensin -converting enzyme inhibitors? Clin. Cardiol. 28: 551-555. Shimada, K., K. Fujikawa, K. Yahara and T. Nakamura. 1992. Antioxidative properties of xanthan on the autoxidation of soybean oil in cyclodextrin emulsion. J. Agric. Food Chem. 40: 945-948. Sibony, M., J. M. Gasc, F. Soubrier, F. A. Gelas and P. Corvol. 1993. Gene expression and tissue localization of the two isoforms of ACE. Hypertension 21: 827-835. Skeggs, L. T., J. E. Kahn, and N. P. Shumway. 1975. The preparation and function of the angiotensin-I converting enzyme. J. Exp. Med. 69: 295-299. Stait, S. E. and D. S. Leake. 1996. The effects of ascorbate and dehydroascorbate on the oxidation of lowdensity lipoprotein. Biochem. J. 320: 373-381. Steve, B. R., A. Fernandez, C. Kneer, J. J. Cerda, M. I. Phillips and E. R. Woodward. 1988. Human intestinal brush border angiotensin-converting enzyme activity and its inhibition by antihypertensive ramipril. Gastroenterology 98: 942-944. Sugiyama, K., M. Egawa, H. Onzuka and K. Oba. 1991. Characteristics of sardine muscle hydrolysate prepared by various enzymic treatment. Nippon Suisan Gakkaishi 57: 475-479. Tamura, M., N. Mori, T. Miyoshi, S. Koyama, H. Kohri and H. Okai. 1990. Practical debittering using model peptides and related compounds. Agric. Biol. Chem. 54: 41-51. Temple, N. J. and T. K. Basu. 1987. Protective effect of β-carotene against colon tumors in mice. J. Natl. Cancer Inst. 78: 1211-1214. Temple, N. J. 2000. Antioxidants and disease: More questions than answers. Nutr. Res. 20: 449-459. Tikkanen, I., P. Omvik and H. A. Jensen. 1995. Comparison of the angiotensin II antagonist losartan with the angiotensin converting enzyme inhibitor enalapril in patients with essential hypertension. J. Hypertens. 13: 1343-1351. Tokunaga, K. H., C. Yoshida, K. M. Suzuki, H. Maruyama, Y. Futamura, Y. Araki and S. Mishima. 2004. Antihypertensive effect of peptides from royal jelly in spontaneously hypertensive rats. Biol. Pharm. Bull. 27: 189-192. Van Arsdel W. B., M. J. Copley and A. L. Morgan. 1973. Food dehydration. 2nd edWestport, Con.: Avi Pub. Co. Vermeirssen, V., J. V. Camp and W. Verstraetel. 2004. Bioavailability of angiotensin I converting enzyme inhibitory peptides. Br. J. Nutr. 92: 357-366. Wu, H. C., C. Y. Shiau, H. M. Chen and T. K. Chiou. 2003. Antioxidant activities of carnosine, anserine, some free amino acids and their combination. J. Food Drug Anal. 11: 148-153. Wu, H. C., H. M. Chen and C. Y. Shiau. 2003. Free amino acids and peptides as related to antioxidant properties in protein hydrolysates of mackerel (Scomber austriasicus). Food Res. Int. 36: 949-957. Young, S. H. and M. Karel. 1978. Reaction of histidine with methyl linoleate: Characterization of the histidine degradation product. J. Am. Oil Chem. Soc. 55: 352-356.
摘要: 本研究以國內雞肉加工廠之廢棄物-白肉雞與烏骨雞之廢棄雞爪作為試驗原料,分別利用Alcalase、Flavourzyme 及Protease N 三種酵素進行水解12 小時,水解期間每2 小時收集水解液並測定該期間之pH 值變化,待水解液收集完畢後,分析其可溶性蛋白質、胜肽含量,以及抗氧化分析與血管收縮素轉換酶(Angiotensin I converting enzyme, ACE) 抑制活性測定,評估酵素水解液開發具抗氧化與抗高血壓效果之可行性。此外,將具備最佳ACE 活性抑制之水解液利用超過濾裝置分為3-5 kDa、1-3 kDa 和1kDa 以下三部份,經冷凍乾燥後,再分別以10、50 及100 mg/kg 劑量進行動物試驗,評估在動物模式下抗高血壓之效果,並將該水解物進行胺基酸序列分析。 結果顯示,白肉雞與烏骨雞之雞爪分別經三種不同酵素水解後, 兩者皆以Protease N 酵素經水解12 小時之處理組具有最高之胜肽含量(白肉雞爪為42.93 mg/mL,烏骨雞爪為36.60 mg/mL),且在抗氧化分析同樣以Protease N 酵素處理組具有較佳之抗氧化活性,其中以水解2小時之水解產物在清除DPPH自由基能力與其他酵素處理組比較,顯著較佳(p < 0.05);在清除超氧陰離子試驗中,以白肉雞爪水解4小時,與烏骨雞爪水解2小時之清除效果更為顯著(p < 0.05);抑制脂質過氧化能力則為烏骨雞爪處理組較白肉雞爪處理組佳。ACE抑制活性分析中,白肉雞與烏骨雞雞爪之Protease N 酵素水解液整體而言皆具有很好的ACE抑制活性,分析其IC50 值後,白肉雞爪以Protease N 水解4小時(BP4)具有最佳抑制活性(IC50 值為2.10mg/mL),而烏骨雞爪則為Protease N 水解2小時(SP2)具有最佳抑制活性(IC50 值為1.09 mg/mL)。動物試驗方面,以1 kDa 以下之水解產物BP4 與SP2 依100 mg/kg 劑量餵食SHR 大鼠具有較佳之降血壓效果,在餵食後2 小時血壓皆顯著下降(p < 0.05),其中以餵食SP2之血壓下降達17 mmHg 為最佳。在胺基酸組成與序列分析中發現SP2中含有不少高度疏水性胺基酸Val、Ile、Leu、Met、Phe 及Cys,尤 其以Val 之含量最高,故推測SP2 具有抗氧化與降血壓效果應與其序列中大多為高度疏水性胺基酸與高含量Val 有關。
The aim of this study was to investigate the functional characteristics of enzymatic hydrolysates obtained from waste chicken feet of broiler and silky fowl, which were gathered from local chicken processing factory. The feet of broiler and silky fowl were hydrolyzed by Alcalase, Flavourzyme, or Protease N for 12 hours. The hydrolysates were collected every 2 hours for analyzing the change of pH value, soluble protein, peptide content, antioxidative activity and ACE inhibitory activity. The hydrolysates with the highest ACE inhibitory activity were fractionated into 3-5 kDa, 1-3 kDa and below 1 kDa in molecular weight by ultrafiltration. After lyophilized, the fractions with different molecular weights were orally administered, respectively, in spontaneously hypertensive rats (SHR) at various doses of 10, 50 and 100 mg/kg for determining the decrease of immediate systolic blood pressure (SBP) in SHRs. And the fraction with potent antihypertension was analyzed the amino acid sequences of peptides within by LC/MS/MS. The result showed that hydrolysis with Protease N for 12h had the highest peptide content (broiler feet: 42.93 mg/mL; silky fowl feet: 36.60 mg/mL) in both feet of broiler and silky fowl. In antioxidative activity, the hydrolysates obtained from broiler and silky fowl feet by hydrolysis with Protease N possessed better DPPH and superoxide anion radicals scavenging activity than other proteases. Moreover, the best antioxidative activity was found in a hydrolysate treated with Protease N for 4h in broiler feet (DPPH: 72.07%, SOD: 83.66%, p < 0.05), while the 2nd hour hydrolysate with the best activity (DPPH: 81.65%, SOD: 79.42%, p< 0.05) was observed in silky fowl feet. Beside, the hydrolysate from silky fowl feet revealed the higher activity on inhibition of lipid peroxidation than that of broiler feet. Also hydrolysis with Protease N had strong ACE inhibitory activity in both broiler and silky fowl feet, especially, the strongest one was found at the 4th hour hydrolysate in broiler feet (BP4, IC50 = 2.10 mg/mL) and at the 2nd hour hydrolysate in silky fowl feet (SP2, IC50 =1.09 mg/mL). After oral administration ( < 1 kDa, 100 mg/kg) in SHRs, both of BP4 and SP2 showed significantly effect on reducing immediate SBP of SHRs (p < 0.05), and the maximal reducing of 17 mmHg in SBP was obtained in SP2. Analysis of amino acid composition and sequences in peptides indicated that many hydrophobic amino acids residues were observed in SP2, including Val, Ile, Leu, Met, Phe and Cys. Especially Val was the highest quantities among them. These results suggested that potent antioxidative and antihypertensive effects in SP2 seemed to be contributed from peptides with large amounts of hydrophobic amino acids residues and Val.
其他識別: U0005-2108200820341800
Appears in Collections:動物科學系



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.