Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/25046
標題: 飼糧添加麩醯胺對離乳仔豬生長性能、腸道形態與免疫能力之影響
Effect of dietary glutamine supplementation on the growth performance, intestinal morphology and immunity of weaning pigs
作者: 許晉賓
許晉賓, Chin-Bin Hsu
關鍵字: Glutamine
麩醯胺
Growth performance
Intestinal development
Weaning pigs
生長性能
腸道發育
離乳仔豬
出版社: 動物科學系所
引用: 余碧。2004。酵素與益生菌在飼料應用效果之評估。中畜會誌 33 (4):249-257。 許晉賓、劉芳爵、徐阿里。2002。保育仔豬飼糧添加有機酸對其生長性能及免疫能力之影響。中畜會誌 31(3):179-187。 張家維、姜樹興。1997。影響植酸酶促進豬隻對磷消化率之因子-植酸酶來源及有機酸。中畜會誌 26(2):117-134。 Apgar, G. A., E. T. Kornegay, M. D. Lindemann, and C. M. Wood. 1993. The effect of feeding various levels of Bifidobacterium globosum A on the performance, gastrointestinal measurements, and immunity of weanling pigs and on the performance and carcass measurements of growing-finishing pigs. J. Anim. Sci. 71:2173-2179. Ardawi, M. S. M., and E. A. Newsholme. 1983. Glutamine metabolism in lymphocytes of the rat. Biochem. J. 212:835-842. Bartell, S. M., and A. B. Batal. 2007. The effect of supplemental glutamine on growth performance, development of the gastrointestinal tract, and humoral immune response of broilers. Poult. Sci. 86:1940-1947. Battaglia, F. C. 2000. Glutamine and glutamate exchange between the fetal liver and the placenta. J. Nutr. 130:974S-977S. Bogin, E. 1992. In “Handbook for veterinary clinical chemistry”. pp. 1-9. Kimron Veterinary Institute, Koret School of Veterinary Medicine, POB 12 Bet 2-Dagan 50250, Israel. Bosi, P., I. K. Han, H. J. Jung, K. N. Heo, S. Perini, A. M. Castellzaai, L. Casini, D. Creston, and C. Gremokolini. 2001. Effect of different spray dried plasma on growth, ileal digestibility, nutrient deposition, immunity and health of early weaned pigs challenged with E. coli K88. Asian-Aust. J. Anim. Sci. 14:1138-1143. Bosi, P., L. Casini, A. Finamore, C. Cremokolini, G. Merialdi, P. Trevisi, F. Nobili, and E. Mengheri. 2004. Spray-dried plasma improves growth performance and reduces inflammatory status of weaned pigs challenged with enterotoxigenic Escherichia coli K88. J. Anim. Sci. 82:1764-1772. Boudry, G., J. P. Lalles, C. H. Malbert, E. Bobillier, and B. Seve. 2002. Diet-related adaptation of the small intestine at weaning in pigs is functional rather than structural. J. Pediatr. Gastroenterol. Nutr. 34:180-197. Boudry, G., V. Pe’ron, I. L. Huerou-Luron, J. P. Lalle’s, and B. Se’ve. 2004. Weaning induces both transient and long-lasting modifications of absorptive, secretory, and barrier properties of piglet intestine. J. Nutr. 134:2256-2262. Bowtell, J. L., K. Gelly, M. L. Jackman, A. Patel, M. Simeoni, and M. J. Rennie. 1999. Effect of oral glutamine on whole body carbohydrate storage during recovery from exhaustive exercise. J. Appl. Physiol. 86:1770-1777. Brosnan, J. T. 2000. Glutamate, at the interface between amino acid and carbohydrate metabolism. J. Nutr. 130:988S-990S. Brosnan, J. T. 2003. Interorgan amino acid transport and its regulation. J. Nutr. 133:2068S-2072S. Bruininx, E. M., C. M. van der Peet-Schwering, J. W. Schrama, P. F. Vereijken, P. C. Vesseur, H. Everts, L. A. den Hartog, and A. C. Beynen. 2001. Individually measured feed intake characteristics and growth performance of group-housed weanling pigs: Effects of sex, initial body weight, and body weight distribution within groups. J. Anim. Sci. 79:301-308. Buchman, A. L., A. A. Moukarzel, S. Bhuta, M. Belle, M. E. Ament, C. D. Eckhert, D. Hollander, J. D. Kopple, and S. R. Vijayaroghavan. 1995. Parenteral nutrition is associated with intestinal morphologic and functional changes in humans. J. Parenter. Enteral Nutr. 19:453-460. Coeffier, M., S. Claeyssens, B. Hecketsweiler, A. Lavoinne, P. Ducrotte, and P. Dechelotte. 2003. Enteral glutamine stimulates protein synthesis and decreases ubiquitin mRNA level in human gut mucosa. Am. J. Physiol. Gastrointest. Liver Physiol. 285:G266-273. DeMarco, V. G., N. Li, J. Thomas, C. M. West, and J. Neu. 2003. Glutamine and barrier function in cultured Caco-2 epithelial cell monolayers. J. Nutr. 133:2176-2179. Dirkzwager, A., B. Veldmana, and P. Bikker. 2005. A nutritional approach for the prevention of post weaning syndrome in piglets. Anim. Res. 54:231-236. Dritz, S. S., K. Q. Owen, R. D. Goodband, J. L. Nelssen, M. D. Tokach, M. M. Chengappa, and F. Blecha. 1996. Influence of lipopolysaccharide- induced immune challenge and diet complexity on growth performance and acute-phase protein production in segregated early-weaned pigs. J. Anim. Sci. 74:1620-1628. Dugan, M. E., and M. I. McBurney. 1995. Luminal glutamine perfusion alters endotoxin-related changes in ileal permeability of the piglet. J. Parenter. Enteral. Nutr. 19:83-87. Dugan, M. E., D. A. Knabe, and G. Wu. 1994. Glutamine and glucose metabolism in intraepithelial lymphocytes from pre- and post-weaning pigs. Comp. Biochem. Physiol. 109B:675-681. Dunsford, B. R., D. A. Knabe, and W. E. Haensly. 1989. Effect of dietary soybean meal on the microscopic anatomy of the small intestine in the early-weaned pig. J. Anim. Sci. 67:1855-1863. Fan, M. Z., B. Stoll, R. Jiang, and D. G. Burrin. 2001. Enterocyte digestive enzyme activity along the crypt-villus and longitudinal axes in the neonatal pig small intestine. J. Anim. Sci. 79:371-381. Field, R. A. 1971. Effect of castration on meat quality and quantity. J. Anim. Sci. 79:849-858. Fillmann, H., N. A. Kretzmann, B. San-Miguel, S. Llesuy, N. Marroni, J. Gonzalez-Gallego, and M. J. Tunon. 2007. Glutamine inhibits over-expression of pro-inflammatory genes and down-regulates the nuclear factor kappaB pathway in an experimental model of colitis in the rat. Toxicol. 236:217-226 Fuller, R. 1989. Probiotics in man and animals. J. Appl. Bacteriol. 55:365-378. Hamilton, P. B. 1945. Glutamine: a major constituent of free α-amino acids in animal tissues and blood plasma. J. Biol. Chem. 158:397-409. Heberer, M., R. Babst, A. Juretic, T. Gross, H. Horig, F. Harder, and G. C. Spagnoli. 1996. Role of glutamine in the immune response in critical illness. Nutr. 12(suppl):S71-S72. Holecek, M. 2002. Relation between glutamine, branched-chain amino acids, and protein metabolism. Nutr. 18:130-133. Hsu, C. B., H. J. Huang, C. H. Wang, H. T. Yen, and B. Yu. 2010. The effect of glutamine supplement on small intestinal morphology and xylose absorptive ability of weaned piglets. Afric. J. Biotechnol. 9(41):7003-7008. Janeway, C. A., P. Travers, M. Walport, and M. Shlomchik. 2005. Immunobiology: the immune system in health and disease. (6th Ed.). Garland Science, New York and London. Johnson, I. R., R. O. Ball, V. E. Baracos, and C. J. Field. 2006. Glutamine supplementation influences immune development in the newly weaned piglet. Dev. Com. Immunol. 30:1191-1202. Kew, S., S. M. Wells, P. Yaqoob, F. A. Wallace, E. A. Miles, and P. C. Calder. 1999. Dietary glutamine enhances murine T-lymphocyte responsiveness. J. Nutr. 129:1524-1531. Kirchgessner, M., and F. X. Roth. 1982. Fumaric acid as a feed additive in pig nutrition. Pig News Info. 3:259-264. Krebs, H. A. 1980. Glutamine metabolism in the animal body. In: J. Mora, and E. Palacios (Ed.). Glutamine: Metabolism, Enzymology, and Regulation. pp. 319-329. Academic Press, New York. Kusumoto, I. 2001. Industrial production of L-glutamine. J. Nutr. 131:2552S-2555S. Lacey, J. M. and D. W. Wilmore. 1990. Is glutamine a conditionally essential amino acid? Nutr. Rev. 48: 297-309. Lackeyram, D., X. Yue, and M. Z. Fan. 2001. Effects of dietary supplementation of crystalline L-glutamine on the gastrointestinal tract and whole body growth in early-weaned piglets fed corn and soybean meal based diets. J. Anim. Sci. 79(Suppl. 1):322. (Abstr.) Lalles, J. P., G. Boudry, C. Favier, N. Le Floch, I. Luron, L. Montagne, I. P. Oswald, S. Pie, C. Piel, and B. Seve. 2004. Gut function and dysfunction in young pigs: physiology. Anim. Res. 53:301-316. Lalles, J. P., P. Bosi, H. Smidt, and C. R. Stokes. 2007. Weaning-A challenge to gut physiologists. Livest. Sci. 108:82-93. Le Bacquer, O. L., C. Laboisse, and D. Darmaun. 2003. Glutamine preserves protein synthesis and paracellular permeability in Caco-2 cells submitted to “luminal fasting”. Am. J. Physiol. Gastrointest. Liver Physiol. 285:G128-136. Lee, D. N., C. F. Weng, Y. H. Cheng, T. Y. Kuo, J. F. Wu, and H. T. Yen. 2003a. Dietary glutamine supplementation enhances weaned pigs mitogen-induced lymphocyte proliferation. Asian-Aust. J. Anim. Sci. 16:1182-1187. Lee, D. N., Y. H. Cheng, F. Y. Wu, H. Sato, I. Shinzato, S. P. Cheng, and H. T. Yen. 2003b. Effect of dietary glutamine supplement on performance and intestinal morphology of weaned pigs. Asian-Aust. J. Anim. Sci. 16:1770-1776. Le Floc’h, N. L., D. Melchior, C. Obled. 2004. Modifications of protein and amino acid metabolism during inflammation and immune system activation. Liv. Prod. Sci. 87:37-45. Lessard, M., and G. J. Brisson. 1987. Effect of a lactobacillus fermentation product on growth, immune response and fecal enzyme activity in weaned pigs. Can. J. Anim. Sci. 67:509-516. Li, J., B. Langkamp-Henken, K. Suzuki, and L. H. Stahlgren. 1994. Glutamine prevents parenteral nutrition-induced increases in intestinal permeability. J. Parenter. Enter. Nutr. 18:303-307. Li, N., P. Lewis, D. Samuelson, K. Liboni, and J. Neu. 2004a. Glutamine regulates Caco-2 cell tight junction proteins. Am. J. Physiol. Gastrointest. Liver Physiol. 287:G726-G733. Li, N., K. Liboni, M. Z. Fang, D. Samuelson, P. Lewis, R. Patel, and J. Neu. 2004b. Glutamine decreases lipopolysaccharide-induced intestinal inflammation in infant rats. Am. J. Physiol. Gastrointest. Liver Physiol. 286:G914-G921. Liu, T., J. Peng, Y. Xiong, S. Zhou, and X. Cheng. 2002. Effects of dietary glutamine and glutamate supplementation on small intestinal structure, active absorption and DNA, RNA concentrations in skeletal muscle tissue of weaned piglets during d 28 to 42 of age. Asian-Aust. J. Anim. Sci. 15:238-242. Mahan, D. C., and A. J. Lepine. 1991. Effect of pig weaning weight and associated nursery feeding programs on subsequent performance to 105 kilograms body weight. J. Anim. Sci. 69:1370-1378. Malmolf, K. 1988. Amino acid in farm animal nutrition metabolism, partition and consequences of imbalance. J. Agric. Res. 18:191-193. McCracken, K. J., and D. Kelly. 1984. Effect of diet and post-weaning food intake on digestive development of early-weaned pigs. Proc. Nutr. Soc. 43: 110A (abs.). McCracken, B. A., M. E. Spurlock, M. A. Roos, F. A. Zuckermann, and H. R. Gaskins. 1999. Weaning anorexia may contribute to local inflammation in the piglet small intestine. J. Nutr. 129:613-619. National Research Council. 1998. Nutrient Requirements of Swine. (10th Rev. Ed.). National Academy Press, Washington, D. C. Neu, J. 2001. Glutamine in the fetus and critically ill low birth weight neonate: metabolism and mechanism of action. J. Nutr. 131:2585S-2589S. Neu, J., J. C. Roig, W. H. Meetze, M. Veerman, C. Carter, M. Millsaps, D. Bowling, M. J. Dallas, J. Sleasman, T. Knight, and N. Auestad. 1997. Enteral glutamine supplementation for very low birth weight infants decreases morbidity. J. Pediatr. 131:691-699. Newsholme, P. 2001. Why is L-glutamine metabolism important to cells of the immune system in health, postinjury, surgery or infection? J. Nutr. 131:2515S-2522S. Newsholme, P., J. Procopio, M. M. R. Lima, T. C. Pithon-Curi, and R. Curi. 2003. Glutamine and glutamate-their central role in cell metabolism and function. Cell Biochem. Funct. 21:1-9. O’riordain, M. G., A. DeBeaux, and K. C. H. Fearon. 1996. Effect of glutamine on immune function in the surgical patient. Nutr. 12 (suppl):S82-S84. Parimi, P. S., S. Devapatla, L. L. Gruca, S. B. Amini, R. W. Hanson and S. C. Kalhan. 2004. Effect of enteral glutamine or glycine on whole-body nitrogen kinetics in very-low-birth-weight infants. Am. J. Clin. Nutr. 79:402-409. Partanen, K. H., and Z. Mroz. 1999. Organic acids for performance enhancement in pig diets. Nutr. Res. Rev. 12:117-145. Pie’, S., J. P. Lalle’s, F. Blazy, J. Laffitte, B. Se’ve, and I. P. Oswald. 2004. Weaning is associated with an upregulation of expression of inflammatory cytokines in the intestine of piglets. J. Nutr. 134:641-647. Pluske, J. R., D. J. Hampson, and I. H. Williams. 1997. Factors influencing the structure and function of the small intestine in the weaned pig: a review. Livest. Prod. Sci. 51: 215-236. Posho, L., B. Darcy-Vrillon, F. Blachier, and P. Duee. 1994. The contribution of glucose and glutamine to energy metabolism in newborn pig enterocytes. J. Nutr. Biochem. 5:284-290. Prince, T. J., S. B. Jungst, and D. L. Kuhlers. 1983. Compensatory responses to short-term feed restriction during the growing period in swine. J. Anim. Sci. 56:846-852. Prunier, A., A. M. Mounier, and M. Hay. 2005. Effects of castration, tooth resection, or tail docking on plasma metabolites and stress hormones in young pigs. J. Anim. Sci. 83:216-222. Quastel, J. H. 1960. Intestinal absorption of sugars and amino acids. Amer. J. Clin. Nutr. 8:137-145. Ravindran, V., and E. T. Kornegay. 1993. Acidification of weaner pig diets: A review. J. Sci. Food and Agri. 62:313-322. Reeds, P. J., D. G. Burrin, B. Stoll, and F. Jahoor. 2000. Intestinal glutamate metabolism. J. Nutr. 130:978S-982S. Reeds, P. J., D. G. Burrin, B. Stoll, F. Jahoor, L. Wykes, J. Henry, and M. E. Frazer. 1997. Enteral glutamate is the preferential precursor for mucosal glutathione synthesis in the piglet. Am. J. Physiol. 273:E408-E415. Reeds, P. J., L. J. Wykes, J. E. Henry, M. E. Frazer, D. G. Burrin, and F. Jahoor. 1996. Enteral glutamate is almost completely metabolized in first pass by the gastrointestinal tract of infant pigs. Am. J. Physiol. 270:E413-E418. Rhoads, J. M., E. O. Keku, J. Quinn, J. Woosely, and J. G. Lecce. 1991. L-Glutamine stimulates jejunal sodium and chloride absorption in pig rotavirus enteritis. Gastroenterol. 100:683-691. SAS. 1999. SAS/STAT User’s Guide. Version 8.01. SAS Inst. Inc., Cary, NC. Schroder, J., E. Wardelmann, W. Winkler, F. Fandrich, E. Schweizer, and P. Schroeder. 1995. Glutamine dipeptide-supplemented parenteral nutrition reverses gut atrophy, disaccharidase enzyme activity, and absorption in rats. J. Parenter. Enteral Nutr. 19:502-506. Singleton, K. D., and P. E. Wischmeyer. 2008. Glutamine attenuates inflammation and NF-κB activation via Cullin-1 deneddylation. Biochem. Biophys. Res. Commun. 373: 445-449. Spreeuwenberg, M. A. M., J. M. A. J. Verdonk, H. R. Gaskins, and M. W. A. Verstegen. 2001. Small intestine epithelial barrier function is compromised in pigs with low feed intake at weaning. J. Nutr. 131:1520-1527. Stumvoll, M., G. Perriello, C. Meyer, and J. Gerich. 1999. Role of glutamine in human carbohydrate metabolism in kidney and other tissues. Kidn. Int. 55:778-792. Tamada, H., R. Nezu, I. Imamura, Y. Matsuo, Y. Takagi, S. Kamata, and A. Okada. 1992. The dipeptide alanyl-glutamine prevents intestinal mucosal atrophy in parenterally fed rats. J. Parenter. Enteral Nutr. 16:110-116. Thompson, S. W., B. G. McClure, and T. R. J. Tubman. 2003. A randomized, controlled trial of parenteral glutamine in ill, very low birth-weight neonates. J. Pediatr. Gastroenterol. Nutr. 37:550-553. Trinder, P. 1975. Micro-determination of xylose in plasma. Analyst 100:12-15. Valros, A. E., M. Rundgren, M. Spinka, H. Saloniemi, L. Rydhmer, and B. Algers. 2002. Nursing behaviour of sows during 5 weeks lactation and effects on piglet growth. Appl. Anim. Behav. Sci. 76:93-104. van Beers-Schreurs, H. M. G., M. J. A. Nabuurs, L. Vellenga, H. J. Kalsbeek-van der Valk, T. Wensing, and H. J. Breukink. 1998. Weaning and the weanling diet influence the villous height and crypt depth in the small intestine of pigs and alter the concentrations of short-chain fatty acids in the large intestine and blood. J. Nutr. 128:947-953. Wang, J., L. Chen, P. Li, X. Li, H. Zhou, F. Wang, D. Li, Y. Yin, and G. Wu. 2008. Gene expression is altered in piglet small intestine by weaning and dietary glutamine supplementation. J. Nutr. 138:1025-1032. Webel, D. M., B. N. Finck, D. H. Baker, and R. W. Johnson. 1997. Time course of increased plasma cytokines, cortisol, and urea nitrogen in pigs following intraperitoneal injection of lipopolysaccharide. J. Anim. Sci. 75:1514-1520. Weiss, M. D., V. DeMarco, D. M. Strauss, D. A. Samuelson, M. E. Lane, and J. Neu. 1999. Glutamine synthetase: A key enzyme for intestinal epithelial differentiation. J. Parenter. Ente. Nutr. 23:140-146. Wells, S. M., S. Kew, P. Yaqoob, F. A. Wallace, and P. C. Calder. 1999. Dietary glutamine enhances cytokine production by murine macrophages. Nutr. 15:881-884. Wilmore, D. W. 2001. The effect of glutamine supplementation in patients following elective surgery and accidental injury. J. Nutr. 131:2543S-2549S. Wu, G. 1996. Effects of concanavalin A and phorbol myristate acetate on glutamine metabolism and proliferation of porcine intestinal intraepithelial lymphocytes. Comp Biochem Physiol. 114A:363-368. Wu, G. 1998. Intestinal mucosal amino acid catabolism. J. Nutr. 128:1249-1252. Wu, G. 2009. Amino acids: metabolism, functions, and nutrition. Amino Acids 37:1-17. Wu, G., A. G. Borbolla, and D. A. Knabe. 1994. The uptake of glutamine and release of arginine, citrulline and proline by the small intestine of developing pigs. J. Nutr. 124:2437-2444. Wu, G., and D. A. Knabe. 1994. Free and protein-bound amino acids in sow’s colostrum and milk. J. Nutr. 124:415-424. Wu, G., and D. A. Knabe. 1995. Arginine synthesis in enterocytes of neonatal pigs. Am. J. Physiol. 269:R621-R629. Wu, G., D. A. Knabe, W. Yan and N. E. Flynn. 1995. Glutamine and glucose metabolism in enterocytes of the neonatal pig. Am. J. Physiol. 268:R334-R342. Wu, G., F. W. Bazer, T. A. Davis, L. A. Jaeger, G. A. Johnson, S. W. Kim, D. A. Knabe, C. J. Meininger, T. E. Spencer, and Y. L. Yin. 2007. Important roles for the arginine family of amino acids in swine nutrition and production (review article). Livest. Sci. 112:8-22. Wu, G., S. A. Meier, and D. A. Knabe. 1996. Dietary glutamine supplementation prevents jejunal atrophy in weaned pigs. J. Nutr. 126:2578-2584. Yeh, C. L., C. S. Hsu, S. L. Yeh, and W. J. Chen. 2005. Dietary glutamine supplementation modulates Th1/Th2 cytokine and interleukin-6 expressions in septic mice. Cytokine 31:329-334. Yeh, S. L., C. L. Yeh, M. T. Lin, P. N. Lo, and W. J. Chen. 2001. Effects of glutamine-supplemented total parenteral nutrition on cytokine production and T cell population in septic rats. J. Parenter. Enter. Nutr. 25:269-274. Yi, G. F., J. A. Carroll, G. L. Allee, A. M. Gaines, D. C. Kendall, J. L. Usry, Y. Toride, and S. Izuru. 2005. Effect of glutamine and spray-dried plasma on growth performance, small intestinal morphology, and immune responses of Escherichia coli K88+-challenged weaned pigs. J. Anim. Sci. 83:634-643. Yoo, S. S., C. J. Field, and M. I. McBurney. 1997. glutamine supplementation maintains intramuscular glutamine concentrations and normalizes lymphocyte function in infected early weaned pigs. J. Nutr. 127:2253-2259. Young, V. R., and A. M. Ajami. 2000. Glutamate: An amino acid of particular distinction. J. Nutr. 130:892S-900S. Yu, B., and P. W. S. Chiou. 1997. The morphological changes of intestinal mucosa in growing rabbits. Lab. Anim. 31: 254-263. Yu, I. T., J. F. Wu, P. C. Yang, C. Y. Liu, D. N. Lee, and H. T. Yen. 2002. Roles of glutamine and nucleotides in combination in growth, immune responses and FMD antibody titres of weaned pigs. Anim. Sci. 75:379-385. Zou, X. T., G. H. Zheng, X. J. Fang, and J. F. Jiang. 2006. Effects of glutamine on growth performance of weanling piglets. Czech J. Anim. Sci. 51:444-448.
摘要: 仔豬剛離乳後,常因能量攝取不足而引起小腸絨毛受損,進而影響生長性能。麩醯胺(glutamine, Gln)可提供能量給迅速分裂之細胞,如小腸上皮細胞及活化的淋巴細胞,可維護小腸的完整,故又被認為是一種條件性的必需胺基酸。在某些生理緊迫情況下,如離乳、去勢及感染時,動物對Gln之需求將會增加,但此時內源性合成的Gln往往無法符合正常需求。本研究設計一系列之離乳仔豬動物試驗(第二~五章),探討飼料中添加L-Gln對於改善離乳仔豬腸道發育、生長性能與免疫能力之效應,以供作為改善離乳仔豬育成率之飼養策略。以不同劑量(0、1%與2%)Gln添加於離乳仔豬飼糧中,顯示飼糧添加Gln具有改善仔豬十二指腸與空腸絨毛高度之趨勢;而添加Gln 1%或2%均有益於仔豬的小腸絨毛形態、對xylose的吸收能力以及生長性能。為紓緩公仔豬的去勢緊迫,於飼糧添加2% Gln探討對離乳閹公仔豬之生長性能、抗緊迫與免疫反應之影響。所有公仔豬於28日齡離乳,並於35日齡進行去勢。飼糧Gln之添加具有提高仔豬日增重之趨勢(第7-14及0-25天期間),並顯著改善飼料效率(G/F);Gln添加組可顯著降低去勢1週後的緊迫(降低血漿ACTH與cortisol濃度),也可提高豬隻免疫力如血漿IgG濃度,在LPS抗原刺激下,雖能減輕炎症反應之發燒現象,但並無法顯著調控細胞激素(cytokine)之反應。離乳瘦弱仔豬生長緩慢,體型遠比同胎仔豬瘦小,飼養期也明顯拉長,因此本論文亦探討熟化玉米粉-大豆粕為基礎之保育飼糧添加Gln或glutamate (Glu),對於離乳瘦弱仔豬生長性能之影響。飼糧添加1% Gln,雖無法於短期間(17天)改善對離乳瘦弱仔豬之生長性能,但有助於改善隨後(18-31天)之生長,並呈現代償性生長反應。然而,以glu之添加對仔豬代償性生長反應則較不明顯。最後,探討以較低劑量之Gln與有機酸(0.8%乳酸)或益生菌(0.3%,含乳酸桿菌與枯草桿菌)共同使用,對離乳仔豬生長性能與免疫反應之影響。在試驗第1週期間,添加0.6% Gln(Gln組)或Gln與乳酸共同添加(Gln+Lac組)均可顯著改善飼料效率;且Gln+Lac組可顯著提高仔豬日增重。在離乳1週時,Gln+Lac組之血漿IL-1β濃度顯著高於對照組與Gln組。但在離乳3週時,LPS之抗原刺激並不影響各處理組之血漿細胞激素反應。顯示0.6% Gln及0.8%乳酸共同添加,有助於改善仔豬離乳早期之生長性能及免疫能力。綜合以上各試驗結果,Gln之添加有益於減輕離乳仔豬小腸絨毛之萎縮、改善生長性能,並能降低仔公豬的去勢緊迫及提高免疫能力。然而,在LPS之抗原攻擊下,Gln之添加並無法顯著調控仔豬的血漿細胞激素反應。
Inadequate nutrient intake after weaning often causes damage to the intestinal villi and contributes to poor growth of weaning pigs. Glutamine (Gln) can provide energy to rapid dividing cells, such as intestinal epithelial cells and activated lymphocytes, and it is regarded as a conditionally essential amino acid. The requirement of Gln increased especially under certain physiological stresses such as weaning, castration, and infection, which can not be fulfilled by endogenous Gln synthesis. A series of experiments (Chapter 2~5) were conducted to evaluate the effects of Gln supplementation on the intestinal morphology, growth performance and immunity of weaning pigs. Different levels of dietary L-Gln (0, 1, and 2%) were supplemented to diets of weaning pigs. The results showed that Gln supplementation tended to improve the villous height in duodenum and jejunum. 1 or 2% Gln supplementation could be beneficial for small intestinal villous morphology, xylose absorptive capacity, and growth performance. Further, dietary 2% L-Gln was supplemented to weaning barrows and their performance was investigated. Results indicated Gln supplementation tended to increase barrow's ADG and improved FE (G/F). That also decreased the castration stress (decreased plasma conc. of ACTH and cortisol) and increased the immunity such as plasma IgG on d 7 post-castration, but could not modulate the plasma cytokine profile after LPS challenge. Lighter-weight weaning pigs generally take longer to reach market weight. We evaluated the effect of dietary supplementing Gln or glutamate (Glu) on the growth performance of lighter piglets postweaning. The results showed that Gln or Glu supplementation could not improve the growth performance during 0-17 days, but Gln supplementation was beneficial for the subsequent ADG during 18-31 days. Finally, lower level of Gln (0.6%) was used or composed with organic acid (0.3% lactate) or probiotics (0.3%) to evaluate the efficacy of dietary supplementation. The results showed the Gain/Feed ratio of Gln and Gln+Lac groups were improved during d 0-7, and the ADG of Gln+Lac group was also increased. The plasma IL-1β conc. of Gln+Lac group was higher than Control group and Gln group on d 7. It indicated that 0.6% Gln composed with 0.3% lactic acid will improve the growth performance and immunity of weaning pigs. In conclusion, Gln supplementation is beneficial for weaning pigs to attenuate the intestinal villous atrophy and improve growth performance. Gln also decrease the castration stress and increase the immunity of weaning barrows, however, Gln supplementation can not powerfully modulate piglet's plasma cytokine profiles after LPS challenge.
URI: http://hdl.handle.net/11455/25046
其他識別: U0005-2308201117105000
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2308201117105000
Appears in Collections:動物科學系

文件中的檔案:

取得全文請前往華藝線上圖書館

Show full item record
 
TAIR Related Article
 
Citations:


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.