Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/25068
標題: 發酵大豆粕取代魚粉對肉雞飼養效果之探討
Study of replacing fish meal with fermented soybean meal in diet on broiler growth
作者: 林優婷
Lin, Yo-Ti
關鍵字: Broiler
肉雞
Fermented soybean meal
Growth performance
發酵大豆粕
生長性能
出版社: 動物科學系所
引用: 王光輝。1996。清酒的商品常識。製酒科技專論彙編。18:213-216。 李政宏。2003。醬油製麴。食品市場資訊。92(7) : 13-15。 林禮斌。2004。蛋白水解酵素處理大豆粕於離仔豬飼糧之應用性。碩士論文。國立中興大學。 連逸韻。2006。利用二階段固態發酵模式製備發酵豆粕以去除寡醣暨過敏性蛋白質。碩士論文。國立中興大學。 曾浩洋、董啟功。1985。以Rhizopus thailandensis醱酵脫脂黃豆粉之酵素活性及生化組成變化探討。J. Chin. Agric. Chem. Soc. 23:111-118。 詹惠雯。2005。利用 Aspergillus oryzae 固態發酵處理黃豆粕以去除寡醣暨過敏性蛋白質之研究。碩士論文。國立中興大學。 蘇遠志、黃世佑。1971。微生物化學工程學。天然書社。 Almirall, M., M. Francesch, A. M. Perez-Vendrell, J. Brufau, and E. Estere-Garcia. 1995. The difference in testinal viscosity produced by barly and β-glucanase after digesta enzyme activity and ileal nutrient digestibility more in brolier chicks than in cocks. J. Nutr. 125: 947-955 Birk, Y. 1985. The Bowman-Birk inhibitor. Int J Pept Protein Res. 25 :113-131. Brenes, A., M. Smith, W. Guenter, and R. R. Marquardt. 1993. Effect of enzyme supplementation on the performance and digestive tract size of broiler chickens fed wheat and barley based diets. Poult. Sci. 72:1731–1739. Calloway, D. H., C. A. Hickey, and E. L. Murphy. 1971. Reduction of intestinal gas-forming properties of legumes by traditional and experimental food processing methods. J Food Sci. 36 : 251. Canibe, N., and B. B. Jensen. 2003. Fermented and nonfermented liquid feed to growing pigs: effect on aspects of gastrointestinal ecology and growth performance. J. Anim. Sci. 81:2019-2031. Dunsford, B. R., D. A. Knabe, and W. E. Haensly. 1989. Effect of dietary soybean meal on the microscopic anatomy of the small intestine in the early-weaned pig. J. Anim Sci 67:1855-1863. Dworkin, L. D., G. M. Levine, J. J. Farber, and N. H. Spector. 1976. Small intestinal mass of the rat is partially determined by indirect effects on intraluminal nutrition. Gastroenterology 71:626–630. Garro, S. M., G. Valdez, G. Oliver, and G. Savoy. 1998. Growth characteristics and fermentation products of Streptococcus salivarius subsp. thermophlius, Lactobacillus casei and L. fermentum in soymilk. Z Lebensm Unters Forsch. 206 : 72-75. Grieshop, C. M., C. T. Kadzere, G. M. Clapper, E. A. Flickinger, L. L. Bauer, R. L. Frazier, and G. C. Fahey. 2003. Chemical and nutritional characterisitics of United States soybeans and soybean meals. J. Agric Food Chem. 51: 7684-7691. Ibrahim, S. S., R. A. Habiba, A. A Shatta, and H. E. Embaby. 2002. Effect of soaking, germination, cooking and fermentation on anti-nutritional factors in cowpeas. Nahurung Food. 46(2): 92-95. Hall, R. J., N. Trinder, and D. I. Givens. 1973. Observation on the use of 2,4,6-trinitrobenzenesulphonic acid for the determination of available lysine in animal protein concentrates. Analyst. 98 : 673-686. Hong, K. J., C. H. Lee, and S. W. Kim. 2004. Aspergillus oryzae GB-107 fermentation improves nutritional quality of food soybeans and feed soybean meals. J. Med. Food. 4:430-435. Kiers, J. L., J. C. Meijer, M. J. R. Nout, F. M. Rombouts, M. J. A. Nabuurs, and J. van der Meulen. 2003. Effect of fermented soya beans on diarrhoea and feed efficiency in weaned piglets. J. Appl. Microb. 95:545-552. Kiers, J. L., A. E. Van Laeken, F. M. Rombouts, and M. J. Nout. 2000. In vitro digestibility of bacillus fermented soya bean. Int. J. Food Microbiol. 60:163-169. Laemmli, U. K. 1970. Cleavage of structural proteins during assembly of the head of gel electrophage T4. Nature. 227:680-685. LeBlanc, J. G., S. Aurelio, C Connes, V. Juillard, G. S. Giori, J. Piard, and F. Sesma. 2004. Reduction of non-digestible oligosaccharides in soymilk: application of engineered lactic acid bacteria that produce α-galactosidase. Genetic and Molecular Reserch. 3:432-440. Li, D. F., J. L. Nelssen, P. G. Reddy, F. Blecha, J. D. Hancock, G. L. Allee, R. D. Goodband, and R. D. Klemm. 1990. Transient hypersensitivity to soybean meal in the early-weaned pig. J. Anim. Sci. 68:1790-1799. Liu, K. S. 1999. Soybeans, chemistry, technology, and utilization. Aspen publishers,inc. Maryland. Mack, D. R., S. Michail, S. Wei, L. Mcdougall, and M. A. Hollingsworth. 1999. Probiotics inhibit enteropathogenic E. coli adherence in vitro by inducing intestinal mucin gene expression. Am. J. Physiol. 276:941-950. Marounek, M., O. Suchorska, and O. Savka. 1999. Effect of substrate and feed antibiotics on in vitro production of volatile fatty acids and methane in caecal contents of chickens. Anim. Feed Sci. Technol. 80:223–230. Maruyama, N., T. Fukuda, S. Saka, N. Inui, J. Kotoh, M. Miyagawa, M. Hayashi, M. Sawada, T. Moriyama, and S. Utsumi. 2003. Molecular and structural analysis of electrophoretic variants of soybean seed storage proteins. Phytochemistry. 64 : 701-708. Mallett, A.K., Bearne, C. A, and Rowland, I. R. 1989. The influence of incubation pH on the activity of rat and human gut flora enzymes. Journal of Applied Bacteriology 66: 433 437. Marsili, R. T., H. Ostapenko, R. E. Simmons, and D. E. Green. 1981. High performance liquid chromatographic determination of organic acids in dairy product. J. Food Sci. 46: 52-57. Mead, G. C. 2000. Prospects for competitive exclusion treatment to control Salmonellas and other food borne pathogens in poultry. Vet. 159: 111-123. Miller, B. G.., T. J. Newby, C. R. Stokes, and F. J. Bourne. 1972. Influence of diet on postweaning malabsorption and diarrhoea in the pigs. Res. Vet. Sci. 36:187-193. Parker, D. C., and R. T. McMillan. 1976. The determination of volatile fatty acids in the caecum of the conscious rabbit. Br. J. Nutr. 35: 365-371. Parsons, C. M., K. Hashimoto, K. J. Wedekind, and D. H. Baker. 1991. Soybean protein solubility in potassium hydroxide : an in vitro test of in vivo protein quality. J. Anim. Sci. 69 : 2918 - 2924. Pandey, A. 2003. Solid-state fermentation. Biochem Eng J. 13 : 81-84. Qin, G. N., E. R. Elst, M.W. Bosch, and A. F. B.Van der Poel. 1996. Thermal processing of whole soya beans: Studies on the inactivation of antinutritional factors and effects on ileal digestibility in piglets. Anim. Feed Sci. Technol. 57 : 313-324. Rahardjo, Y. S. P. 2005. Fungal mats in solid-state fermentation. PhD thesis, Wageningen university, Wageningen, The Netherlands, pp.107-134. Samanya, M., and K. Yamauchi. 2002. Histological alterations of intestinal villi in chickens fed dried Bacillus subtilis var. natto. Comp. Biochem. hysiol., Part A. 133: 95-104. Schingoethe, D. J., 1996. Balancing the amino acid needs of dairy cows. Anim. Feed Sci. Technol. 60 : 153-160. Schillinger, U., and F. K. Lucke, 1989. Antibacterial activity of Lactobacillus sake solated from meat. Appl Environ Microbiol, 55, 1901-6. Stokes, C. R., B. G. Miller, M. Bailey, A. D. Wilson, and F. J. Bourne. 1987. The immune response to dietary antigens and its influence on disease susceptibility in farm animals. Vet. Immunol. Immunop. 17:413-423. Tina, M. G., P. H. Brooks, J. D. Beal, and A. Campbell. 1999. Effect on weaner pig performance and diet microbiology of feeding a liquid diet acidified to pH4 with either lactic acid or through fermentation with Pediococcus acidilacticiz. J. Sci. Food. Agric. 79:633-640. Tina, M. G., P. H. Brooks, J. D. Beal, and A. Campbell. 1999. Effect on weaner pig performance and diet microbiology of feeding a liquid diet acidified to pH4 with either lactic acid or through fermentation with Pediococcus acidilacticiz. J. Sci. Food. Agric. 79:633-640. Uni, Z., Y. Noy, and D. Sklan. 1995. Development of the small intestine in heavy and light strain chicks before and after hatching. Brit. Poultry Sci. 36: 63-71. Van der Wielen, P. W. J. J., S. Biesterveld, S. Notermans, H. Hofstra, B, A. P. Urlings, and F. van Knapen. 2000. Role of volatile fatty acids in development of the cecal microflora in broiler chickens during growth. Appl. Environ. Microbiol. 66: 2536-2540. Vandergrift, W. L., D. A. Knabe, T. D. Tanksley, Jr. and S. A. Anderson. 1983. Digestibility of nutrients in raw and heated soyflakes for pigs. J. Anim. Sci. 57:1215-1224. Wang, Z. R., S. Y. Qiao, W. Q. Lu, and D. F. Li. 2005. Effects of enzyme supplementation on performance, nutrient digestibility, gastrointestinal morphology, and volatile fatty acid profiles in the hindgut of broilers fed wheat-baseddiets. Poult. Sci. 84: 875–881. Yeo, J., and K. Kim. 1997. Effect of feeding diets containing an antibiotic, a probiotic, or yucca extract on growth and intestinal urease activity in broiler chicks. Poult. Sci.76: 381-385.
摘要: 大豆粕與魚粉兩者皆為動物飼料中蛋白質來源之一,以魚粉作為飼料中蛋白質來源時,其成本遠高於大豆粕,因此如果能以大豆粕取代魚粉作為飼料中蛋白質來源將降低飼料之成本,但大豆粕含有多種抗營養因子若直接運用於動物之飼料中將降低其營養價值及利用率。針對大豆粕所含抗營養因子,本試驗以米麴菌(Aspergillus oryzae) 和乳酸菌(Lactobacillus casei)進行二階段發酵大豆粕可降低大豆粕抗營養因子及提高其營養價值。為考量乾燥成本及加熱負作用等缺點,擬進一步探討最適添加水量之發酵條件。利用發酵大豆粕餵飼白肉雞,由雞隻生長性能及腸道生理機能之影響來探討飼料中發酵大豆粕是否能取代魚粉。試驗以450隻白肉雞,公母各半並分成18欄(3處理×6重複×25隻)。處理組為發酵大豆粕取代魚粉用量之50%、100%及對照組。結果顯示,全期餵飼50%發酵大豆粕組之雞隻體重和飼料效率與對照組並無顯著差異,但100%發酵大豆粕組則較對照組差(P<0.05)。發酵大豆粕之處理組於21及42日齡其迴腸之絨毛高度或絨毛/腺窩比率均較對照組為低,而50%發酵大豆粕組較其他二組顯著增加21日齡雞隻迴腸及42日齡雞隻空、迴腸肌肉層之厚度(P<0.05)。50%發酵大豆粕組可提高21日齡雞隻迴腸乳酸菌數(P<0.05)及降低大腸桿菌數,並提高42日齡雞隻迴腸總VFA之含量(P<0.05)。100%發酵大豆粕組較其他兩組顯著降低42日齡雞隻盲腸之pH值。發酵大豆粕處理組皆能提高21及42日齡雞隻盲腸內容物之乳酸含量及降低糞中氨濃度(P<0.05)。綜上所述,本發酵大豆粕可取代肉雞飼糧魚粉用量之一半,並降低糞中氨濃度及改善腸道環境之效果。
In broiler feed, the source for protein is either fish meal (FM) or fermented soybean meal (FSBM). When it comes from the former, the cost is much higher than the latter does. It could lower the cost if replacing fish meal with fermented soybean meal (FSBM) in broiler diet is possible. But fermented soybean meal contains many anti-nutritional factors which decrease nutrition in quality and availability. The purpose of the study is to evaluate the possibility of replacing fish meal with fermented soybean meal in broiler diet. Two bacteria species(Aspergillus oryzae and Lactobacillus casei)were applied in solid fermentation could effectively decrease anti-nutritional factors and improve nutritional quality of soybean meals in our previous studies. However, the moisture in fermented product is still up to 60%, it could cause high cost in drying and Millard reaction in heating. In current study, we try to find a suitable condition which has the best water added for fermentation and expect lower cost. Concerning the moisture limit, both on content of available lysine and lower molecular weight peptide are considered as the judged factors, accordingly. Furthermore, the replaced fish meal from fermented soybean meal was used in diet of broiler. Four hundreds fifty broilers with equal sex were divided into 18 cages (3 treatments ×6 duplicates), which were allotted randomly into 3 groups including a control and two FSBM replaced treatments. Two treatment diets were 50 % or 100% FSBM for replaced of FM respectively. In comparison with control, the group of 50% replacement did not significantly on body weight and FCR of broilers. However, the 100% replacement was significantly lower than control group (P<0.05). In both 21 and 42 days old broilers, two treatment groups were lower either in the villus height of the ileum or in the ratio of villus to crypt as compared with control. The 50% replacement group could increase thickness of the ileum's muscular layer in 21 days old broilers and the jejunum's and ileum's muscular layer in 42 days old broilers. The 50% replacement group could increase Lactobacillus counts but decrease coliform counts in the content of ileum in 21 days old broilers (P<0.05). It also could increase concentration of total VFA in the ileal content in 42 days old broilers (P<0.05). The 100% replacement group could decrease pH value in the cecum in 42 days old broilers. Moreover, both groups of FSBM replacement diets could increased Lactobacillus counts in the content of cecum and reduce the concentration ammonia in excreta (P<0.05). Base on those results, we suggest that 50 % FSBM replaced of FM in diet is advantage.
URI: http://hdl.handle.net/11455/25068
其他識別: U0005-2508200810281000
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2508200810281000
Appears in Collections:動物科學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.