Please use this identifier to cite or link to this item:
標題: 探討飼料原料之醱酵速率及其對白肉雞之影響
Study on fermentation rate of feedstuffs and its effects in broiler
作者: 鄭筑梵
Cheng, Chu-Fan
關鍵字: Chicken

Automated pressure evaluation system
Fermentation rate
出版社: 動物科學系所
引用: 江嘉純。2000。小麥及聚木醣酶對內雞生長性狀及腸道生理之影響。碩士論文。國立中興大學。 呂政錡。2006。擠壓處理在飼料工業上的應用。飼料營養雜誌。8:18-32。 吳晴華。1997。家禽營養的重要原則。飼料營養雜誌。7:9-16。 飼料化驗分析技術手冊。1987。臺灣省畜產試驗所。台南。 Annison, E. F., K. J. Hill, and R. C. Kenworthy. 1968. Volatile fatty acids in the digestive tract of the fowl. Br. J. Nutr. 22: 207-216. Andersen, I. L., K. E. Boe, G. Foerevik, A. M. Janczak, and M. Bakken. 2000. Behavioural evaluation of methods for assessing fear responses in weaned pigs. Appl. Anim. Behav. Sci. 69: 227-240. Breves, G. and K. Stuck. 1995. Short-chain fatty acids in the hindgut. In: physiological and clinical aspects of short-chain fatty acids. Chummings, J. H., J. L. Rombeau, and T. Sakata. (Eds) pp. 73-85. New York: Cambridge University Press. Babinszky L., J. M. van der Meer, H. Boer, and L. A. den Hartog. 1990. An in vitro method for prediction of the digestible crude protein content in pig feeds. J. Sci. Food Agric. 50: 173-178. Barnes, E. M., G. C. Mead, D. A. Barnum, and E. G. Harry. 1972. The intestinal flora of the chicken in the period 2-6 weeks of age, with particular reference to the anaerobic bacteria. Br. Poult. Sci. 13: 311-326. Barnes, E. M., G. C. Mead, and N. M. Griffiths. 1973. The microbiology and sensory evaluation of pheasants hung at 5, 10, and 15℃. Br. Poult. Sci. 14: 229-240. Barnes, E. M. 1979. The intestinal microflora of poultry and game birds during life and after storage. J. Appl. Bacteriol. 46: 407-419. Bacharach, U. 1957. The aerobic breakdown of uric acid by certain pseudomonads. J. Gen. Microbiol. 17:1-11. Brenes, A., M. Smith, W. Guenter, and R. R. Marquardt. 1993. Effect of enzyme supplementation on the performance and digestive tract size of broiler chickens fed wheat- and barleybased diets. Poult. Sci. 72: 1731-1739. Bauer, E., B. A. Williams, C. Voigt, R. Mosenthin, and M. W. A. Verstegen. 2003. Impact of mammalian enzyme pretreatment on the fermentability of carbohydrate-rich feedstuffs. J. Sci. Food Agric. 83: 207-214. Bengmark, S., and B. Jeppson. 1995. Gastrointestinal surface protection and mucose reconditioning. JPEN 19(5): 410-415. Butterworth, R. F. 1998. Effects of hyperammonaemia on brain function. J. Inherit. Metab. Dis. 21: 6-20. Bovera, F., D. Simona, D. M. Carmelo, P. Giovanni, C. Serena, and N. Antonino. 2006. Comparison of rabbit caecal content and rabbit hard faeces as source of inoculum for the in vitro gas production technique. Asian- Aust. J. Anim. Sci. 19: 1649-1657. Binder, H. J. and P. Mehta. 1989. Short-chain fatty acids stimulate active sodium and chloride absorption in vitro in the rat distal colon. Gastroenterology 96: 989-996. Bovera, F., S. D’urso, S. Calabro, R. Tudisco, C. D. Meo, and A. Nizza. 2007. Use of faeces as an alternative inoculum to caecal content to study in vitro feed digestibility in domesticated ostriches (Struthio camelus var. domesticus). Br. Poul. Sci. 48: 354-362. Choct, M. and G. Annison. 1996. Increased small intestinal fermentation is partly responsible for the anti-nutritive activity of non-starch polysaccharides in chickens. Br. Poult. Sci. 37: 609-621. Cone, J. W., A. H. van Gelder, G. J. W. Visscher, and L. Qudshoom. 1996. Influence of remen fluid and substrate concentration on fermentation kinetics measured with a fully automated time related gas production apparatus. Anim. Feed Sci. Technol. 61: 113-128. Dong, G., A. Zhou, F. Yang, K. Chen, K. Wang, and D. Dao. 1996. Effect of dietary protein levels on the bacterial breakdown of protein in the large intestine, and diarrhoea in early weaned piglet. Acta. Vet. Zootech. Sin. 27: 293-302. Darcy, V. B., C. Cherbuy, M. T. Morel, M. Durand, and P. H. Duee. 1996. Short chain fatty acid and glucose metabolism in isolated pig colonocytes: modulation by NH4. Mol. Cell Biochem. 156: 145-151. Davies, Z. S., D. Mason, A. E. Brooks, G. W. Griffith, R. J. Merry, and M. K. Theodorou. 2000. An automated system for measuring gas production from forages inoculated with rumen fluid and its use in determining the effect of enzymes on grass silage. Anim. Feed Sci. Technol. 83: 205-221 Dunkley, K. D., C. S. Dunkley, N. L. Njongmeta, T. R. Callaway, M. E. Hume, L. F. Kubena, D. J. Nisbet, and S. C. Ricke. 2007. Comparison of in vitro fermentation and molecular microbial profiles of high-fiber feed substrates incubated with chicken cecal inocula. Poul. Sci. 86: 801-810. Donalson, L. M., W. K. Kim, V. I. Chalova, P. Herrera, J. L. McReynolds, V. G. Gotcheva, D. Vidanovic, C. L. Woodward, L. F. Kubena, D. J. Nisbet, and S. C. Ricke. 2008. In Vitro Fermentation Response of Laying Hen Cecal Bacteria to Combinations of Fructooligosaccharide Prebiotics with Alfalfa or a Layer Ration. Poul. Sci. 87: 1263-1275. . Englyst, H. N., S. Hay, and G. T. Macfarlane. 1987. Polysaccharide breakdown by mixed populations of human faecal bacteria. FEMS Microbiol. Ecol. 95: 163-171. Gibson, G. R., E. R. Beatry, X. Wang, and J. H. Cummings. 1995. Selective stimulation of bifidobacteria in the human colon by oligofructose and inulin. Gastroenterology 108: 975-982. Gardiner, K. R., P. J. Erwin, N. H. Anderson, J. G. Barr, M. I. Halliday, and B. J. Rowlands. 1993. Colonic bacteria and bacterial translocation in experimental colitis. Br. J. Surg. 80:512-516. Grigsby, K. N., M. S. Kerley, J. A. Paterson, and J. C. Weigel. 1992. Site and extent of nutrient digestion by steers fed a low-quality bromegrass hay diet with incremental levels of soybean hull substitution. J. Anim. Sci. 70: 1941-1949. Guo, C. F., B. A. Williams, R. P. Kwakkel, and M. W. A. Verstegen. 2003. In vitro fermentation characteristics of two mushroom species, an herb, and their polysaccharide fractions, using chicken cecal contents as inoculum. Poult. Sci. 82: 1608-1615. Goldstein, D. L. 1989. Absorption by the cecum of wild birds : is there interspecific variation. J. Exp. Zool. Suppl. 3: 103-110. Ghoddusi, H. B., M. A. Grandison, A. S. Grandison, and K. M. Tuohy. 2007. In vitro study on gas generation and prebiotic effects of some carbohydrates and their mixtures. Anaerobe 13 :193-199. Houdijk, J. 1998. Effects of non-digestible oligosaccharides in young pig diets. Ph.D. Thesis. Wageningen University, Wageningen, The Netherlands. Jung, Y. S, R. C. Anderson, T. S. Edrington, K. J. Genovese, J. A. Byrd, and T. R. Callaway. 2004. Experimental use of 2-nitropropanol for reduction of Salmonella Typhimurium in the ceca of broiler chicks. J. Food Prot. 67: 1945–1947. Jackson, A. A. 1983. Aminoacids : essential and non-essential? Lancet 1: 1034-1037. Jenkins, D. J., T. M. Wolever, G. R. Collier, A. Ocana, A. V. Rao, G. Buckley, Y. Lam, A. Mayer, and L. U. Thompson. 1987. Metabolic effects of a low-gly-cemic-index diet. Amer. J. Clin. Nutr. 46: 986-975. Kornegay, E. T., and C. R. Risley. 1996. Nutrient digestibilities of a corn-soybean meal diet as influenced by Bacillus products fed to finishing swine. J. Anim. Sci. 74: 799-805. Kwakkel, R. P., B. A. Williams, and A. F. B. Van der Poel. 1997. Effects of fine- and coarse particle diets on gizzard growth and fermentation characteristics of the caecal contents in broiler chickens. In: 11th European Symposium on Poultry Nutrition(WPSA). Faaborg, Denmark. Langout, D. J., J. B. Schutte, and J. De Jong. 1998. Interaction between nutrition, the intestinal microflora and the health status of broiler chicks. Proceeding of 10th European Poultry Conference, Isreal. pp. 425-429. Lin, H. C., and W. J Visek.. 1991. Large intestinal pH and ammonia in rats: dietary fat and protein interactions. J. Nutr. 121: 832-843. Lai, J. C. and A. J. Cooper. 1991. Neurotoxicity of ammonia and fatty acids: differential inhibition of mitochondrial dehydrogenases by ammonia and fatty acyl coenzyme A derivatives. Neurochem Res. 16: 795-803. McDougall, E. I. 1948. Studies on ruminant saliva. I. The composition and output of sheep’s saliva. Biochem. 43: 99-109. Mathers, J. C., and J. Kennard. 1993. Gastrointestinal responses to oatsconsumption in young adult and elderly rats: digestion, large bowel fermentation and crypt cell proliferation rates. Br. J. Nutr. 70: 567-584. Mathers, J. C., and E. F. Annison. 1993. Stoichiometry of polysaccharide fermentation in the large intestine, in: Samman S., Annison G. (Eds.), Dietary Fibre and Beyond-Australian Perspectives, Nutrition Society of Australia Occasional Publications. 1: 123-135 Mathew, A. G., A. L. Sutton, A. B. Scheidt, J. A. Patterson, D. T. Kelly, and K. A. Meyerholz. 1993. Effect of galactan on selected microbial populations and pH and volatile fatty acids in the ileum of the weanling pig. J. Anim. Sci. 71:1503-1509. Macfarlane, G. T., and S. Macfarlane. 1995. Proteolysis and amino acid fermentation. In: Gibson, G. R., Macfarlane, G. T. (Eds.), Human Colonic Bacteria: Role in Nutrition, Physiology, and Pathology. CRC Press, Boca Baton, FL, USA, pp. 75-100. Macfarlane, G. T., G. R. Gibson, E. Beatty, and J. H. Cummings. 1992. Estimation of short-chain fatty acid production from protein by human intestinal bacteria based on branched-chain fatty acid measurements, FEMS Microbiol. Ecol. 101: 81-88. Mead, G. C. 1997. Bacteria in gastrointestinal tract of birds. In: Mackie, R., White, B. A., Isaacson R. E., (Eds.), Gastrointestinal Microbiology, Gastrointestinal Microbes and Host Interactions. Chapman and Hall Microbiology Series. pp. 216-242. Marounek, M., O. Suchorska, and O. Savka. 1999. Effect of substrate and feed antibiotics on in vitro production of volatile fatty acids and methane in caecal contents of chickens. Anim. Feed Sci. Technol. 80: 223-30. Marounek, M., and V. Rada. 1998. Age effect on in vitro fermentation pattern and methane production in the caeca of chickens. Physiol. Res. 47: 259–63. Menke, K. H., and H. Steingass. 1988. Estimation of the energetic feed value obtained from chemical analysis and in vitro gas production using rumen fluid. Anim. Res. Dev. 28: 7-55. Ofek, I., D. Mirelman, and N. Sharon. 1977. Adherence of Escherichia coli to human mucosal cells mediated by mannose receptors. Nature 265: 623–625. Pell, A. N., and P. Schofield. 1993. Computerized Monitoring of Gas Production to Measure Forage Digestion In Vitro. J. Dairy Sci. 76: 1063-1073. Parker, D. C., and R. T. McMillian. 1976. The determination of volatile fatty acids in the caeaum of the conscious rabbit. Br. J. Nutr. 35: 365-371. Prior, R. L., D. C. Topping, and W. J. Visek. 1974. Metabolism of isolated chick small intestinal cells. Effects of ammonia and various salts. Biochemistry 13: 178-183. Pell, A. N., R. E. Pitt, P. H. Doane, and P. Schofield. 1998. The development, use and application of the gas production technique at Cornell University, USA. In : Deaville, E. R., Owen, E., Adesogen, A. T., Rymer, C., Huntington, J. A., Lawrence, T. L. J.(Eds.), In vitro techniques for measuring nutrient supply to ruminants. BSAS, Edinburgh, UK, pp. 45-54 BSAS Occ. Publ. No.22. Royall, D., T. M. S. Wolever, and K. Jeejeebhoy. 1990. Clinical Significance of colonic fermentation. Am. J. Gastroenterol. 85(10): 1307-1312. Roediger, W. E. W., and D. A. Rae. 1982. Trophic effect of short chain fatty acids on mucosal handling of ions by the defunctioned colon. Br. J. Surg. 69: 23-25. Rechkemmer, G. 2000. Beeinflussung der Darmflora durch Enährung. In DGE (Ed.) Ernährungsbericht 2000, Umschau-Verlag: Frankfurt, 2000. Svihus, B., A. K. Uhlen, and O. M. Harstad. 2005. Effect of starch granule structure, associated components and processing on nutritive value of cereal starch: A review. Anim. Feed Sci. Technol. 122: 303-320. Smits, C. H. and M. G. Annison. 1996. Non-starch polysaccharides in broiler nutrition towards a physiologically valid approach to their determination. World’s Poul. Sci. 52: 203-221. Scheppach, W. 1994. Effects of short chain fatty acids on gut morphology and function Gut suppl. 1: 35-38. Scheppach, W., M. E. Pascu, and F. Richter. 1997. Ballaststoffe, kurzkettige Fettsäuren und Kolonkarzinom Akt Ernähr Med 22: 321-326. Shrimpton, D. H. 1966. Metabolism of the intestinal microflora in birds and its possible influence on the composition of flavour precursors in their muscles. J. Appl. Bacteriol. 29: 222-230. Shim, S. B., J. M. A. J. Verdonk, W. F. Pellikaan, and M. W. A. Verstegen. 2007. Differences in microbial activities of faeces from weaned and unweaned pigs in relation to in vitro fermentation of different sources of inulin-type oligofructose and pig feed ingredients. Asian-Aust. J. Anim. Sci. 20(9): 1444-1452. Saengkerdsub, S., W. K. Kim, C. A. Robin, J. N. David, and C. R. Steven. 2006. Effect of nitrocompound and feedstuffs on in vitro methane production in chicken cecal contents and rumen fluid. Anaerobe 12: 85-92. Theodorou, M. K., B. A. William, M. S. Dhanoa, A. B. McAilan, and I. France. 1994. A new gas production method using a pressure transducer to determine the fermentation kinetics of ruminant feeds. Anim. Feed Sci. Technol. 48: 185-197. Topping, D. L. and P. M. Clifton. 2001. Short-chain fatty acids and human colonic function : roles os resistant starch and nonstarch polysaccharides. Physiol. Rev. 81: 1031-1064. Virkki, L., L. Johansson, M. Ylinen, S. Maunu, and P. Ekholm. 2005. Structural characterization of water-insoluble nonstarchy polysaccharides of oats and barley. Carbohydrate Polymers 59: 357-366. Van der Klis, J. D., A. V. Voorst, and C. V. Cruyningen. 1993. Effect of a soluble polysaccharide (Carboxymethyl cellulose) on the physico-chemical conditions in the gastrointestinal tract of broilers. Br. Poult. Sci. 34: 971-983. Van der Wielen, P. W. J., J. S. Biesterveld, S. Notermans, H. Hofstra, B. A. P. Urlings, and F. Van Knapen. 2000. Role of volatile fatty acids in development of the cecal microflora in broiler chicken during growth. Appl. Environ. Microbiol. 66(6): 2536-2540. Van der Wielen, P. W., S. Biesterveld, L. J. A. Lipman, and F. van Knapen. 2001. Inhibition of a glucose-limited sequencing fed-batch culture of Salmonella enterica Serovar Enteritidis by volatile fatty representative of the ceca of broiler chickens. Appl. Environ. Microbiol. 67: 1979-1982. Vince, A., M. Killingley, and O. M. Wrong. 1978. Effect of lactulose on ammonia production in a fecal incubation system. Gastroenterology 74: 544-549. Visek, W. J. 1984. Ammonia: its effects on biological systems, metabolic hormones, and reproduction. J. Dairy Sci. 67: 481-498 Visek, W. J. 1978. Diet and cell growth modulation by ammonia. Am. J. Clin. Nutr. 31 Suppl. 10: S216-S220. Voigt, C., B. A. Williams., M. Verstegen, and R. Mosenthin. 1998. Fermentation characteristics of carbohydrate-rich feedstuffs, using faecal inocula from unweaned piglets. In:Proceedings of the British Society of Animal Science, Scarborough, UK, p.166. Weatherburn, M. W. 1967. Phenol-Hypochlorite reaction for determination of ammonia. Anal. chem. 39(8): 971-974. Williams, B. A., M. W. Bosch, H. Boer, M. W. A. Verstegen, and S. Tamminga. 2005. An in vitro batch culture method to assess potential fermentability of feed ingredients for monogastric diets. Anim. Feed Sci. Technol. 123-124: 445-462. Wolin, M. J., T. L. Miller, and C. S. Stewart. 1997. Microbe–microbe interactions. In: Hobson PN, Stewart CS, editors. The rumen microbial ecosystem. New York: Blackie Academic & Professional. p. 467-491. Wang, J. F., Y. H. Zhu, D. F. Li, Z. Wang, and B. B. Jensen. 2004. In vitro fermentation of various fiber and starch sources by pig fecal inocula. J. Anim. Sci. 82: 2615-2622. Yang, Y., P. A. Iji, A. Kocher, E. Thomson, L. L. Mikkelsen, and M. Choct. 2008. Effects of mannanoligosaccharide in broiler chicken diets on growth performance, energy utilisation, nutrient digestibility and intestinal microflora. Br. Poul. Sci. 49: 186-194. Zhu, X. Y., T. Zhong, Y. Pandya, and R. Joerger. 2002. 16S rRNA-based analysis of microbiota from the cecum of broiler chickens. Appl. Environ. Microbiol. 68: 124-137.
摘要: 本研究以不同飼料原料為基質,新鮮之雞隻排泄物作為接種物,使用in vitro體外氣體生成系統,進行體外醱酵模擬試驗,比較不同飼料原料醱酵後產生之氣體生成量、動力學參數、終產物(揮發性脂肪酸及氨)之生成量及有機質消失率,進一步評估不同醱酵速率之穀物飼糧對白肉雞之影響。試驗以18種飼料原料,包括穀物(玉米、脫殼大麥、米、小麥及樹薯)、加工副產物(小麥麩皮及粉頭)、加工原料(乾爆玉米、擠壓玉米及烘烤馬鈴薯)、蛋白質來源 (大豆粕、菜籽粕、醱酵豆粕、玉米筋粉、魚粉及肉骨粉)及可溶物乾燥酒糟(玉米及高粱)進行體外氣體生成試驗。結果顯示,加工原料及米之醱酵速率較穀物及加工副產物為快,而蛋白質來源及可溶物乾燥酒糟最慢;供試各原料之總氣體生成量、乾物質消失率與其揮發性脂肪酸產生量三者呈一致之趨勢,氨濃度則與揮發性脂肪酸及氣體生成量呈現相反之趨勢,蛋白質原料顯著比其他原料產生較高量之氨。原料體外消化後之殘渣,其氣體生成量較原料為低,幾乎所有原料之氣體生成量皆降低,只有樹薯(Cassava)呈現與消化水解前相同之產氣量,加工原料經體外消化水解後之產氣量比穀物原料低,與未經消化水解之原料的結果相反,而蛋白質原料經消化水解後之氣體生成量較原料更低。根據體外氣體生成試驗之結果,選擇兩種不同醱酵速率之穀物原料(脫殼大麥及小麥),配製等蛋白、等能量之試驗飼糧,並以玉米飼糧為對照飼糧,進行雞隻飼養試驗,試驗結果顯示,醱酵速率快之脫殼大麥飼糧組之飼料轉換率與玉米飼糧無差異,但顯著優於醱酵速率慢之小麥飼糧組 (p<0.05);微生物組成方面,小麥組在21日齡降低盲腸厭氧菌及結直腸好氧菌之菌數(p<0.05) ;小麥飼糧組之盲腸pH值及氨含量,顯著低於脫殼大麥飼糧組與玉米飼糧組 (p<0.05)。綜上所述,以體外氣體生成系統配合動力學參數及終產物之分析,可評估不同飼料原料於雞隻之體外氣體生成模式,而脫殼大麥及小麥於in vitro醱酵過程雖有差異,且確實改變雞隻腸道環境,但雞隻本身生長會受到諸多因素之影響,因此無法確定原料之醱酵速率是否為造成生長試驗差異之主要因素,故仍需更深入之試驗以進行探討。
The purpose of this study was to investigate the in vitro fermentation patterns of different feedstuffs by automated pressure evaluation system (APES) using chicken fecal inocula, kinetic parameters, end-productions and dry matter loss(%) to evaluate the fermentation characteristics of feed ingredients effects in broiler. Eighteen feedstuffs included cereals (corn, barley, rice, wheat, and cassava), cereal byproducts (wheat bran, and wheat middling), processed feedstuffs (popping corn, extrusion corn, and roasted potato), protein sources (SBM, rapeseed meal, fermented soybean meal, corn gluten meal, fish meal, and meat bone meal,) and distiller's dried grains soluble (DDGS) (corn and milo) were used to evaluate the fermentation characteristics. The results indicated the processed feedstuffs and rice were fermented more rapidly than cereals and cereal byproducts , the protein sources and DDGS are the least. The total gas volume, dry matter losses and SCFA showed similar trend in test samples. But the ammonia concentration trend was opposite. After in vitro digestion, the gas productions of all feedstuffs decreased except for cassava. The gas production of processed feedstuffs was lower than cereals and protein sources lower than without in vitro digestion. According to the in vitro results, we chose two feedstuffs with different fermentation rate, dehulled barley (fast) and wheat (slowly), and the corn diet as the control for in vivo feeding experiment. The data suggested the feed conversion ratio (feed / gain, FCR) of dehulled barley and corn diet were better than wheat diet (1.73, 1.70 verse 1.81). The wheat diet decreased the anaerobic bacteria count in caecal and aerobic bacteria count in colon at 21day. In ammonia concentration and pH value, the wheat diet was lowest. In conclusion, the APES is to go with kinetic parameters and end-productions analysis could predict in vitro fermentation patterns of different feedstuffs. Although in vitro gas fermentation were different between dehulled barley and wheat and the intestine condition accurately changed, the growth of broiler is involved in many factors. We are not sure that fermentation rate is a major factor in broiler growth. More experiments are necessary for confirmation of this hypothesis.
其他識別: U0005-2508200813552900
Appears in Collections:動物科學系



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.