Please use this identifier to cite or link to this item:
標題: 於涼與熱季餵飼芻料之種類對肉用山羊瘤胃內熱產生之影響
The effect of feeding different forages during cool and hot seasons on heat production in rumen of meat goats
作者: 周柏文
Chou, Po-Wen
關鍵字: Cool season
Hot season
Heat production
出版社: 動物科學系所
引用: 宋永義。2006。新編乳牛學。第517頁。華香園出版社。台北。 許福星、成游貴及李美珠。1994。芻料作物生產及利用。台灣省畜產試驗所。台北。 顏宏達。1992。動物營養學。華香園出版社。台北市。 A.O.A.C.,1980. Official Methods of Analysis (13th Ed.). Association of Official Analytical Chemists. Washington, D. C. Armstrong, D. G., and K. L. Blaxter. 1957. The heat increment of steam-volatile fatty acids in fasting sheep. Brit. J. Nutr. 11: 247−271. Azim, A., A. G. Khan, J. Ahmad, M. Ayaz, and I. H. Mirza. 2002. Nutritional evaluation of fodder tree leaves with goats. Asian–Australasian J. Anim. Sci. 15: 34-37. Bais, B., G. R. Purohit, R. K. Dhuria, and U. Pannu. 2002. Nutritive value of Sares and Neems leaves in Marwari goats. Indian J. Anim. Nutr. 19: 266-168. Baldwin, B. R., N. E. Forsberg, and C. Y. Hu. 1985. Potential for altering energy partition in the lactating cow. J. Dairy Sci. 68:3394−3402. Baldwin, R. L., N. E. Smith, J. Taylor, and M. Sharp. 1980. Manipulating metabolic parameters to improve growth rate and milk secretion. J. Anim. Sci. 51:1416−1428. Bamikole, M. A., O.J. Babayemi, O.M. Arigbebe, and U. Ikhatua. 2003. Nutritive value of Ficus religiosa in West African dwarf goats. Anim. Feed Sci. Technol. 105:71-79. Bartley, E. E., A. D. Davidovich, G. W. Barr, G. W. Griffel, A. D. Dayton, C. W. Deyoe, and R. M. Bechtle. 1976. Ammonia Toxicity in Cattle. I. Rumen and Blood Changes Associated with Toxicity and Treatment Methods. J. Amin. Sci. 43:835-841. Bath, I. H., and J. A. F. Rook. 1963. The evaluation of cattle foods and diets in terms of the ruminal concentration of volatile fatty acids. I. The effects of level of intake, frequency of feeding, the ratio of hay to concentrates in the diet, and of supplementary feeds. J. Agric. Sci. 61:341-346. Belewu, M. A., and A. A. Ademilola. 2002. Digestibility response of West African dwarf goat to mushroom(Volvariella volvacea) treated cotton waste. Moor J. Agric. Res. 3:83-86. Berman, A. 2005. Estimates of heat stress relief needs for Holstein dairy cows J. Anim. Sci. 83:1377–1384. Bond, J., and R. E. McDowell. 1972. Reproductive performance and physiological responses of beef females as affected by a prolonged high environmental temperature. J. Anim. Sci. 35:820-827. Briggs, P. K., J. P. Hogan, and R. L. Reid. 1957. The effect of volatile fatty acids, lactic acid and ammonia on rumen PH in sheep. Aust. J. Agr. Res. 8: 674-682. Brody, S. 1945. Bioenergetics and growth. Reinhold Publ. Corp., New York, NY. Brokken, R. F. 1971. Formulating beef rations with varying levels of heat increment. J. Anim. Sci. 32:692−703. Collier, R. J. 1985. Nutritional, metabolic and environmental aspects of lactation. 1st Ed. p. p. 80-128. Iowa state university press, Iowa. Coppock, C. E., W. P. Flatt, L. A. Moore, and W. E. Stewart. 1964. Effect of hay to grain ratio on utilization of metabolizable energy for milk production by dairy cows. J. Dairy Sci. 47: 1330−1338. Crater, A. R., and Perry S. Barboza. 2007. The rumen in winter: cold shocks in naturally feeding muskoxen. J. mammal. 88:625-631. Crater, A. R., Perry S. Barboza, and Robert J. Forster. 2007. Regulation of rumen fermentation during seasonal fluctuations in food intake of muskoxen. Comp. biochem. Physiol. 146:233-241. Dutta, T. K., P. K. Sahoo, S. B. N. Rao, S. Nawab, and U. B. Chaudhary. 2002. Chaudahry, Partial replacement of concentrate mixture with Leucaena leucocephala leaves in pelleted feed of goats. Indian J. Anim. Sci. 72: 820. Elseed, A. M. A. F., A. E. Amin, A. A. Kadhiga Ati, J. Sekine, M. Hishinuma, and K. Hamana. 2002. Nutritive evaluation of some fodder tree species during the dry season in Central Sudan. Asian–Australasian J. Anim. Sci. 15: 844-850. Emmanuel, B., M. J. Lawlor, and D. M. Mcalesse. 1970. The effect of phosphate and carbonate-bicarbonate supplements on the rumen buffering systems of sheep. Br. J. Nutr. 24: 653-660. Hahn, G. L. 1994. Environmental requirements of farm animals. In: J. F. Griffiths (Ed.) Handbook of Agricultural Meteorology. P 220. Oxford University Press, New York. Hales, J.R.S. 1984. Thermal Physiology, Raven Press, New York, NY. Harfood, C. G. 1981. Anatomy, physiology and microbiology of ruminant digestive tract. In: W. W. Christie(Ed.). Lipid matabolism in ruminant animal. P. P. 6-7, 14. Pergamon press, Oxford. Hespell, R. B., and M. P. Bryant. 1979. Efficiency of rumen microbial growth: Influence of some theoretical and experimental factors on Y ATP. J. Anim. Sci. 49: 1640-1659. Hetzel, D.J.S., Bennett, I.L., Holmes, C.R., Encarnacae, R.O. and Mackinnon, M.J.1987. Description and evaluation of a telemetry system for measuring body temperature in cattle. J. Agric. Sci. Comb. 110:233-238. Holmes, C. W., and G. H. Wilson. 1984. Milk production from pasture. pp. 88-277. Butterworths press, Wellington, New Zealand. Holter, J. B., J. W. West, M. L. McGilliard, and A. N. Pells. 1996. Predicting ad libitum dry matter intake and yields of Jersey cows. J. Dairy Sci. 79:912-921. Ingalls, J. R., J. W. Thomas, M. B. Tesar and D. L. Carpenter. 1966. Relations between ad libitum intake of several forage species and gut fill. J. Anim. Sci. 49:283-289. Johnson, H. D., A. C. Ragsdale, I. L. Berry, and M. D. Shanklin. 1963. Temperature-humidity effects including influence of acclimation in feed and water consumption of Holstein cattle. Univ. of Missouri Res. Bull. No. 846. Johnson, H. D., and W.J. Vanjonack, 1976. Effects of environmental and other stressors on blood hormone patterns in lactating animals. J. Dairy Sci. 59:1603-1617. Kabuga, J.D., and K. Sarpong. 1991. Influence of weather conditions on milk production and rectal temperature of Holsteins fed two levels of concentrate. Int. J. Biometeorol. 34:226-230. Kibler, H. H. and S. Brody. 1950. Influence of temperature, 5° to 95°F, on evaporative cooling from the respiratory and exterior body surfaces in Jersey and Holstein cows. Missouri Agric. Exp. Sta. Bull. No. 461. Columbia. Kim, C. H., C. S. Ra, B. D. Goh, J. I. Pak, G. Z. Lin and, J. S. Shin. 2002. Effects of feeding level of extruded poultry manure on growth performance nutrient digestibility and body composition in Korean native goats. J. Anim. Sci. Technol. 44: 783-792. Kumar, G.V.P., and S. Ashwani. 1998. Phenotypic alterations in goats fed subabul(Leucaena leucocephala). Indian J. Anim. Sci. 68: 402-404. Kurihara, M. 1996. Energy requirements and feed of dairy cows under high temperature conditions. Japan Agric. Rsch. Quarterly. 30:107−112. Lane, G. T. 1968. In: D. C. Church( Ed.). Digestive physiology and nutrition of ruminants. Vol I-Digestive physiology. 2nd Ed. P. 282. Oxford press, Oregon. Leonard, A. M., K.L. John, F. H. Harold, and G. W. Richard. 1979. Animal Nutrition. Seventh Edition. P 186-219. McGraw-Hill Book Company, New York. Luther, R., and A. Trenkle. 1967. Ruminal acid production in lambs fed pelleted diets containing different levels of concentrate. J. Amin. Sci. 26: 590-594. Malau-Aduli, B. S., L. Eduvie, C. Lakpini, and A. E. O. Malau-Aduli. 2003. Chemical compositions, feed intakes and digestibilities of crop residue based rations in non-lactating Red Sokoto goats in the subhumid zone of Nigeria. J. Anim. Sci. 74: 89-94. Maloiy, G.. M. O., T. I. Kanui, P. K. Towett, S. N. Wambugu, J. O. Miaron, and M. M. Wanyoike. 2008. Effects of dehydration and heat stress on food intake and dry matter digestibility in East African ruminants. Comparative Biochemistry and Physiology, Part A 151:185–190. Maust, L. E., R. E. Mcdowell, and N. W. Hooven. 1972. Effect of summer weather on performance of Holstein cows in three stages of lactation. J. Diary Sci. 55:1133-1139. McDonald, P., R. A. Edwards, and J. F. F. Greenhalgh. 1983. Animal nutrition. 3rd Ed. p. p. 121-145. McDowell, R. E., and J. R. Weldy. 1960. Water exchange of cattle under heat stress. Proc. Third Intl. Biometerological Cong., London. pp 414−424. Pergamon Press, New York. Meffeja, F., R. T. Fomunyam, and S. E. Mbomi. 2000. Performance of sheep and goats fed tropical herbage supplemented with maize and cassava by-products. Bull. Anim. Health Prod. Afr. 48:155-160. Mehrez, A. Z., E. R. Orskov, and I. McDonald. 1977. Rates of rumen fermentation in relation to ammonia concentration. Br. J. Nutr. 38: 437-447. Mendel, V. E., S. R. Morrison, T. E. Bond, and G. P. Lofgreen. 1971. Duration of heat exposure and performance of beef cattle. J. Anim. Sci. 33:850-854. Moe, P. W. 1981. Energy metabolism of dairy cattle. J. Dairy Sci. 64:1120−1139. Morales, A. R., M. A. Galina, S. Jimenez, and G.F.W. Haenlein. 2000. Improvement of biosustainability of a goat feeding system with key supplementation. Small Rumin. Res. 35: 97-105. Morrison, S. R., and G. P. Lofgreen. 1979. Beef cattle response to air temperature. Trans. Am. Soc. Agric. Eng. 22:861-862. Mpairwe, D. R., D. Muletikka, and E. Tsumbira. 2003. Utilisation of Gliricidia sepium and maize bran or their mixtures with Leucaena leucocephala as supplement to growing indigenous goats(Mubende type) fed elephant grass(Pennisetum purpureum). J. Anim. Vet. Adv. 2: 202-208. Mullen, P. A. 1973. Rumen liquor PH, osmolality and volatile fatty acid changes in calves fed intensively on barley with hay added. Brit. Vet. J. 129: 267-276. NRC. 1981. Effect of Environment on Nutrient Requirements of Domestic Animals. National Academy Press, Washington, DC. O’Kelly, J. C. 1987. Influence of dietary fat on some metabolic responses of cattle to hyperthermia induced by heat exposure. Comp. Biochem. Physiol. 87A:677−682. Purwanto, B. P., Y. Abo, R. Sakamoto, F. Furumoto, and S. Yamamoto. 1990. Diurnal patterns of heat production and heart rate under thermoneutral conditions in Holstein Friesian cows differing in milk production. J. Agric. Sci. (Camb.) 114: 139−142. Rajendiran, A. S., and R. Kardivel. 2002. The nutritive value of Casuarina leaves(cladode) for goats. Indian J. Anim. Nutr. 19: 18-24. Reed, J.J., A. L. Gelvin, G. P. Lardy, M. L. Bauer, and J. S. Caton. 2006. Effect of creep feed supplementation and season on intake, microbial protein synthesis and efficiency, ruminal fermentation, digestion, and performance in nursing calves grazing native range in southeastern North Dakota. J. Anim. Sci 84:411-423. Reed, J. J., M. R. O’Neil, G. P. Lardy, K. A. Vonnahme, L. P. Reynolds, and J. S. Caton. 2007. Effect of undegradable intake protein supplementation on intake, digestion, microbial efficiency, in situ disappearance, and plasma hormones and metabolites in steers fed low-quality grass hay. J. Anim. Sci 85:1092-1101. Reid, R. L., J. P. Hogan, and P. K. Briggs. 1957. The effect of diet on individual volatile fatty acids in the rumen of sheep, with partcular reference to the effect of low rumen PH and adaptation on high starch diets. Aust. J. Agr. Res. 6: 697-710. Reynolds, C. K., H. F. Tyrrell, and P. J. Reynolds. 1991. Effects of diet forage-to-concentrate ratio and intake on energy metabolism in growing beef heifers: Whole body energy and nitrogen balance and visceral heat production. J. Nutr. 121: 994−1003. Rumsey, T. S., P. A. Putnam, J. Bond, and R. R. Oltjen. 1970. Influence of level and type of diet and VFA, respiratory rate and EKG patterns of steers. J. Anim. Sci. 31: 608-616. Satter, L. D., and L. L. Slyter. 1974. Effect of amimonia concentration of rumen microbial protein production in vitro. Br. J. Nutr. 32: 199-208. Shuichi, O., I. Tahata, H. Kobayashi, and T. Ami. 1977. Volatile fatty acids production in the rumen of young heifers given diets containing a large proportion of concentrate. Jap. J. Zootech. Sci. 48 (10):554-562. Smith, C. H, P. C. Lubout, and K. A. Ramsay, 1986. Studies with indigenous smallstock. I:Reproductive and preweaning performance of veld goats and improved Boer goats. S. Afr. Soc. Anim. Sci. Congress. 1~19.Thompson,D. 1994. Boer goat: Is the sky the limit? Or will the sky fall in. J. Dairy goat. P17~21. Thompson, G. E. 1973. Review of the progress of dairy science: Climatic physiology of cattle. J. Dairy Res. 40:441- 473. Titi, H. H. 2003. Replacing soybean meal with sunflower meal with or without fibrolytic enzymes in fattening diets of goat kids. Small Rumin. Res. 48: 45-50. Urbani, O.N., and O.O. Tewe. 2001. The nutritive value of some tree/shrub leaves as feed for goats. Trop. Sci. 41:13-15. Wallace, R. J., R. Onodera, and M. A. Cotta. 1997. Metabolism of nitrogen-containing compounds. Pages 283–328 in The Rumen Microbial Ecosystem. 2nd ed. P. N. Hobson and C. S. Stewart, ed. Chapman & Hall, London, UK. Walod, D.R., R.W. Miller, M.Okamoto and L.A. Moor. 1965. Ruminant utilization of silage in relation to hay, pelletes, and hay plus grain. I. composition, digestion, nitrogen balance, intake, and growth. J. Dairy Sci. 48:910-916. Wegner, T. N., G. M. Ward, and L. E. Washburg. 1955. A time study of the relative concentrations of fatty acids occurring in the rumen of cattle on different rations. J. Anim. Sci. 36:218-224. West, J. W. 1999. Nutritional Strategies for Managing the Heat-Stressed Dairy Cow. J. Anim. Sci. Vol. 77, Suppl. 2/J. Dairy Sci. Vol. 82, Suppl. 2/1999. Whitelaw, F. G., J. Hyldgaard-Jensen, R. S. Reid, and M. G. kay. 1970. Volatile fatty acid production in the rumen of cattle give an all concentrate doet. Br. J. Nutr. 24: 179-185. Yousef, M. K. 1985. Stress Physiology in Livestock: Volume I Basic Principles. CRC Press, Boca Raton, FL. Yousef, M. K., and H. D. Johnson. 1966. Calorigenesis of dairy cattle as influenced by thyroxine and environmental temperature. J. Anim. Sci. 25:150-156.
摘要: 本試驗之目的是利用瘤胃醱酵時所產生之溫度變化,建立估算各種芻料於瘤胃內熱產生值之方法,並了解台灣氣候環境對反芻動物瘤胃性狀之影響。試驗一、測量肉用山羊瘤胃內容物之比熱容積,於屠宰時收集2肉用山羊瘤胃液5公斤以供分析。測得羊之瘤胃液比熱 (specific heat )為0.969 ± 0.004cal/g℃。試驗二、於涼季使用2頭瘤胃內裝置溫度紀錄器之台灣肉用山羊進行試驗。將3種芻料即百慕達乾草、玉米青貯料及稻草,每次以2種芻料餵予2頭羊成2 × 2拉丁方格,使用3個拉丁方格以致每種芻料重複2次,將每個拉丁方格單位分為前後2期,前期僅餵予芻料後期餵予添加佔總日糧乾物量50%之精料。試驗三、於熱季使用4頭瘤胃內裝置溫度紀錄器之台灣肉用山羊進行試驗。將4種芻料分別餵予4頭羊成4 × 4拉丁方格,將4種芻料即苜蓿粒、百慕達乾草、玉米青貯料及盤固乾草分別餵予4頭羊成4 × 4拉丁方格,將每個拉丁方格單位分為前後2期,前期僅餵予芻料後期餵予添加佔總日糧乾物量50%之精料。瘤胃內熱產生之估算為:瘤胃內容物之重量(g)× 瘤胃內容物之比熱(cal/g℃)× 採食前後之瘤胃溫度差(℃)= 瘤胃內熱產生(cal)。於涼季,百慕達乾草、玉米青貯料及稻草桿等芻料之瘤胃內熱產生分別為7.95、10.8及30.0 Kcal/kgDM,各佔該日糧總能0.18、0.27及0.59%,於日糧含50%精料下測得該芻料日糧瘤胃內熱產生分別為3.40、4.47及7.91 Kcal/kgDM,各佔該日糧總能0.08、0.11及0.19%。於熱季,苜蓿粒、百慕達乾草、玉米青貯料及盤固乾草等芻料之瘤胃內熱產生分別為12.2、7.82、17.5及10.4 Kcal/kgDM,各佔該日糧總能0.16、0.18、0.35及0.27%,於日糧含50%精料下測得該芻料日糧瘤胃內熱產生分別為6.30、4.77、5.46及8.93 Kcal/kgDM,各佔該日糧總能0.11、0.10、0.13及0.17%。台灣肉用山羊不論於涼或熱季,若其飼糧含50%精料皆可有效降低該日糧所致瘤胃內熱產生。於涼季,瘤胃內熱產生分別與瘤胃溫度、直腸溫度、芻料採食量、芻料乾物質採食量、飲水量及總水份消耗量等之間呈顯著之負相關(P<0.05),又分別與環境溫度及環境溫濕度指數等之間呈正相關之趨勢(P<0.1)。於熱季,瘤胃內熱產生分別與瘤胃溫度、直腸溫度、芻料採食量及芻料乾物質採食量等之間呈顯著之負相關(P<0.05)。熱季羊隻在熱緊迫(THI>72)之狀態下,受試羊之採食量減少。由以上結果得知飼糧於瘤胃內熱產生值之高低主要受芻料本質及精料添加之影響。羊隻於熱季會以減少採食量、增加飲水量及改變瘤胃內醱酵路徑等方法降低體熱之產生以因應熱緊迫。
The purpose of this experiment was to establish a way to estimate ruminal heat production via measuring rumen temperature changed by fermentation under the effect of weather condition such as cool and hot seasons in Taiwan on rumen characteristics. Experiment 1 measured the specific heat capacity of rumen content in meat goats. Five kg rumen content was collected from 2 goats after being sacrificed. The specific heat capacity of rumen content measured was 0.9690.004 cal/g C. Experiment 2 included 3 22 Latin squares with 3 forages, i. e., burmuda hay, corn silage and rice straw used during cool seasons. In each Latin squares, 2 of the 3 forages were allotted to 2 Taiwan meat goats. Experiment 3 was conducted during hot seasons according to a 44 Latin square design using 4 Taiwan meat goats and 4 forage, i. e., alfalfa pellet, burmuda hay, corn silage and pangola hay. Both of experiment 2 and 3, each cell or experimental unit in a Latin square was divided into 2 periods, each for 1 wk, and the goat were fed with the designated forage only during the first period and fed with 50 % forage and 50 % concentrate on dry matter basis during the second period. Rumen heat production was calculated by total mass of rumen content (g) rumen specific heat (cal/g C) rumen temperature altered (C). During cool season, the rumen heat production and the percentage of rumen heat production accounting for total gross energy by feeding either burmuda hay, corn silage or rice straw only were 7.95, 10.8, 30.0 Kcal/kg DM and 0.18, 0.27, 0.59 %, respectively, and the rumen heat production and the percentage of rumen heat production accounting for total gross energy by feeding 50 % either burmuda hay, corn silage or rice straw along with 50 % concentrate were 3.40, 4.47, 7.91 Kcal/kg DM and 0.08, 0.11 and 0.19 %, respectively. During hot season, the rumen heat production and the percentage of rumen heat production accounting for total gross energy by feeding either alfalfa pellet, burmuda hay, corn silage or pangola hay only were 12.2, 7.82, 17.5, 10.4 Kcal/kg DM and 0.16, 0.18, 0.35 and 0.27 %, respectively, and the rumen heat production and the percentage of rumen heat production accounting for total gross energy by feeding 50 % either alfalfa pellet, burmuda hay, corn silage or pangola hay along with 50 % concentrate were 6.30, 4.77, 5.46, 8.93 Kcal/kg DM and 0.11, 0.10, 0.13 and 0.17, respectively. Goat fed with forage accompanying concentrate might result in reduced rumen heat production in both of cool and hot seasons. During cool season, production was negatively correlating to rumen temperature, rectal temperature, forage intake, forage dry matter intake, water intake and total water consumption whereas tended to be positively correlating to ambient temperature and temperature humidity index. During hot season, rumen heat production was negatively correlating to rumen temperature, rectal temperature, forage intake and forage dry matter intake. Feed intake of the goats was decreased by heat stress. In conclusion, the extent of rumen heat production is affected by the nature of forages fed whether concentrate fed along with or not. During hot season, goats may get along with heat stress through reducing feed intake, increasing water intake, and altering the pathway of ruminal fermentation.
其他識別: U0005-0102201020364200
Appears in Collections:動物科學系



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.