Please use this identifier to cite or link to this item:
DC FieldValueLanguage
dc.contributorChu-Li Zhangen_US
dc.contributorChuen-Fang Lien_US
dc.contributor.advisorYang-Kwang Fanen_US
dc.contributor.authorAnh, Nguyen Nhaten_US
dc.identifier.citation6. REFERENCES Allen, J. D. and J. M. Gawthorne. 1987. Involvement of the solid phase of rumen digesta in the interaction between copper, molybdenum and sulphur in sheep. Br. J. Nutr. 58:265. AOAC, 2005. Official Methods of Analysis, 15th. Association of Official Analytical Chemists, Arlington, Virginia. Aoyagi, S., D. H. Baker and K. J. Wedekind. 1993. Estimates of copper bioavailability from liver of different animal species and from feed ingredients derived from plants and animals. Poult. Sci. 72:1746-1755. Aoyagi, S., K. M. Hiney and D. H. Baker. 1995. Estimates of zinc and iron bioavailability in pork liver and the effect of sex of pig on the bioavailability of copper in pork liver fed to male and female chicks. J. Anim. Sci. 73:793-798. Araya, M., M. Gonzalez, M. Olivares and R. Uauy. 2002. Biological effects of chronic copper exposure. Pp. 385-396 in Handbook of Copper Pharmacology and Toxicology, E. J. Massaro, ed. Totowa, NJ: Humana Press. ATSDR (Agency for Toxic Substances and Disease Registry). 2002. Toxicological profile for copper. Atlanta, GA: U.S. Department of Health and Human Services, Public Health Service. Available at http:// Accessed March 23, 2005. Baker, D. H. and G. L. Czarnecki-Maulden. 1987. Pharmacologic role of cysteine in ameliorating or exacerbating mineral toxicities. J. Nutr. 117:1003-1010. Baker, D. H., J. Odle, M. A. Funk and T. M. Wieland. 1991. Bioavailability of copper in cupric oxide, cuprous oxide, and in a copper-lysine complex. Poult. Sci. 70(1):177-179. Bang, K. S., A. S. Familton and A. R. Sykes. 1990. Effect of copper oxide wire particle treatment on establishment of major gastrointestinal nematodes in lambs. Res. Vet. Sci. 49:132-137. Becker, E.R. and Everett R.C. 1930. Comparative growth of normal and infusoria-free lambs. Am. J. Hyg. 11:362-370. Bennetts, H.W. and F.E. Chapman. 1937. Copper deficiency in sheep in Western Australia: a preliminary account of the etiology of enzootic ataxia of lambs and an anemia of ewes. Aust. Vet. J. 13: 138-149. Berntssen, M. H. G., A. Lundebye and A. Maage. 1999. Effects of elevated dietary copper concentrations on growth, feed utilization and nutritional status of Atlantic salmon (Salmo salar L.) fry. Aquaculture. 174:167-181. Besser, J. M., C. G. Ingersol and J. P. Giesy. 1996. Effects of spatial and temoral variation of acid-volatile sulfide on the bioavailability of copper and zinc in freshwater sediments. Environ. Toxicol. Chem. 15:286-293. Bremner, I. 1987. Involvement of metallothionein in the hepatic metabolism of copper. J. Nutr. 117:19-29. Bremner, I. 1998. Manifestations of copper excess. Am. J. Clin. Nutr. 67:1969S-1073S. Bremner, I., B. W. Young and C. F. Mills. 1976. Protective effect of zinc supplementation against copper toxicosis in sheep. Br. J. Nutr. 36:551-561. Chartier, C., E. Etter, H. Hoste, I. Pors, C. Koch and B. Dellac. 2000. Efficacy of copper oxide needles for the control of nematode parasites in dairy goats. Vet. Res. Comm. 24:389-399. Clearwater, S. J., A. M. Farag and J. S. Meyer. 2002. Bioavailability and toxicity of diet borne copper and zinc in fish. Comp. Biochem. Physiol. C Toxicol. Pharmacol.132(3):269-313. Cromwell, G. L., M. D. Lindemann, H. J. Monegue, D. D. Hall and D. E. Orr, Jr. 1998. Tribasic copper chloride and copper sulfate as copper sources for weanling pigs. J. Anim. Sci. 76:118-123. Cromwell, G. L., T. S. Stahly and H. J. Monegue. 1989. Effects of source and level of copper on performance and liver copper stores in weanling pigs. J. Anim. Sci. 67:2996-3002. Dehority, B. A and C. G. Orpin. 1988. Development of, and natural fluctuations in, rumen microbial population. in: P. N. Hobson, ed. The Rumen Microbial Ecosystem. pp. 159-160. Elsevier Appiled Science, London. Dick, A. T. 1952. The effect of diet and of molybdenum on copper metabolism in sheep. Australian Vet. J. 28: 30. Dick, A. T. 1953. The control of copper storage in the liver of sheep by inorganic sulphate and molybdenum. Australian Vet. J. 29:233. Dick, A. T. 1954a. Preliminary observations on the effect of high intakes of molybdenum and of inorganic sulphate on blood copper and on fleece character in crossbred sheep. Australian Vet. J. 30:196. Dick, A. T. 1954b. Studies on the assimilation and storage of copper in crossbred sheep. Australian J. Agr. Res. 5: 511. Dick, A. T. 1956. Molybdenum in animal nutrition. Soil Sci. 81:229. Dick, A. T. and L. B. Bull. 1945. Some preliminary observations on the effect of molybdenum on copper metabolism in herbivorous animals. Australian Vet. J. 21: 70. Elvehjem, C.A.. 1935. The biological significance of copper and its relation to iron metabolism. Physiol. Rev. 15:471-507. Engle, T. E. and J. W. Spears. 2000a. Effects of dietary copper concentration and source on performance and copper status of growing and finishing steers. J. Anim. Sci. 78:2446-2451. Engle, T. E. and J.W Spears. 2000b. Dietary copper effects on lipid metabolism, performance, and ruminal fermentation in finishing steers. J. Anim. Sci. 78, 2452-2458. Engle, T. E., J. W. Spears, L. Xi and F. W. Edens. 2000a. Dietary copper effects on lipid metabolism and circulating catecholamine concentrations in finishing steers. J. Anim. Sci. 78:2737-2744. Engle, T. E., J. W. Spears, T. A. Armstrong, C. L. Wright and J. Odle. 2000b. Effects of dietary copper source and concentration on carcass characteristics and lipid and cholesterol metabolism in growing and finishing steers. J. Anim. Sci. 78:1053-1059. Engle, T. E. and Spears, J.W. 2001. Performance, carcass characteristics, and lipid metabolism in growing and finishing Simmental steers fed varying concentrations of copper. J. Anim. Sci. 79:2920-2925. Engle, T.E., J.W Spears, L. Xi and F.W. Edens. 2000. Dietary copper effects on lipid metabolism and circulating catecholamine concentrations in finishing steers. J. Anim. Sci. 78:2737-2744. Erwin, E. S., G. J. Maco and E. M. Emery. 1961. Volatile fatty acids analyses of blood and rumen fluid by gas chromatography. J. Dairy Sci. 44: 1768-1771. Essig, H. W., J. D. Davis and L. J. Smithson. 1972. Copper sulfate in steer rations. J. Anim Sci. 1972. 35:436-439. Ferguson, W. S., A. H. Lewis and S. J. Watson. 1938. Action of molybdenum in nutrition of milking cattle. Nature 141:553. Ferguson, W. S., A. H. Lewis and S. J. Watson. 1943. The teart pastures of Somerset. I. The cause and cure of teartness. J. Agr. Sci. 33:44. Garza F. J. D., F. N. Owens and J. E. Breazile. 1989. Effect of diet on ruminal liquid and on blood serum and osmolarity and hematocrit in feedlot heifer. Ani. Sci. Res. Report 69. Gawthorn, J. M. 1987. Copper interactions. "Copper in animals and man." Vol. I (Howell JM and Gawthorne JM) CRC Press, Inc. Boca Raton, Florida. pp. 79-100. Georgopoulos, P. G., A. Roy, R. E. Opiekun, P. J. Lioy and M. J. Yonone-Lioy. 2002. Environmental Dynamics and Human Exposure to Copper. NY. ICA. Vol.1. Gooneratne, S. R., J. M. Howell and J. M. Gawthorne. 1979. Intracellular distribution of copper in the liver of normal and copper loaded sheep. Res. Vet. Sci. 27:30-37. Gooneratne, S. R., W. T. Buckley and D. R. Christensen. 1989. Review of copper deficiency and metabolism in ruminants. Can. J. Anim. Sci. 69:819-845. Groff, J. L. and S. S. Gropper. 1999. Advanced nitrition and human metabolism. Wadsworth-Thomson Learning, Belning, CA. Hamar, D. W., C. L. Bedwell, J. L. Johnson, P. C. Schultheiss, M. Raisbeck, D. M. Grotelueschen, E. S. Williams, D. O'Toole, R. J. Paumer, M. G. Vickers and T. J. Graham. 1997. Introgenic copper toxicosis induced by administering copper oxide boluses to neonatal calves. J. Vet. Diagn. Invest. 9:441-443. Harms, R. H. and R. E. Buresh. 1987. Influence of three levels of copper on the performance of turkey poults with diets containing two sources of methionine. Poult. Sci. 66:721-724. Harris, E. D., B. L. O'Dell and R. A. Sunde. 1997. Pp. 231-273 in handbook of nutritional essential mineral elements,. New York: Marcel Dekker. Hart, E.B., H. Steenbock, J. Waddell and C. A. Elvehjem. 1928. Iron in nutrition, IV. Copper as a supplement to iron for hemoglobin building in the rat. J. Biol. Chem. 77, 797-812. Haywood, S. 1985. Copper toxicosis and tolerance in the rat. J. Pathol. 145:149-158. Hebert, C. D., M. R. Elwell, G. S. Travlos, C. J. Fitz and J. R. Bucher. 1993. Subchronic toxicity of cupric sulfate administered in drinking water and fed to rats and mice. Fund. Appl. Toxicol. 21:461-475. Hintz, H. F. 1987. Copper toxicity. Equine Pract. 9:17-18. Hogan, K. G., D. F. L. Money, and A. Blayney. 1968. The effect of a molybdate and sulfate supplement on the accumulation of copper in the livers of penned sheep. N. Z. J. Agric. Res. 11:435-444. Hitachi. 1997. Superconducting magnet and ground coils for the Yamanashi Maglev Test Line. Vol. 46-No.2. Hogan, J. T., H. J. Deobald, F. L. Normand, H. H Mottern, L. Lynn, and J. W. Hunnel. Production of high-protein rice flour. Rice J. 1968, 71 (ll), 5-6, 8-9, 32. Howarth, R. S. and J. B. Sprague. 1978. Copper lethality to rainbow trout in waters of various hardness and pH. Water Res. 12:455-462. Howell, J. M. and S. R. Gooneratne. 1987. The pathology of copper toxicity in animals. Pp. 53-78 in Copper in Animals and Man. Vol. II, J. M. Howell and J. M. Gawthorne, eds. Boca Raton, FL: CRC Press. Hungate, R. E. 1950. The Anaerobic Mesophilic Cellulolytic Bacteria. Bacteriol. Revs., 14: 1-49. Hyun, C. and L. J. Filippich. 2004. Inherited copper toxicosis with emphasis on copper toxicosis in Bedlington terriers. J. Exp. Anim. Sci. 43:39-64. Izquierdo, O. A. and D. H. Baker. 1986. Bioavailability of copper in pig feces. Can. J. Anim. Sci. 66:1145-1148. Jackson, N. and M. H. Stevenson. 1981. A study of the effects of dietary added cupric oxide on the laying, domestic fowl and a comparison with the effects of hydrated copper sulfate. Br. J. Nutr. 45:99-110. Jensen, L. S. and D. V. Maurice. 1978. Effect of methionine on copper induced growth depression and gizzard erosion. Poult. Sci. 57:1530-1532. Jensen, L. S. and D. V. Maurice. 1979. Influence of sulfur amino acids on copper toxicity in chicks. J. Nutr. 109(1):91-97. Kegley, E. B. and J. W. Spears. 1994. Bioavailability of feed-grade copper sources (oxide, sulfate, or lysine) in growing cattle. J. Anim. Sci. 72:2728-2734. Khan, Z. I., A. Hussain, M. Ashraf, M. Y. Ashraf, L. R. McDowell and B. Huchzermeyer. 2007. Copper nutrition of goats grazing native and improved pasture with the seasonal variation in a semiarid region of Pakistan. Small Rumin. Res. 67:138-148. Ledoux, D. R., P. R. Henry, C. B. Ammerman, P. V. Rao and R. D. Miles. 1991. Estimation of the relative bioavailability of inorganic copper sources for chicks using tissue uptake of copper. J. Anim. Sci. 69:215-222. Linder, M. C. 2002. Biochemistry and molecular biology of copper in mammals. Pp. 3-32 in Handbook of Copper Pharmacology and Toxicology, E. J. Massaro, ed. Totowa, NJ: Humana Press. Luginbuhl, J. M., M. H. Poore, J. W. Spears and T. T. Brown. 2000. Effect of dietary copper level on performance and copper status of growing meat goats. Sheep Goat Res. J. 16:65-71. Mendoza, G.D., R. A. Britton and R. A. Stock. 1993. Influence of ruminal protozoa on site and extent of starch digestion and ruminal fermentation. J. Anim. Sci. 79:515-524. Miles, R. D., S. F. O'Keefe, P. R. Henry, C. B. Ammerman and X. G. Luo. 1998. The effect of dietary supplementation with copper sulfate or tribasic copper chloride on broiler performance, relative copper bioavailability and dietary proxidant activity. Poult. Sci. 77:416-425. Mills, C. F. and I. Bremner. 1980. Nutritional aspects of molybdenum in animals. in Molybdenum and Molybdenum Containing Enzymes. New York: Pergamon Press. Pp. 519-542. Mills, C.F. 1987. Biochemical and physiological indicators of mineral status in animals: copper, cobalt, and zinc. J. Anim. Sci. 65:1702-1711. Minson, D. J. 1990. Forage in Ruminant Nutrition. New York: Academic Press. Mullis, L. A., J. W. Spears and R. L. McCraw. 2003. Effects of breed (Angus vs Simmental) and copper and zinc source on mineral status of steers fed high dietary iron. J. Anim. Sci. 81:318-322. Neal, W. M., R. B. Becker and A. L. Shealy. 1931. A natural copper deficiency in cattle rations. Science. 74: 418-419. NRC. 1975. Nutrient Requirements of Sheep. National Academy Press, Washington, DC. NRC. 1980. Mineral Tolerance of Domestic Animals. Washington, D.C.: National Academy Press. NRC. 1981. Nutrient Requirements of Goats. National Academy Press, Washington, DC. NRC. 2005. Mineral tolerance of animals. The National Academies Press, Washington, DC. Payne, C. G., D. C. Martens, E. T. Kornegay and M. D. Lindemann. 1988. Availability and form of copper in three soils following eight annual applications of copper-enriched swine manure. J. Environ. Qual. 17:740-746. Pena, M. M., J. Lee and D. J. Thiele. 1999. A delicate balance: homeostatic control of copper uptake and distribution. J. Nutr. 129:1251-1260. Persia, M. E., C. M. Parsons and D. H. Baker. 2003. Amelioration of oral copper toxicity in chicks by dietary additions of ascorbic acid, cysteine and zinc. Nutr. Res. 23:1709-1718. Pesti, G. M. and R. I. Bakalli. 1996. Studies on the feeding of cupric sulfate pentahydrate and cupric citrate to broiler chickens. Poult. Sci. 75:1086-1093. Pounden, W. D. 1952. Demonstration of Collection of Rumen Samples for Examination and Transfusion. Am. Vet. Med. Assoc. Proc. 49-50. Price, J. and J. K. Chesters. 1985. A new bioassay for assessment of copper availability and its application in a study of the effect of molybdenum on the distribution of available Cu in ruminant digesta. Br. J. Nutr. 53:323. Price, J., A. M. Will, G. Paschaleris, and J. K. Chesters. 1987. Identification of thiomolybdates in digesta and plasma from sheep after administration of 99Mo-labelled compounds into the rumen. Br. J. Nutr. 58:127. Prince, T. J., V. W. Hays and G. L. Cromwell. 1975. Environmental effects of high copper pig manure on pasture for sheep. J. Anim. Sci. 41:326 (Abstr.). Ramirez, R.G., G. F. W. Haenlein, C. G. Garcia-Castillo, M. A. Nunez- Gonzalez. 2004. Protein, lignin and mineral contents and in situ dry matter digestibility of native Mexican grasses consumed by range goats. Small Rumin. Res. 52, 261-269. Reddy, B.S. and V. Mahadevan. 1976. Effect of copper supplementation on the digestibility of nutrients and their retention in lactating cows. Indian Vet. J. 56: 451-455. Robbins, K. R. and D. H. Baker. 1980. Effect of sulfur amino acid level and source on the performance of chicks fed high levels of copper. Poult. Sci. 9:1246-1253. Sargison, N. D. and P. R. Scott. 1996. The diagnosis and treatment of chronic copper poisoning in 4- to 12-week-old single-suckled calves. Agri-Practice 17:36-40. SAS, 1988. SAS User's Guide: Statistics. SAS Inst. Inc., Cary, NC. Saxena, K. K. and S. K. Ranjhan. 1978. Effect of cobalt and copper supplementation, separately and in combination, on the digestibility of organic nutrients and mineral balances in Hariana calves. Indian J. Anim. Sci. 48:566-571. Saxena, K.K., R.V.N.Srivastava, S.K. Srivastava, S.K. Ranjhan. 1980. Effect of cobalt and copper supplementation on the ruminal volatile fatty acids concentration and microbial population in Hariana calves. Indian J. Anim. Sci. 50:471-475. Saylor, W. W. and R. M. Leach. 1980. Intracellular distribution of copper and zinc in sheep: effect of age and dietary levels of the metals. J. Nutr. 110:448-459. Saylor, W. W., F. D. Morrow and R. M. Leach. 1980. Copper- and zincbinding proteins in sheep liver and intestine: effect of dietary levels of the metals. J. Nutr. 110:460-468. Sijpesteijn, A. K. 1951. Ruminococcus flavefaciens a cellulose decomposing bacterium from the rumen of sheep and cattle. J. Gen. Microbiol. 5:869-879. Sjollema, B. 1933. Lack of copper as the cause of sickness among animals. Biochem. Zeit. 267:151. Smith, M. J. and A. G. Heath. 1979. Acute toxicity of copper, chromate, zinc, and cyanide to freshwater fish: effect of different temperatures. Bull. Environ. Contam. Toxicol. 22:113-119. Solaiman, S. G., M. A. Maloney, M. A. Qureshi, G. Davis and G. D. Andrea. 2001. Effects of high copper supplements on performance, health, plasma copper and enzymes in goats. Small Ruminant Res. 41:127-139. Solaiman, S. G., T. J. Craig Jr., G. Reddy and C. E. Shoemaker. 2007. Effect of high levels of Cu supplement on growth performance, rumen fermentation, and immune responses in goat kids. Small Rumin. Res. 69:115-123. Solaiman, S. G., C. E. Shoemaker, G. H. D'Andrea. 2006a. The effect of high dietary Cu on health, growth performance, and Cu status in young goats. Small Rumin. Res. 66:85-91. Solaiman, S. G., C. E. Shoemaker, W. R. Jones and C. R. Kerth. 2006b. The effects of high levels of supplemental copper on the serum lipid profile, carcass traits, and carcass composition of goat kids. J. Anim. Sci. 84:171-177. Spears, J. W. 2003. Trace mineral bioavailability in ruminants. J. Nutr. 133:1506S-1509S. Spears, J. W., E. B. Kegley and L. A. Mullis. 2004. Bioavailability of copper from tribasic copper chloride and copper sulfate in growing cattle. Anim. Feed Sci. Technol. 116:1-13. Steffen, D. J., M. P. Carlson and H. H. Casper. 1997. Copper toxicosis in suckling beef calves associated with improper administration of copper oxide boluses. J. Vet. Diagn. Invest. 9:443-446. Suttle, N. F. 1975. Effects of organic and inorganic sulfur on the availability of dietary copper to sheep. Br. J. Nutr. 32:559-568. Suttle, N. F. 1991. The interactions between copper, molybdenum, and sulfur in ruminant nutrition. Annu. Rev. Nutr. 11:121-140. Suttle, N. F. and J. Price. 1976. The potential toxicity of copper-rich animal excreta to sheep. Anim. Prod. 23:233-241. Suttle, N.F. and Field, A.C., 1983, Effects of dietary supplements of thiomolybdates on copper and molybdenum metabolism in sheep, J. Comp. Path. 93:379-389. Suttle, N. F., C. S. Munro and A. C. Field. 1978. The accumulation of copper in the liver of lambs on diets containing dried poultry waste. Anim. Prod. 26:39-45. Taylor, E. W., M. W. Beaumont, P. J. Butler, J. Mair and M. S. I. Mujallid. 1996. Lethal and sub-lethal effects of copper upon fish: a role for ammonia toxicity? Pp. 85-113 in Toxicology of Aquatic Pollution. Cambridge University Press. Tokarnia, C. H., J. Dobereiner, P. V. Peixoto and S. S. Moraes. 2000. Outbreak of copper poisoning in cattle fed poultry litter. Vet. Human Toxicol. 42:92-95. Underwood, E. J. 1977. Trace Elements in Human and Animal Nutrition, 4th ed. New York: Academic Press. Underwood, E. J. and N. F. Suttle. 1999. The Mineral Nutrition of Livestock, 3rd ed. New York: CABI Publishing. USGS (U.S. Geological Survey). 2004. Mineral Commodity Summaries. Available at Accessed May 5, 2005. Van Soest, P. J., J. B. Robertson and B. A. Lewis. 1991. Methods of dietary fiber, neutral detergent fiber and non-starch polysaccharides in relation to animal nutrition. J. Dairy Sci. 74:3583-3597. VAN Soest, P.J. 1994. Nutritional ecology of the ruminant. Ithaca: Cornell University. 476p. Viarengo, A., B. Burlando and C. Bolognesis. 2002. Cellular responses to copper in aquatic organisms. Pp. 417-431 in Handbook of Copper Pharmacology and Toxicology, E. J. Massaro, ed. Totowa, NJ: Humana Press. VLA. 2001. Veterinary Laboratories Agency Surveillance Report. July sees an increased incidence of copper poisoning in cattle. Vet. Rec. 149:257-260. Wang, J., S. R. Rogers and G. M. Pesti. 1987. Influence of choline and sulfate on copper and toxicity and substitution of an antagonism between methionine and copper supplements to chick diets. Poult. Sci. 66:1500-1507. Ward, J.D., J. W. Spears and E. B. Kegley. 1993. Effect of copper level and source (copper lysine and copper sulfate) on copper status, performance and immune response in growing steers fed diets with or without supplemental molybdenum and sulfur. J. Anim. Sci. 71: 2748-2755. Ward, J. D., J. W. Spears and E. B. Kegley. 1996. Bioavailability of copper proteinate and copper carbonate relative to copper sulfate in cattle. J. Dairy Sci. 79:127-132. Ward, J. D., J. W. Spears and G. P. Gengelbach. 1995. Differences in copper status and copper metabolism among Angus, Simmental, and Charolais cattle. J. Anim. Sci. 73:571-577. Ward, J.D. and J. W. Spears. 1997. Long-term effects of consumption of low copper diets with or without supplemental molybdenum on copper status, performance, and carcass characteristics of cattle. J. Anim. Sci. 75:3057-3065. WHO (World Health Organization). 1998. Copper. Environmental Health Criteria 200. Geneva: World Health Organization. Wideman, R. F., Jr., Y. K. Kirby, T. L. Barton, D. Clark, G. R. Bayyari, W. E. Huff, P. A. Moore and P. A. Dunn. 1996. Excess dietary copper triggers enlargement of the proventriculus in broilers. J. Appl. Poult. Res. 5(3):219-230. Yu, S., C. E. West and A. C. Beynen. 1994. Increasing intakes of iron reduces status, absorption and biliary excretion of copper in rats. Br. J. Nutr. 71:887-895. Zhang Wei., Runlian Wang., David O. Kleemann., Dexun Lu., Xiaoping Zhu., Chunxiang Zhang. and Zhihai Jia. 2008. Effects of dietary copper on nutrient digestibility, growth performance and plasma copper status in cashmere goats. Small Rumin Res. 74: 188-193. Zervas, G., E. Nikolaou and A. Mantzios. 1990. Comparative study of chronic copper poisoning in lambs and young goats. Anim. Prod. 50:497-506.en_US
dc.description.abstract將8頭肥育肉羊(平均年齡1.5歲)個別置入個飼籠內並逢機分配至4種飼糧處理組。4種處理飼糧其每公斤乾物質分別含(1) 0 mg、(2) 5 mg、(3) 25 mg及(4)50 mg 由水合鹼式碳酸銅(Cu2(OH)2CO3)又名孔雀石提供之銅。將該碳酸銅依各處理比例溶於氨水並噴灑於商業精料後保存於4℃。本試驗所用之基礎飼糧含50%精料(17.5 ± 1.75 mg Cu/kg DM)與50%盤固乾草(7.62 ± 0.78 mg Cu/kg DM)。結果顯示受試羊之平均日增重及飼料效率於各處理組間無顯著差異。所有受試羊之總平均ADF消化率於第16及第23日顯著高於第9日者(P = 0.0396)。所有受試羊之總平均粗脂肪消化率於第23日最高,第9日者最低(P = 0.0108)。第2處理組羊隻其瘤胃液滲透壓最高,第4處理組者最低(P = 0.0204)。瘤胃內微生物、原蟲數量及pH值於各組間無顯著差異。總揮發性脂肪酸濃度隨著銅添加量之增加而減少(P = 0.0051),但第1處理組及第2處理組間無顯著差異。第3處理組瘤胃內丙酸濃度最高,第4處理組者最低(P = 0.0325)。瘤胃內及糞便內銅濃度隨著飼糧內銅濃度增加而升高(P = 0.0001)。尿銅濃度隨飼糧銅濃度增加而升高之趨勢(P = 0.0537)。全血及血漿中銅濃度於各組間無顯著差異,第4處理組之全血鐵濃度最高,第1處理組者最低。糞便內及瘤胃內鉬及硫濃度與飼糧內鉬及硫含量成正相關。結論,於肥育肉羊飼糧內添加銅對其生長性狀及銅之營養狀態無影響,但會提升動物血液內鐵濃度及降低對銅與鉬之吸收。於飼糧添加銅對肥育肉羊之生長性狀影響甚微,影響僅限 於營養份消化率及瘤胃性狀。zh_TW
dc.description.abstractEight finishing female goats of Nubian crossbred with Taiwan Black (32.7 3.25 kg of body weight) were used to determine the effect of copper supplementation on nutrient digestibility, growth performance, rumen parameters and copper metabolism. Goats were located in individual pens and randomly assigned to four dietary treatments by a completely randomized design. The treatments consisted of basal diet containing (1) 0 mg, (2) 5 mg, (3) 25 mg and (4) 50 mg of copper supplemented/kg DM with copper (II) carbonate dihydroxide (Cu2(OH)2CO3). The copper chemical was dissolved in ammonia water and sprayed on concentrate to make its copper content doubled of being required and kept at 4oC. Basal diet was consisted of 50% concentrate (17.5 1.75 mg Cu/kg DM) and 50% pangola hay (7.62 0.78 mg Cu/kg DM). The results revealed that average daily gain and feed efficiency were not different among the treatments. The digestibilities of ADF varied among the duration days such that measurements on day 16 and day 23 were higher (P < 0.04) than those on the day 9 but not differed from those on day 2. Crude fat digestibility was the highest on the day 23 and lowest (P = 0.0108) on the day 9. Ruminal osmolarity was the highest in goats fed diet 2 and the lowest (P = 0.0204) in goats fed diet 4. Ruminal bacteria and protozoa population as well as pH were not different among the treatments. Content of total rumen volatile fatty acids were decreased (P < 0.01) as copper supplementation increased but no difference was observed between goats fed diet 1 and diet 2. Ruminal propionate content was the highest and the lowest (P = 0.0325) in goats fed with diet 3 and diet 4, respectively. Ruminal fluid and fecal copper concentration increased (P < 0.001) when dietary copper supplementation increased. Copper content in urine tended (P = 0.0537) to increase as dietary copper concentration increased. Copper contents in whole blood and plasma were not different among the treatments whereas iron content in whole blood in the goats fed diet 4 and diet 1 was the highest and the lowest, respectively. Fecal contents of molybdenum and sulfur positively correlated with whereas rumen fluid contents of these elements negatively correlated with the dietary copper supplementation levels. In conclusion, current range of dietary copper supplementation exerts no effect on the growth performance and copper status but increases the blood iron concentration and reduces the absorbabilities of molybdenum and sulfur by animals. Dietary copper supplementation exerts little, if any, effect on nutrient digestibility and ruminal parameters in finishing meat goats.en_US
dc.description.tableofcontentsContents Acknowledgement Abstract Contents I Table contents V Figure contents VII Appendices VIII 1. INTRODUCTION 1 2. LITERATURE REVIEW 4 2.1. History and essentiality of copper 4 2.1.1. Chemical forms of coppers 4 2.1.2. History and essentiality of Cu 5 2.2. Difficulties in methods of analysis and evaluation 7 2.3. Regulation and metabolism 7 2.3.1. Absorption and metabolism 7 2.3.2. Effect on rumen VFA, protozoa and plasma 11 2.3.3. Metabolic interactions and mechanisms of toxicity 12 2.4. Sources and bioavailability 15 2.5. Toxicosis 19 2.6. Single dose and acute toxicosis 20 2.7. Chronic toxicosis 21 3. MATERIALS AND METHODS 23 3.1. Experimental design 23 3.2 Dietary treatments 23 3.3. Animal and feeding 23 3.4. Sample collection 26 3.4.1. Feed 26 3.4.2. Feces and urine 26 3.4.3. Blood 26 3.4.4. Rumen temperature 27 3.4.5. Rumen fluid 27 3.5. Laboratory analysis 29 3.5.1. Ruminal anaerobic bacteria culture 29 Anaerobic cultural technique 29 Preparation of medium for culturing anaerobic bacteria 29 Anaerobic solution for diluting 33 Procedure for colony count 33 3.5.2. Ruminal protozoal population count 34 Methylgreen-formalin-saline (MFS) solution 34 Protozoa count 34 3.5.3. Osmolarity determination 35 3.5.4. Volatile fatty acids determination 35 Preparation 35 Gas chromatographic method 36 Instrument conditions 36 Test procedure 36 Calculation 37 3.5.5. Dry matter (DM) 37 3.5.6. Gross energy (GE) 37 3.5.7. Crude protein (CP) 39 Fluid sample 39 Solid sample 39 3.5.8. Analyses of minerals 39 Preparation, extraction, and digestion of sample 39 Determination 40 Flame atomization analysis 40 Preparing the stock standard solution 40 Determination method 41 Graphite furnace atomization analysis 42 Preparation of the stock standard solution 42 Copper analysis 42 Molybdenum analysis 44 Sulfate analysis 47 3.5.9. Neutral detergent fiber 48 Definition 48 Reagents 48 Sample preparation 49 Procedure 49 Calculation 50 3.5.10. Acid detergent fiber 50 Definition 50 Reagents 51 Preparation of sample 51 Procedure 51 Calculations 52 3.5.11. Crude fiber analysis 52 Definition 52 Reagents 53 Preparation of sample 53 Procedure 53 Calculations 54 3.5.12. Crude fat analysis 55 Preparations 55 Processing 55 Calculations 55 3.6. Statistical analysis 57 4. RESULTS AND DISCUSSIONS 58 4.1. Growth performance 58 4.2. Feed and water intake 60 4.3. Nutrient digestibility 62 4.4. Rumen parameters 65 4.5. Copper status in blood and rumen fluid 73 4.6. Copper antagonists 81 5. CONCLUSIONS 88 6. REFERENCES 89 Table contents Table 1. Compositions of basal diet 24 Table 2. Mineral concentrations in diets 25 Table 3. Components of medium (98-5+xylan) for rumen anaerobic bacteria 31 Table 4. Mineral solution No. 2 32 Table 5. Temperature program of copper analysis 43 Table 6. Temperature program of molybdenum analysis 45 Table 7. Analytical line and sensitively ratio of molybdenum analysis 46 Table 8. Crude fat content and the sample amount used 56 Table 9. Effect of dietary copper supplementation on growth performance in finishing meat goats 59 Table 10. Effect of dietary copper supplementation on feed and water intake in finishing meat goats 61 Table 11. Effect of dietary copper supplementation on digestibility in finishing meat goats 63 Table 12. Effect of dietary copper supplementation and duration time on digestibility in finishing meat goats 64 Table 13. Effect of dietary copper supplementation and duration time on rumen parameters in finishing meat goats 66 Table 14. Effect of dietary copper supplementation and duration time on rumen osmolarity (mosmol/kg) in finishing meat goats 67 Table 15. Effect of dietary copper supplementation and duration time on rumen protozoa population (105/mL) in finishing meat goats 68 Table 16. Effect of dietary copper supplementation and duration time on rumen anaerobic bacteria population (109/mL) in finishing meat goats 69 Table 17. Effect of dietary copper supplementation on rumen volatile fatty acids in finishing meat goats 71 Table 18. Effect of dietary copper supplementation and duration time on rumen volatile fatty acids in finishing goats 72 Table 19. Effect of dietary copper supplementation and duration time on whole blood Cu Concentration in finishing meat goats 74 Table 20. Effect of dietary copper supplementation and duration time on blood plasma Cu concentration in finishing meat goats 75 Table 21. Effect of dietary copper supplementation on rumen fluid Cu concentration in finishing meat goats 77 Table 22. Effect of dietary copper supplementation and duration time on urinary Cu concentration in finishing meat goats 79 Table 23. Effect of dietary copper supplementation and duration time on fecal Cu concentration in finishing meat goats 80 Table 24. Effect of dietary copper supplementation on whole blood and Blood plasma mineral contents in finishing meat goats 82 Table 25. Effect of dietary copper supplementation on urine, feces and rumen minerals contents in finishing meat goats 83 Table 26. Effect of dietary copper supplementation on correlation among minerals in feces content in finishing meat goats 84 Table 27. Effect of dietary copper supplementation on crenellation among minerals in rumen fluid contents in finishing meat goats 85 Table 28. Correlations among rumen parameters and dietary copper supplementation level in finishing meat goats 87 Figure contents Figure 1. Copper metabolism in human 9 Figure 2. Induced unavailable copper in the rumen 13 Figure 3. Surgeon operation 28 Figure 4. Anaerobic chamber 30 Appendices Figure 1. Anaerobic chamber 101 Figure 2. Microscope 102 Figure 3. Osmomat 030-D 103 Figure 4. Gerhardt Vapodest SOS 104 Figure 5. Calorimeter 105 Figure 6. Volatile fatty acids analysis 106 Figure 7. Crude fat analysis instrument 107 Figure 8. Rumen fluid pump 108 Figure 9. ANKOM200/220 109 Figure 10. Polarized Zeeman atomic absorption spectrometry: Hitachi Z 2700 (A) and Z 5000 (B) 110en_US
dc.subjectmeat goaten_US
dc.titleEffect of Dietary Copper Supplementation on Nutrient Digestibility, Growth Performance, Rumen Parameters and Copper Metabolism in Finishing Meat Goatsen_US
dc.typeThesis and Dissertationzh_TW
Appears in Collections:動物科學系


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.