Please use this identifier to cite or link to this item:
標題: 應用體外氣體生成系統模擬豬隻後腸之醱酵
Use the in vitro gas production technique to simulate the hindgut fermentation of pigs
作者: 陳中南
Chen, Chung-Nan
關鍵字: pigs
hindgut fermentation
in vitro gas production technique
出版社: 動物科學系所
引用: Aman, P., J. X. Zhang, G. Hallmans, and E. Lundin. 1994. Excretion and degradation of dietary fiber constituents in ileostomy subjects consuming a low fiber diet with and without brewer's spent grain. J. Nutr. 124:359-363. Andersen, I. L., K. E. Boe, G. Foerevik, A. M. Janczak, and M. Bakken. 2000. Behavioural evaluation of methods for assessing fear responses in weaned pigs. Appl. Anim. Behav. Sci. 69:227-240. AOAC. 1984. Official Method of Analysis. 14th ed. Associstion of Official Analytical Chemists. Washington, D. C. Awati, A., B. A. Williams, M. W. Bosch, Y. C. Li, and M. W. A. Verstegen. 2006. Use of the in vitro cumulative gas production technique for pigs: An examination of alterations in fermentation products and substrate losses at various time points. J. Anim. Sci. 84:1110-1118. Babinszky L., J. M. van der Meer, H. Boer, and L. A. den Hartog. 1990. An in vitro method for prediction of the digestible crude protein content in pig feeds. J. Sci. Food Agric. 50:173-178. Bauer, E., B. A. Williams, C. Voigt, R. Mosenthin, and M. W. A. Verstegen. 2001. Microbial activities of faeces from unweaned and adult pigs, in relation to selected fermentable carbohydrates. Anim. Sci. 73:313-322. Bauer, E., B. A. Williams, C. Voigt, R. Mosenthin, and M. W. A. Verstegen. 2003. Impact of mammalian enzyme pretreatment on the fermentability of carbohydrate-rich feedstuffs. J. Sci. Food Agric. 83:207-214. Bauer E., B. A. Williams, M. W. Bosch, C. Voigt, R. Mosenthin, and M. W. A. Verstegen. 2004. Differences in microbial activity of digesta from three sections of the porcine large intestine according to in vitro fermentation of carbohydrate-rich substrates. J. Sci. Food Agric. 84:2097-2104. Bindelle, J., A. Buldgen, D. Michaux, J. Wavreille, J. P. Destain, and P. Leterme. 2007. Influence of purified dietary fiber on bacterial protein synthesis in the large intestine of pigs, as measured by the gas production technique. Livest. Sci. 109:232-235 Binder, H. J., and P. Mehta. 1989. Short-chain fatty acids stimulate active sodium and chloride absorption in vitro in the rat distal colon. Gastroenterology 96:989-996. Boisen, S., and J. A. Fernadez. 1997. Prediction of the total tract digestibility of energy in feedstuffs and pig diets by in vitro analyses. Anim. Feed and Techno. 68:277-286. Bovera, F., S. D'urso, S. Calabro, R. Tudisco, C. D. Meo, and A. Nizza. 2007. Use of faeces as an alternative inoculum to caecal content to study in vitro feed digestibility in domesticated ostriches (Struthio camelus var. domesticus). Br. Poult. Sci. 48:354-362. Butterworth, R. F. 1998. Effects of hyperammonaemia on brain function. J. Inherit. Metab. Dis. 21:6-20. Cone, J. W., A. H. van Gelder, G. J. W. Visscher, and L. Oudshoom. 1996. Influence of rumen fluid and substrate concentration on fermentation kinetics measured with a fully automated time related gas production apparatus. Anim. Feed Sci. Technol. 61:113-128. Cone, J. W., A. W. Jongbloed, A. H. Van Gelder, and L. de Lange. 2005. Estimation of protein fermentation in the large intestine of pigs using a gas production technique. Anim. Feed Sci. Technol. 123-124:463-472. Cone, J. W., and A. F. B. Van der poel. 1993. Prediction of apparent ileal protein digestibility on pigs with a two-step in-vitro method. J. Sci. Food Agric. 62:393-400. Cummings, J. H. 1981. Short-chain fatty acids in the human colon. Gut 22:763-779. Cummings, J. H. 1996. The Large Intestine in Nutrition and Disease. Page 155. Danone Chair Monograph. Danone Inst., Brussels, Belgium. Darcy, V. B., C. Cherbuy, M. T. Morel, M. Durand, and P. H. Duee. 1996. Short chain fatty acid and glucose metabolism in isolated pig colonocytes: modulation by NH4. Mol. Cell Biochem. 156:145-151. Davies, Z. S., D. Mason, A. E. Brooks, G. W. Griffith, R. J. Merry, and M. K. Theodorou. 2000. An automated system for measuring gas production from forages inoculated with rumen fluid and its use in determining the effect of enzymes on grass silage. Anim. Feed Sci. Technol. 83: 205-221 Dierick, N. A. I. J. Vervaeke, J. A. Decuypere, H. van der Hyde, and H. K. Henderickx. 1987. Proc. 5th Int. Symp. On Protein Metabolism and Nutrition. Rostock, DDR. 9:7-12. Donalson, L. M., W. K. Kim, V. I. Chalova, P. Herrera, J. L. McReynolds, V. G. Gotcheva, D. Vidanovic, C. L. Woodward, L. F. Kubena, D. J. Nisbet, and S. C. Ricke. 2008. In vitro fermentation response of laying hen cecal bacteria to combinations of fructooligosaccharide prebiotics with alfalfa or a layer ration. Poult. Sci. 87:1263-1275. Dong, G., A. Zhou, F. Yang, K. Chen, K. Wang, and D. Dao. 1996. Effect of dietary protein levels on the bacterial breakdown of protein in the large intestine, and diarrhoea in early weaned piglet. Acta. Vet. Zootech. Sin. 27:293-302. Dunkley, K. D., C. S. Dunkley, N. L. Njongmeta, T. R. Callaway, M. E. Hume, L. F. Kubena, D. J. Nisbet, and S. C. Ricke. 2007. Comparison of in vitro fermentation and molecular microbial profiles of high-fiber feed substrates incubated with chicken cecal inocula. Poult. Sci. 86:801-810. Edwards, C. A., G. Gibson, , M. Champ, B. B. Jensen, J. C. Mathers, F. Nagengast, C. Rumney, and A. Quehl. 1996. In vitro method for quantification of the fermentation of starch by human faecal bacteria. J. Sci. Food Agric. 71:209-217. Englyst, H. N., S. Hay, and G. T. Macfarlane. 1987. Polysaccharide breakdown by mixed populations of human faecal bacteria. FEMS Microbiol. Ecol. 95:163-171. Englyst, H. N., S. M. Kingman, and J. H. Cummings. 1992. Classification and measurement of nutritionally important starch fractions. Eur. J. Clin. Nutr. 46:S33-S50. Fannon, J. E., J. M. Shull, and J. N. Bemiller. 1993. Interior channels of starch granules. Cereal Chem. 70:611-613. Florent, C, B. A. Flourie, M. Leblond, J. J. Rautureau, and J. C. Rambaud. 1985. Influence of chronic lactulose ingestionon the colonic metabolism of lactulose in man (an in vivo study). J. Clin. Invest. 75:608-613. Gardiner, K. R., P. J. Erwin, N. H. Anderson, J. G. Barr, M. I. Halliday, and B. J. Rowlands. 1993. Colonic bacteria and bacterial translocation in experimental colitis. Br. J. Surg. 80:512-516. Ghoddusi, H. B., M. A. Grandison, A. S. Grandison, and K. M. Tuohy. 2007. In vitro study on gas generation and prebiotic effects of some carbohydrates and their mixtures. Anaerobe 13:193-199. Grigsby, K. N., M. S. Kerley, J. A. Paterson, and J. C. Weigel. 1992. Site and extent of nutrient digestion by steers fed a low-quality bromegrass hay diet with incremental levels of soybean hull substitution. J. Anim. Sci. 70:1941-1949. Groot, J. C. J., J. W. Cone, B. A. William, F. M. A. Debersaques, and E. A. Lantinga. 1996. Multiphasic analysis of gas production kinetics for in vitro fermentation of ruminant feeds. Anim. Feed Sci. Technol. 64:77-89. Huber, K. C., and J. N. BeMiller. 1997. Visualization of channels and cavities of corn and sorghum starch granules. Cereal Chem. 74:537-541. Jackson, A. A. 1983. Aminoacids : essential and non-essential? Lancet 1:1034-1037. Jenkins, D. J., T. M. Wolever, G. R. Collier, A. Ocana, A. V. Rao, G. Buckley, Y. Lam, A. Mayer, and L. U. Thompson. 1987. Metabolic effects of a low-gly-cemic-index diet. Amer. J. Clin. Nutr. 46:986-975. Kornegay, E. T., and C. R. Risley. 1996. Nutrient digestibilities of a corn-soybean meal diet as influenced by Bacillus products fed to finishing swine. J. Anim. Sci. 74:799-805. Lai, J. C., and A. J. Cooper. 1991. Neurotoxicity of ammonia and fatty acids: differential inhibition of mitochondrial dehydrogenases by ammonia and fatty acyl coenzyme A derivatives. Neurochem. Res. 16:795-803. Lin, H. C., and W. J Visek.. 1991. Large intestinal pH and ammonia in rats: dietary fat and protein interactions. J. Nutr. 121:832-843. Lee, S. C., L. Porsky, and J. W. De Vries. 1992. Determination of total, soluble and in soluble dietary fiber in foods-enzymatic-gravimetric method, Mes-Tris buffer: collaborative study. J. AOAC. Int. 75:395-416. Low, A. G., and T. Zebrowska. 1989. Digestion in Pigs. Pages 467-491 in Protein Metabolism in Farm Animal. Evaluation, Digestion, Absorption, and Metabolism. Bock, H. D., B. O. Eggum, A. G. Low, O. Simon, and T. Zebrowska, ed. Oxford University, Oxford, UK. Lynn, A., and M. P. Cochrane. 1997. An evaluation of confocal microscopy for the study of starch granule enzymic digestion. Starch. 49:106-111. Macfarlane, G. T., and J. H. Cummings. 1991. The Colonic Flora, Fermentation, and Large Bowel Digestive Function. Pages 51-92 in The Large Intestine: Physiology, Pathophysiology and Disease. Phillips, S. F., J. H. Pemberton, and R. G. Shorter, ed. Raven Press, New York, USA. Macfarlane, G. T., G. R. Gibson, E. Beatty, and J. H. Cummings. 1992. Estimation of short-chain fatty acid production from protein by human intestinal bacteria based on branched-chain fatty acid measurements. FEMS Microbiol. Ecol. 101:81-88. McBurney, M. I., D. J. Cuff, and L. U. Thompson. 1990. Rates of fermentation and short chain fatty acidand gas production of six starches by human faecal microbiota. J. Sci. Food Agric. 50:79-88. McDonald, H. L., R. A. Edwards, J. F. D. Greenhalgh, and C. A. Morgan. 2002. Animal Nutrition 6th ed. Longman, Edinburgh Gate, Harlow, Essex, UK. McDougall, E. I. 1948. Studies on ruminant saliva. I. The composition and output of sheep''s salvia. Biochem. 43:99-109. Menke, K. H., and H. Steingass. 1988. Estimation of the energetic feed value obtained from chemical analysis and in vitro gas production using rumen fluid. Anim. Res. Dev. 28:7-55. Monsma, D. J., and J. A. Marlett. 1996. Fermentation of carbohydrate in rat ileal excreta is enhanced with cecal inocula compared with fecal inocula. J. Nutr. 126:554-563. Mosenthin, R., and B. Zimmermann. 2000. Probiotics and Prebiotics in Pig Nutrition-Alternatives for Antibiotics? Pages 29-50 in Selected Topics in Animal Nutrition, Biochemistry and Physiology. Mosenthin, R., ed. University of Alberta, Edmonton, Alberta, Canada. Parker, M., D. S. Parker, and R. T. McMillan. 1976. The determination of volatile. fatty acids in the caecum of the conscious rabbit. Br. J. Nutr. 35:365-371. Pell, A. N., and P. Schofield. 1993. Computerized monitoring of gas production to measure forage digestion In vitro. J. Dairy Sci. 76:1063-1073. Pell, A. N., R. E. Pitt, P. H. Doane, and P. Schofield. 1998. The Development, Use and Application of The Gas Production Technique at Cornell University, USA. Pages 45-54 in In Vitro Techniques for Measuring Nutrient Supply to Ruminants. Deaville, E. R., E. Owen, A. T. Adesogen, C. Rymer, J. A. Huntington, and T. L. J. Lawrence, ed. BSAS, Edinburgh, UK. Prior, R. L., D. C. Topping, and W. J. Visek. 1974. Metabolism of isolated chick small intestinal cells. Effects of ammonia and various salts. Biochemistry 13:178-183. Rechkemmer, G. 2000. Beeinflussung der Darmflora durch Enährung. In DGE Ernährungsbericht. Umschau-Verlag, Frankfurt. Robinson, J. A., W. J. Smolenski, M. L. Ogilvie, and J. P. Peters. 1989. In vitro total-gas, CH4, H2, volatile fatty acid, and lactate kinetic studies on luminal contents from the small intestine, caecum, and colon of the pig. Appl. Envir. Microb. 55:2460-2467. Roediger, W. E. W., and D. A. Rae. 1982. Trophic effect of short chain fatty acids on mucosal handling of ions by the defunctioned colon. Br. J. Surg. 69:23-25. Royall, D., T. M. S. Wolever, and K. Jeejeebhoy. 1990. Clinical Significance of colonic fermentation. Am. J. Gastroenterol. 85:1307-1312. Saengkerdsub, S., W. K. Kim, C. A. Robin, J. N. David, and C. R. Steven. 2006. Effect of nitrocompound and feedstuffs on in vitro methane production in chicken cecal contents and rumen fluid. Anaerobe 12:85-92. Salvador, V., C. Cherbut, J. L. Barry, D. Bertrand, C. Bonnet, and J. Delort-Laval. 1993. Sugar composition of dietary fibre and short-chain fatty acid production during in vitro fermentation by human bacteria. Br. J. Nutr. 70:189-197. SAS institute. 2007. SAS User's Guide. Version 9 Edition. SAS Institute Inc., Carry, N. C. Scheppach, W. 1994. Effects of short chain fatty acids on gut morphology and function. Gut S35-38. Scheppach, W., M. E. Pascu, and F. Richter. 1997. Ballaststoffe, kurzkettige Fettsäuren und Kolonkarzinom Akt Ernähr Med 22:321-326. Shim, S. B., J. M. A. J. Verdonk, W. F. Pellikaan, and M. W. A. Verstegen. 2007. Differences in microbial activities of faeces from weaned and unweaned pigs in relation to in vitro fermentation of different sources of inulin-type oligofructose and pig feed ingredients. Asian-Aust. J. Anim. Sci. 20:1444-1452. Theodorou, M. K., Williams, B. A., Dhanoa, M. S., McAIlan, A. B., and I. France. 1994. A new gas production method using a pressure transducer to determine the fermentation kinetics of ruminant feeds. Anim. Feed Sci. Technol. 48:185-197. Thompson, D. B. 2000. Strategies for the manufacture of resistant starch. Trends Food Sci. Technol. 11:245-253. Topping, D. L. and P. M. Clifton. 2001. Short-chain fatty acids and human colonic function : roles os resistant starch and nonstarch polysaccharides. Physiol. Rev. 81:1031-1064. Van der Wielen, P. W. J., J. S. Biesterveld, S. Notermans, H. Hofstra, B. A. P. Urlings, and F. Van Knapen. 2000. Role of volatile fatty acids in development of the cecal microflora in broiler chicken during growth. Appl. Environ. Microbiol. 66:2536-2540. Vaughan, E. E., F. Schut, H. G. H. J. Heilig, E. G. Zoetendahl, W. M. de Vos, and A. D. L. Akkermans. 2000. A molecular view of the intestinal ecosystem. Curr. Issues Intest. Microbiol. 1:1-12. Vervaeke, I. J., N. A. Dierick, D. I. Demeyer, and J. A. Decuypere. 1989. Approach to the energetic importance of fibre digestion in pigs. II. An experimental approach to hindgut digestion. Anim. Feed Sci. Technol. 23:169-194. Vince, A., M. Killingley, and O. M. Wrong. 1978. Effect of lactulose on ammonia production in a fecal incubation system. Gastroenterology 74:544-549. Visek, W. J. 1984. Ammonia: its effects on biological systems, metabolic hormones, and reproduction. J. Dairy Sci. 67:481-498 Visek, W. J. 1978. Diet and cell growth modulation by ammonia. Am. J. Clin. Nutr. 31:S216-S220. Voigt, C., B. A. Williams, M. Verstegen, and R. Mosenthin. 1998. Fermentation Characteristics of Carbohydrate-rich Feedstuffs, Using Faecal Inocula From Unweaned Piglets. Page 166 in Proceedings of The British Society of Animal Science. Scarborough, UK. Weatherburn, M. W. 1967. Phenol-Hypochlorite reaction for determination of ammonia. Anal. Chem. 39:971-974. Wang, J. F., Y. H. Zhu, D. F. Li, Z. Wang, and B. B. Jensen. 2004. In vitro fermentation of various fiber and starch sources by pig fecal inocula. J. Anim. Sci. 82:2615-2622. Williams, B. A., C. Voigt, and M. Verstegen. 1998. The Faecal Microbial Population Can Be Representative of Large Intestinal Microfloral Activity. Page 165 in Proceedings of the British Society of Animal Science. Scarborough, UK. Williams, B. A., M. W. A.Verstegen, and S. Tamminga. 2001. Fermentation in the large intestine of single-stomached animals and its relationship to animal health. Nutr. Res. Rev. 14:207-227. Williams, B. A., M. W. Bosch, H. Boer, M. W. A. Verstegen, and S. Tamminga. 2005. An in vitro batch culture method to assess potential fermentability of feed ingredients for monogastric diets. Anim. Feed Sci. Technol. 123-124:445-462. Williams, B. A., S. Tamminga, and M. W. A Verstegen. 2000. Fermentation Kinetics to Assess Microbial Activity of Gastrointestinal Microflora. Pages 97-100 in Proceedings of The Symposium ‘Gas Production: Fermentation Kinetics for Feed Evaluation and to Assess Microbial Activity'. British Society of Animal Scienc, Wageningen, Netherlands, Penicuik, UK. Williams, C. H., D. J. David, and O. Iismaa. 1962. the determination of chromic oxide in faeces samples by atomic absorption spectrophotometry. J. Agric. Sci. 59:381-385. Wisker, E., M. Daniel, G. Rave, and W. Feldheim. 1998. Fermentation of non-starch polysaccharides in mixed diets and single fibre sources: comparative studies in human subjects and in vitro. Br. J. Nutr. 80:253-261. Wolin, M. J., T. L. Miller, and C. S. Stewart. 1997. Microbe-microbe interactions. Pages 467-491 in The Rumen Microbial Ecosystem. Hobson P. N., and C. S. Stewart, ed. Blackie Academic & Professional, New York, USA. Yen, J. T. 2001. Anatomy of The Digestive System and Nutritional Physiology. Pages 32-53 in Swine Nutrition. Lewis, A. J., and L. L. Southern, ed. CRC press, Boca Raton, Florida, USA.
摘要: 本研究之目的為建構模擬豬隻後腸醱酵作用之體外氣體生成系統 (In vitro gas production technique, IVGPT),並探討飼料原料於豬隻後腸醱酵之模式,IVGPT是藉由醱酵過程之動態氣體生成量評估醱酵作用之模式與程度。試驗首先以飼料原料 (玉米、脫殼大麥、小麥及馬鈴薯澱粉) 為基質,分別依不同之培養時間 (24或48小時)、接種物濃度 (5、10或20%) 及接種物來源 (直腸內容物或糞便) 進行體外醱酵模擬試驗,由醱酵動力學特性選擇體外醱酵模擬試驗之最適培養條件。結果顯示,可將上述原料依微生物利用速率之快慢區分成快速 (玉米、小麥及脫殼大麥) 及慢速 (馬鈴薯澱粉) 醱酵原料等兩類。選擇以48小時為體外培養之時間,微生物可將慢速醱酵之馬鈴薯澱粉充分醱酵利用,提高醱酵動力學特性之準確性。使用高濃度 (10及20%) 之接種物可提高氣體生成速率並縮短微生物醱酵作用之延遲時間,使體外醱酵作用得以迅速開始。以直腸接種物之氣體生成速率較糞便接種物快,且醱酵作用延遲時間較短,但兩種接種物之氣體生成量相近,而醱酵作用開始時間均以馬鈴薯澱粉最晚,且氣體生成速率均以玉米最快,顯示兩接種物對同一種基質具有相同之醱酵模式,因此選擇以方便取得之新鮮糞便作為接種物之來源。進ㄧ步將原料經體外消化處理之殘渣做為基質,探討體外消化處理對飼料原料醱酵模式及醱酵終產物濃度之影響,並與in vivo醱酵終產物之結果比較。結果顯示,所有原料經體外消化處理後,氣體生成量、氣體生成速率及總揮發性脂肪酸濃度均顯著降低 (P<0.05)。原料經體外消化處理後,醱酵終產物之總揮發性脂肪酸濃度 (X) 與in vivo結果 (Y) 之線性關係為Y=0.047+0.112X (R2=0.7231)。綜上所述,本研究建立以事先經體外消化處理之基質與新鮮糞便為來源之接種物進行體外醱酵模擬試驗以模擬豬隻後腸醱酵作用之體外氣體生成系統,可評估飼料原料於豬隻後腸醱酵程度與模式之參考,並將上述飼料原料區分成快速與慢速醱酵兩類,亦可預估飼料原料於豬隻後腸醱酵產生總揮發性脂肪酸之濃度。
The purpose of this study was to establish an in vitro gas production technique (IVGPT) to stimulate the hindgut fermentation of pigs, and evaluate the fermentation of feedstuffs in pigs. The IVGPT evaluate the pattern and extent of fermentation by the kinetic characteristics of gas production. Use the feedstuffs (corn, dehulled barley, wheat, and potato starch) as the substrates, fermented with the different incubated time (24 and 48 h), concentration (5, 10 and 20%) and the source (rectal content and feces) of inoculum to set the incubated condition of IVGPT. After the experiment, feedstuffs can be classified into rapidly (corn, wheat and dehulled barley) and constantly (potato starch) fermentative feedstuffs by the kinetics of fermentation characteristics. Potato starch, which is the constantly fermentative feedstuffs, can be sufficiently fermented by microbial in 48 h to evaluate the kinetics of fermentation characteristics more accurately. The fermentation incubated by inoculums in high concentrations (10 and 20%) can increase the rate of gas production, and decrease the lag time of fermentation, make the fermentation of microbial began as soon as possible. Although, the rectal inoculum has the higher rate of gas production and shorter lag time of fermentation than the fecal inoculum, the gas production at the end of fermentation were similar in two inoculums. Furthermore, potato starch has the longest lag time of fermentation, and corn has the highest gas production rate in both two inoculums. As a result, the same substrate, which incubated with different inoculums had the similar pattern of fermentation, and the feces was much easier to obtain than the rectal content, the feces will be a suitable source of inoculum for the IVGPT. The effect of 2-step in vitro digestion on the kinetics of fermentation characteristics, and concentration of fermentation end products of feedstuffs was evaluated, and correlated with the in vivo results. The results showed the gas production, the rate of gas production, and concentration of total volatile fatty acids (tVFA) in fermentation end products were significantly decrease in all feedstuffs, treat with the 2-step in vitro digestion (P<0.05). After the 2-step in vitro digestion, the concentration of tVFA showed a high correlation between in vitro (X) and in vivo (Y) results Y=0.047+0.112X (R2=0.7231). In conclusion, the IVGPT established in this study can classify the feedstuffs into rapid and constant fermentation, evaluate the pattern and extent of fermentation, and predict the concentration of tVFA produced from the feedstuffs fermented in the hindgut of pigs.
其他識別: U0005-2707200910363500
Appears in Collections:動物科學系



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.