Please use this identifier to cite or link to this item:
標題: 結構性脂質神經鞘磷脂調節肌原母細胞分化時期之融合過程
The role of sphingomyelin as a membrane structural lipid in the regulation of fusion process during myoblast differentiation
作者: 賴建仰
Lai, Chien-Yang
關鍵字: sphingomyelin
出版社: 動物科學系所
引用: Albi, E., S. Cataldi, G. Rossi, and M. V. Magni. 2003. A possible role of cholesterol-sphingomyelin/phosphatidylcholine in nuclear matrix during rat liver regeneration. J. Hepatol. 38:623-628. Arias-Salgado, E. G., S. Lizano, S. J. Shattil, and M. H. Ginsberg. 2005. Specification of the direction of adhesive signaling by the integrin beta cytoplasmic domain. J. Biol. Chem. 280:29699-29707. Babiychuk, E. B., and A. Draeger. 2006. Biochemical characterization of detergent-resistant membranes: a systematic approach. Biochem. J. 397:407- 416. Bartke, N., and Y. A. Hannun. 2009. Bioactive sphingolipids: metabolism and function. J. Lipid Res. 50 Suppl:S91-96. Bassel-Duby, R., and E. N. Olson. 2006. Signaling pathways in skeletal muscle remodeling. Annu. Rev. Biochem. 75:19-37. Brancho, D., N. Tanaka, A. Jaeschke, J. J. Ventura, N. Kelkar, Y. Tanaka, M. Kyuuma, T. Takeshita, R. A. Flavell, and R. J. Davis. 2003. Mechanism of p38 MAP kinase activation in vivo. Genes Dev. 17:1969-1978. Brooks, S. V. 2003. Current topics for teaching skeletal muscle physiology. Adv Physiol. Educ. 27:171-182. Bruni, P., and C. Donati. 2008. Pleiotropic effects of sphingolipids in skeletal muscle. Cell. Mol. Life Sci. 65:3725-3736. Buckingham, M., L. Bajard, T. Chang, P. Daubas, J. Hadchouel, S. Meilhac, D. Montarras, D. Rocancourt, and F. Relaix. 2003. The formation of skeletal muscle: from somite to limb. J. Anat. 202:59-68. Cabane, C., A. S. Coldefy, K. Yeow, and B. Derijard. 2004. The p38 pathway regulates Akt both at the protein and transcriptional activation levels during myogenesis. Cell. Signal. 16:1405-1415. Capozza, F., T. P. Combs, A. W. Cohen, Y. R. Cho, S. Y. Park, W. Schubert, T. M. Williams, D. L. Brasaemle, L. A. Jelicks, P. E. Scherer, J. K. Kim, and M. P. Lisanti. 2005. Caveolin-3 knockout mice show increased adiposity and whole body insulin resistance, with ligand-induced insulin receptor instability in skeletal muscle. Am. J. Physiol. Cell Physiol. 288:C1317- C1331. Carrasco, S., and I. Merida. 2007. Diacylglycerol, when simplicity becomes complex. Trends Biochem. Sci. 32:27-36. Carvalho, K. A. T., R. B. Simeoni, J. C. Francisco, M. Olandoski, and L. C. Guarita-Souza. 2008. Human development proceedings of co-cultured skeletal muscle cells and bone marrow mesenchymal stem cells for myocardial regeneration. Int. J. Artif. Organs 31:633-633. Cascianelli, G., M. Villani, M. Tosti, F. Marini, E. Bartoccini, M. V. Magni, and E. Albi. 2008. Lipid microdomains in cell nucleus. Mol. Biol. Cell 19:5289- 5295. Cerletti, M., J. L. Shadrach, S. Jurga, R. Sherwood, and A. J. Wagers. 2008. Regulation and function of skeletal muscle stem cells. Cold Spring Harb. Symp. Quant. Biol. 73:317-322. Charge, S. B., and M. A. Rudnicki. 2004. Cellular and molecular regulation of muscle regeneration. Physiol. Rev. 84:209-238. Chen, S. E., B. Jin, and Y. P. Li. 2007. TNF-alpha regulates myogenesis and muscle regeneration by activating p38 MAPK. Am. J. Physiol. Cell Physiol. 292:C1660-C1671. Christov, C., F. Chretien, R. Abou-Khalil, G. Bassez, G. Vallet, F. J. Authier, Y. Bassaglia, V. Shinin, S. Tajbakhsh, B. Chazaud, and R. K. Gherardi. 2007. Muscle satellite cells and endothelial cells: close neighbors and privileged partners. Mol. Biol. Cell 18:1397-1409. Ciuffini, L., L. Castellani, E. Salvati, S. Galletti, G. Falcone, and S. Alema. 2008. Delineating v-Src downstream effector pathways in transformed myoblasts. Oncogene 27:528-539. Clemente, C. F. M. Z., M. A. F. Corat, S. T. O. Saad, and K. G. Franchini. 2005. Differentiation of C2C12 myoblasts is critically regulated by FAK signaling. Am. J. Physiol. Regul. Integr. Comp. Physiol. 289:R862-R870. Cohen, A. W., R. Hnasko, W. Schubert, and M. P. Lisanti. 2004. Role of caveolae and caveolins in health and disease. Physiol. Rev. 84:1341-1379. Contreras, F. X., L. Sanchez-Magraner, A. Alonso, and F. M. Goni. 2010. Transbilayer (flip-flop) lipid motion and lipid scrambling in membranes. FEBS Lett. 584:1779-1786. Daleke, D. L. 2007. Phospholipid flippases. J. Biol. Chem. 282:821-825. Dhanasekaran, D. N., K. Kashef, C. M. Lee, H. Xu, and E. P. Reddy. 2007. Scaffold proteins of MAP-kinase modules. Oncogene 26:3185-3202. Ding, T., Z. Li, T. Hailemariam, S. Mukherjee, F. R. Maxfield, M. P. Wu, and X. C. Jiang. 2008. SMS overexpression and knockdown: Impact on cellular sphingomyelin and diacylglycerol metabolism, and cell apoptosis. J. Lipid Res. 49:376-385. Donati, C., E. Meacci, F. Nuti, L. Becciolini, M. Farnararo, and P. Bruni. 2005. Sphingosine 1-phosphate regulates myogenic differentiation: a major role for S1P2 receptor. FASEB J. 19:449-451. Donati, C., P. Nincheri, F. Cencetti, E. Rapizzi, M. Farnararo, and P. Bruni. 2007. Tumor necrosis factor-alpha exerts pro-myogenic action in C2C12 myoblasts dvia sphingosine kinase/S1P2 signaling. FEBS Lett. 581:4384- 4388. Dowhan, W., and M. Bogdanov. 2009. Lipid-dependent membrane protein topogenesis. Annu. Rev. Biochem. 78:515-540. Duan, R. D. 2006. Alkaline sphingomyelinase: An old enzyme with novel implications. Biochim. Biophys. Acta. 1761:281-291. Echarri, A., O. Muriel, and M. A. Del Pozo. 2007. Intracellular trafficking of raft/caveolae domains: insights from integrin signaling. Semin. Cell Dev. Biol. 18:627-637. Fernando, P., J. F. Kelly, K. Balazsi, R. S. Slack, and L. A. Megeney. 2002. Caspase 3 activity is required for skeletal muscle differentiation. Proc. Natl. Acad. Sci. U. S. A. 99:11025-11030. Gaboardi, G. C., G. Ramazzotti, A. Bavelloni, M. Piazzi, R. Fiume, A. M. Billi, A. Matteucci, I. Faenza, and L. Cocco. 2010. A role for PKC epsilon during C2C12 myogenic differentiation. Cell. Signal. 22:629-635. Galbiati, F., B. Razani, and M. P. Lisanti. 2001. Caveolae and caveolin-3 in muscular dystrophy. Trends Mol. Med. 7:435-441. Gervasio, O. L., N. P. Whitehead, E. W. Yeung, W. D. Phillips, and D. G. Allen. 2008. TRPC1 binds to caveolin-3 and is regulated by Src kinase - role in Duchenne muscular dystrophy. J. Cell Sci. 121:2246-2255. Glynn, M. W., and A. K. McAllister. 2006. Immunocytochemistry and quantification of protein colocalization in cultured neurons. Nat. Protoc. 1:1287-1296. Goto, K., Y. Hozumi, T. Nakano, S. Saino-Saito, and A. M. Martelli. 2008. Lipid messenger, diacylglycerol, and its regulator, diacylglycerol kinase, in cells, organs, and animals: history and perspective. Tohoku J. Exp. Med. 214:199- 212. Guan, J. L. 2004. Integrins, rafts, Rac, and Rho. Science 303:773-774. Hait, N. C. 2009. Regulation of histone acetylation in the nucleus by sphingosine-1-phosphate. Science 325:1254-1257. Hannun, Y. A., and L. M. Obeid. 2008. Principles of bioactive lipid signalling: lessons from sphingolipids. Nat. Rev. Mol. Cell Biol. 9:139-150. Hoekstra, D., O. Maier, J. M. van der Wouden, T. A. Slimane, and S. C. D. van Ijzendoorn. 2003. Membrane dynamics and cell polarity: the role of sphingolipids. J. Lipid Res. 44:869-877. Hunte, C. 2005. Specific protein-lipid interactions in membrane proteins. Biochem. Soc. Trans. 33:938-942. Ikezu, T., H. Ueda, B. D. Trapp, K. Nishiyama, J. F. Sha, D. Volonte, F. Galbiati, A. L. Byrd, G. Bassell, H. Serizawa, W. S. Lane, M. P. Lisanti, and T. Okamoto. 1998. Affinity-purification and characterization of caveolins from the brain: differential expression of caveolin-1, -2, and -3 in brain endothelial and astroglial cell types. Brain Res. 804:177-192. Ishitsuka, R., and T. Kobayashi. 2004. Lysenin: a new tool for investigating membrane lipid organization. Anat. Sci. Int. 79:184-190. Jani, K., and F. Schock. 2009. Molecular mechanisms of mechanosensing in muscle development. Dev. Dyn. 238:1526-1534. Jones, N. C., K. J. Tyner, L. Nibarger, H. M. Stanley, D. D. W. Cornelison, Y. V. Fedorov, and B. B. Olwin. 2005. The p38 alpha/beta MAPK functions as a molecular switch to activate the quiescent satellite cell. J. Cell Biol. 169: 105-116. Keren, A., Y. Tamir, and E. Bengal. 2006. The p38 MAPK signaling pathway: a major regulator of skeletal muscle development. Mol. Cell. Endocrinol. 252:224-230. Krauss, R. S., F. Cole, U. Gaio, G. Takaesu, W. Zhang, and J. S. Kang. 2005. Close encounters: regulation of vertebrate skeletal myogenesis by cell-cell contact. J. Cell Sci. 118:2355-2362. Le Grand, F., and M. A. Rudnicki. 2007. Skeletal muscle satellite cells and adult myogenesis. Curr. Opin. Cell Biol. 19:628-633. Ledeen, R. W., and G. Wu. 2006. Gangliosides of the nuclear membrane: a crucial locus of cytoprotective modulation. J. Cell. Biochem. 97:893-903. Lee, H. J., C. H. Park, S. J. Lee, J. W. Park, J. H. Choi, G. H. Ryu, and B. S. Kwon. 2008. Expression of caveolin-3 immunoreactivities in the developing sciatic nerve of the rat. Muscle Nerve 38:1021-1026. Lemmon, M. A. 2008. Membrane recognition by phospholipid-binding domains. Nat. Rev. Mol. Cell Biol. 9:99-111. Li, Y. P., Y. L. Chen, J. John, J. Moylan, B. W. Jin, D. L. Mann, and M. B. Reid. 2005. TNF-alpha acts via p38 MAPK to stimulate expression of the ubiquitin ligase atrogin1/MAFbx in skeletal muscle. FASEB J. 19:362-370. Li, Z., T. K. Hailemariam, H. Zhou, Y. Li, D. C. Duckworth, D. A. Peake, Y. Zhang, M. S. Kuo, G. Cao, and X. C. Jiang. 2007. Inhibition of sphingomyelin synthase (SMS) affects intracellular sphingomyelin accumulation and plasma membrane lipid organization. Biochim. Biophys. Acta 1771:1186-1194. Lim, M. J., Y. H. Seo, K. J. Choi, C. H. Cho, B. S. Kim, Y. H. Kim, J. Lee, H. Lee, C. Y. Jung, J. Ha, I. Kang, and S. S. Kim. 2007. Suppression of c-Src activity stimulates muscle differentiation via p38 MAPK activation. Arch. Biochem. Biophys. 465:197-208. Lingwood, D., and K. Simons. 2010. Lipid rafts as a membrane-organizing principle. Science 327:46-50. Lluis, F., E. Perdiguero, A. R. Nebreda, and P. Munoz-Canoves. 2006. Regulation of skeletal muscle gene expression by p38 MAP kinases. Trends Cell Biol. 16:36-44. Lu, H. G., P. Shah, D. Ennis, G. Shinder, J. Sap, H. Le-Tien, and I. G. Fantus. 2002. The differentiation of skeletal muscle cells involves a protein-tyrosine phosphatase-alpha-mediated c-Src signaling pathway. J. Biol. Chem. 277:46687-46695. Matzke, R., K. Jacobson, and M. Radmacher. 2001. Direct, high-resolution measurement of furrow stiffening during division of adherent cells. Nat. Cell Biol. 3:607-610. Meacci, E., F. Nuti, C. Donati, F. Cencetti, M. Farnararo, and P. Bruni. 2008. Sphingosine kinase activity is required for myogenic differentiation of C2C12 myoblasts. J. Cell. Physiol. 214:210-220. Mebarek, S., H. Komati, F. Naro, C. Zeiller, M. Alvisi, M. Lagarde, A. F. Prigent, and G. Nemoz. 2007. Inhibition of de novo ceramide synthesis upregulates phospholipase D and enhances myogenic differentiation. J. Cell Sci. 120: 407-416. Mellor, H., and P. J. Parker. 1998. The extended protein kinase C superfamily. Biochem. J. 332 ( Pt 2):281-292. Meng, A. M., C. Luberto, P. Meier, A. P. Bai, X. F. Yang, Y. A. Hannun, and D. H. Zhou. 2004. Sphingomyelin synthase as a potential target for D609- induced apoptosis in U937 human monocytic leukemia cells. Exp. Cell Res. 292:385-392. Mermelstein, C. S., D. M. Portilho, R. B. Medeiros, A. R. Matos, M. Einicker-Lamas, G. G. Tortelote, A. Vieyra, and M. L. Costa. 2005. Cholesterol depletion by methyl-beta-cyclodextrin enhances myoblast fusion and induces the formation of myotubes with disorganized nuclei. Cell Tissue Res. 319:289-297. Miljan, E. A., and E. G. Bremer. 2002. Regulation of growth factor receptors by gangliosides. Sci. STKE 2002:re15. Morrison, D. K., and R. J. Davis. 2003. Regulation of MAP kinase signaling modules by scaffold proteins in mammals. Annu. Rev. Cell Dev. Biol. 19:91-118. Mukai, A., T. Kurisaki, S. B. Sato, T. Kobayashi, G. Kondoh, and N. Hashimoto. 2009. Dynamic clustering and dispersion of lipid rafts contribute to fusion competence of myogenic cells. Exp. Cell Res. 315:3052-3063. Murray, T. V., J. M. McMahon, B. A. Howley, A. Stanley, T. Ritter, A. Mohr, R. Zwacka, and H. O. Fearnhead. 2008. A non-apoptotic role for caspase-9 in muscle differentiation. J. Cell Sci. 121:3786-3793. Nagata, Y., H. Kobayashi, M. Umeda, N. Ohta, S. Kawashima, P. S. Zammit, and R. Matsuda. 2006a. Sphingomyelin levels in the plasma membrane correlate with the activation state of muscle satellite cells. J. Histochem. Cytochem. 54:375-384. Nagata, Y., T. A. Partridge, R. Matsuda, and P. S. Zammit. 2006b. Entry of muscle satellite cells into the cell cycle requires sphingolipid signaling. J. Cell Biol. 174:245-253. Nakanishi, M., E. Hirayama, and J. Kim. 2001. Characterisation of myogenic cell membrane: II. Dynamic changes in membrane lipids during the differentiation of mouse C2 myoblast cells. Cell Biol. Int. 25:971-979. Pankov, R., T. Markovska, P. Antonov, L. Ivanova, and A. Momchilova. 2006. The plasma membrane lipid composition affects fusion between cells and model membranes. Chem. Biol. Interact. 164:167-173. Parton, R. G., and K. Simons. 2007. The multiple faces of caveolae. Nat. Rev. Mol. Cell Biol. 8:185-194. Patel, H. H., F. Murray, and P. A. Insel. 2008. Caveolae as organizers of pharmacologically relevant signal transduction molecules. Annu. Rev. Pharmacol. Toxicol. 48:359-391. Pavoine, C., and F. Pecker. 2009. Sphingomyelinases: Their regulation and roles in cardiovascular pathophysiology. Cardiovasc. Res. 82:175-183. Perdiguero, E., V. Ruiz-Bonilla, L. Gresh, L. Hui, E. Ballestar, P. Sousa-Victor, B. Baeza-Raja, M. Jardi, A. Bosch-Comas, M. Esteller, C. Caelles, A. L. Serrano, E. F. Wagner, and P. Munoz-Canoves. 2007. Genetic analysis of p38 MAP kinases in myogenesis: fundamental role of p38 alpha in abrogating myoblast proliferation. EMBO J. 26:1245-1256. Perry, R. J., and N. D. Ridgway. 2004. The role of de novo ceramide synthesis in the mechanism of action of the tricyclic xanthate D609. J. Lipid Res. 45:164-173. Pike, L. J. 2009. The challenge of lipid rafts. J. Lipid Res. 50 Suppl:S323-328. Porter, G. A., Jr., R. F. Makuck, and S. A. Rivkees. 2002. Reduction in intracellular calcium levels inhibits myoblast differentiation. J. Biol. Chem. 277:28942-28947. Prinetti, A., N. Loberto, V. Chigorno, and S. Sonnino. 2009. Glycosphingolipid behaviour in complex membranes. Biochim. Biophys. Acta 1788:184-193. Ramazzotti, G., I. Faenza, G. C. Gaboardi, M. Piazzi, A. Bavelloni, R. Fiume, L. Manzoli, A. M. Martelli, and L. Cocco. 2008. Catalytic activity of nuclear PLC-beta(1) is required for its signalling function during C2C12 differentiation. Cell. Signal. 20:2013-2021. Rampalli, S., L. Li, E. Mak, K. Ge, M. Brand, S. J. Tapscott, and F. J. Dilworth. 2007. p38 MAPK signaling regulates recruitment of Ash2L-containing methyltransferase complexes to specific genes during differentiation. Nat. Struct. Mol. Biol. 14:1150-1156. Rapizzi, E., C. Donati, F. Cencetti, P. Nincheri, and P. Bruni. 2008. Sphingosine 1-phosphate differentially regulates proliferation of C2C12 reserve cells and myoblasts. Mol. Cell. Biochem. 314:193-199. Razani, B., T. P. Combs, X. B. Wang, P. G. Frank, D. S. Park, R. G. Russell, M. M. Li, B. Y. Tang, L. A. Jelicks, P. E. Scherer, and M. P. Lisanti. 2002. Caveolin-1-deficient mice are lean, resistant to diet-induced obesity, and show hypertriglyceridemia with adipocyte abnormalities. J. Biol. Chem. 277:8635-8647. Rogasevskaia, T., and J. R. Coorssen. 2006. Sphingomyelin-enriched microdomains define the efficiency of native Ca2+-triggered membrane fusion. J. Cell Sci. 119:2688-2694. Rosse, C., M. Linch, S. Kermorgant, A. J. Cameron, K. Boeckeler, and P. J. Parker. 2010. PKC and the control of localized signal dynamics. Nat. Rev. Mol. Cell Biol. 11:103-112. Rossi, G., M. V. Magni, and E. Albi. 2007. Sphingomyelin-cholesterol and double stranded RNA relationship in the intranuclear complex. Arch. Biochem. Biophys. 459:27-32. Rozen, S., and H. Skaletsky. 2000. Primer3 on the www for general users and for biologist programmers. Methods Mol. Biol. 132:365-386. Rudnicki, M. A., F. Le Grand, I. McKinnell, and S. Kuang. 2008. The molecular regulation of muscle stem cell function. Cold Spring Harb. Symp. Quant. Biol. 73:323-331. Sandri, M. 2010. Autophagy in skeletal muscle. FEBS Lett. 584:1411-1416. Sbrana, F., C. Sassoli, E. Meacci, D. Nosi, R. Squecco, F. Paternostro, B. Tiribilli, S. Zecchi-Orlandini, F. Francini, and L. Formigli. 2008. Role for stress fiber contraction in surface tension development and stretch-activated channel regulation in C2C12 myoblasts. Am. J. Physiol. Cell Physiol. 295:C160- C172. Sekiya, T., T. Takenawa, and Y. Nozawa. 1984. Reorganization of membrane cholesterol during membrane fusion in myogenesis in vitro: a study using the filipin-cholesterol complex. Cell Struct. Funct. 9:143-155. Serra, C., D. Palacios, C. Mozzetta, S. V. Forcales, L. Morantte, M. Ripani, D. R. Jones, K. Du, U. S. Jhala, C. Simone, and P. L. Puri. 2007. Functional interdependence at the chromatin level between the MKK6/p38 and IGF1/PI3K/AKT pathways during muscle differentiation. Mol. Cell 28:200-213. Shi, X. Z., and D. J. Garry. 2006. Muscle stem cells in development, regeneration, and disease. Genes Dev. 20:1692-1708. Simone, C., S. V. Forcales, D. A. Hill, A. N. Imbalzano, L. Latella, and P. L. Puri. 2004. p38 pathway targets SWI-SNF chromatin-remodeling complex to muscle-specific loci. Nat. Genet. 36:738-743. Simons, K., and D. Toomre. 2000. Lipid rafts and signal transduction. Nat. Rev. Mol. Cell Biol. 1:31-39. Song, K. S., P. E. Scherer, Z. Tang, T. Okamoto, S. Li, M. Chafel, C. Chu, D. S. Kohtz, and M. P. Lisanti. 1996. Expression of caveolin-3 in skeletal, cardiac, and smooth muscle cells. Caveolin-3 is a component of the sarcolemma and co-fractionates with dystrophin and dystrophin-associated glycoproteins. J. Biol. Chem. 271:15160-15165. Sparrow, J. C., and F. Schock. 2009. The initial steps of myofibril assembly: integrins pave the way. Nat. Rev. Mol. Cell Biol. 10:293-298. Spiegel, S., and S. Milstien. 2007. Functions of the multifaceted family of sphingosine kinases and some close relatives. J. Biol. Chem. 282:2125-2129. Suelves, M., F. Lluis, V. Ruiz, A. R. Nebreda, and P. Munoz-Canoves. 2004. Phosphorylation of MRF4 transactivation domain by p38 mediates repression of specific myogenic genes. EMBO J. 23:365-375. Tafesse, F. G., K. Huitema, M. Hermansson, S. van der Poel, J. van den Dikkenberg, A. Uphoff, P. Somerharju, and J. C. M. Holthuis. 2007. Both sphingomyelin synthases SMS1 and SMS2 are required for sphingomyelin homeostasis and growth in human HeLa cells. J. Biol. Chem. 282:17537-17547. Tafesse, F. G., P. Ternes, and J. C. Holthuis. 2006. The multigenic sphingomyelin synthase family. J. Biol. Chem. 281:29421-29425. Tajbakhsh, S. 2009. Skeletal muscle stem cells in developmental versus regenerative myogenesis. J. Intern. Med. 266:372-389. Takaesu, G., J. S. Kang, G. U. Bae, M. J. Yi, C. M. Lee, E. P. Reddy, and R. S. Krauss. 2006. Activation of p38alpha/beta MAPK in myogenesis via binding of the scaffold protein JLP to the cell surface protein CDO. J. Cell Biol. 175:383-388. Tani, M., and O. Kuge. 2009. Sphingomyelin synthase 2 is palmitoylated at the COOH-terminal tail, which is involved in its localization in plasma membranes. Biochem. Biophys. Res. Commun. 381:328-332. Taulet, N., F. Comunale, C. Favard, S. Charrasse, S. Bodin, and C. Gauthier-Rouviere. 2009. N-cadherin/p120 catenin association at cell-cell contacts occurs in cholesterol-rich membrane domains and is required for RhoA activation and myogenesis. J. Biol. Chem. 284:23137-23145. Ten Broek, R. W., S. Grefte, and J. W. Von den Hoff. 2010. Regulatory factors and cell populations involved in skeletal muscle regeneration. J. Cell. Physiol. 224:7-16 Tettamanti, G. 2004. Ganglioside/glycosphingolipid turnover: new concepts. Glycoconj. J. 20:301-317. Tu, P., C. Kunert-Keil, S. Lucke, H. Brinkmeier, and A. Bouron. 2009. Diacylglycerol analogues activate second messenger-operated calcium channels exhibiting TRPC-like properties in cortical neurons. J. Neurochem. 108:126-138. Vacaru, A. M., F. G. Tafesse, P. Ternes, V. Kondylis, M. Hermansson, J. F. Brouwers, P. Somerharju, C. Rabouille, and J. C. Holthuis. 2009. Sphingomyelin synthase-related protein SMSr controls ceramide homeostasis in the ER. J. Cell Biol. 185:1013-1027. Vale, R. D., and R. A. Milligan. 2000. The way things move: looking under the hood of molecular motor proteins. Science 288:88-95. van den Eijnde, S. M., M. J. B. van den Hoff, C. P. M. Reutelingsperger, W. L. van Heerde, M. E. R. Henfling, C. Vermeij-Keers, B. Schutte, M. Borgers, and F. C. S. Ramaekers. 2001. Transient expression of phosphatidylserine at cell-cell contact areas is required for myotube formation. J. Cell Sci. 114: 3631-3642. van Deurs, B., K. Roepstorff, A. M. Hommelgaard, and K. Sandvig. 2003. Caveolae: anchored, multifunctional platforms in the lipid ocean. Trends Cell Biol. 13:92-100. van Meer, G., and Q. Lisman. 2002. Sphingolipid transport: rafts and translocators. J. Biol. Chem. 277:25855-25858. van Meer, G., D. R. Voelker, and G. W. Feigenson. 2008. Membrane lipids: where they are and how they behave. Nat. Rev. Mol. Cell Biol. 9:112-124. Villani, M., M. Subathra, Y. B. Im, Y. Choi, P. Signorelli, M. Del Poeta, and C. Luberto. 2008. Sphingomyelin synthases regulate production of diacylglycerol at the Golgi. Biochem. J. 414:31-41. Volonte, D., A. J. Peoples, and F. Galbiati. 2003. Modulation of myoblast fusion by caveolin-3 in dystrophic skeletal muscle cells: implications for Duchenne muscular dystrophy and limb-girdle muscular dystrophy-1C. Mol. Biol. Cell 14:4075-4088. Wang, H. X., Q. Xu, X. Fang, J. Yong, and Z. G. Wu. 2008. Involvement of the p38 mitogen-activated protein kinase alpha, beta, and gamma isoforms in myogenic differentiation. Mol. Biol. Cell 19:1519-1528. Williams, T. M., and M. P. Lisanti. 2004a. The caveolin genes: from cell biology to medicine. Ann. Med. 36:584-595. Williams, T. M., and M. P. Lisanti. 2004b. The caveolin proteins. Genome Biol. 5:214. Wymann, M. P., and R. Schneiter. 2008. Lipid signalling in disease. Nat. Rev. Mol. Cell Biol. 9:162-176. Yablonka-Reuveni, Z., K. Day, A. Vine, and G. Shefer. 2008. Defining the transcriptional signature of skeletal muscle stem cells. J. Anim. Sci. 86:E207-216. Yeang, C., S. Varshney, R. Wang, Y. Zhang, D. Ye, and X. C. Jiang. 2008. The domain responsible for sphingomyelin synthase (SMS) activity. Biochim. Biophys. Acta 1781:610-617. Zammit, P. S. 2008. All muscle satellite cells are equal, but are some more equal than others? J. Cell Sci. 121:2975-2982.
摘要: 骨骼肌於脊椎動物扮演呼吸、移動、支持及能量代謝之功能,且佔脊椎動物大部分的身體質量;癌症末期、愛滋病及多種系統性疾病皆可導致骨骼肌異常甚至因此導致死亡。許多研究專注於解析肌肉萎縮 (muscle dystrophy) 與肌肉耗解 (muscle wasting) 機制上,如裘馨氏肌肉萎縮症 (Duchenne muscular dystrophy) 及肌肉減少症 (sarcopenia);另一領域則著重於探討調控生肌機制之因子。生肌作用晚期主要為分化之肌原母細胞拉長並進行排列聚集,然後彼此漿膜脂雙層融合形成多核之肌纖維;此過程牽涉許多訊息傳導機制及細胞反應,驅使細胞往相同方向移動並進行融合而形成單一肌纖維,然調控及造成此現象之因子尚未明瞭。於本研究中假設,神經鞘磷脂 (sphingomyelin, SM) 可能具有調節肌原母細胞分化過程中,細胞排列及融合之功能。神經鞘磷脂為神經鞘脂質 (sphingolipids) 家族含量最豐富之一員,其可與膽固醇 (cholesterol) 及糖神經鞘脂質 (glycosphingolipids) 形成脂筏,其為細胞膜上結構緻密且剛硬 (compact and rigid) 之脂雙層區域。神經鞘磷脂做為漿膜結構性脂質之一,有其固有物化 (chemo-physical) 特性,藉改變其含量及分佈應可促使細胞進行排列及膜融合,且利於多種膜蛋白共群聚 (colocalization) 並進一步影響與生肌作用相關之訊息傳導路徑。結果顯示,主要分佈於高基氏體之神經鞘磷脂合成酶 (SM synthase 1, SMS1) 及分佈於漿膜之 SMS2 於肌原母細胞分化過程中其基因表達較增生階段高。藉 SMS 抑制劑 (D609) 或 SMS siRNA 處理阻斷 SMS 活性,皆可致使 C2C12 肌原母細胞分化受阻,且抑制分化相關指標蛋白質之表達;然使用高劑量 D609 亦可抑制 C2C12 細胞增生。使用伏馬鐮孢毒素B1 (fumonisin B1, FB1) 阻斷神經醯胺 (ceramide) 合成酶活性,對 C2C12 細胞增生並無影響,然卻抑制其分化融合。利用二醯基甘油 (diacylglycerol, DAG) 結構類似物 1-oleoyl-2-acetyl -sn-glycerol (OAG) 進行處理並無法促進 C2C12 之分化且對細胞增生無影響,推測阻斷 SMS 活性所產生之抑制作用,並非減少經神經醯胺及磷脂膽鹼 (phosphatidylcholine) 合成 SM 所伴隨產生之二醯基甘油含量所導致;單獨或共同處理 FB1 及 OAG 皆無法回復 D609 所導致的肌原母細胞增生及分化受阻現象,此結果也印證前述之推測。反之,將含有人類 SMS2 序列之 pcDNA-SMS2 轉染 C2C12 肌原母細胞,可提昇 C2C12 肌原母細胞之分化與融合。細胞免疫染色試驗中使用 Alexa Fluor 555- labelled cholera toxin subunit B 標定脂筏分佈,觀察到分化之肌原母細胞脂筏群聚於細胞接觸區域;使用原子力顯微鏡 (atom force microscopy, AFM) 偵測黏滯力 (adhesion force),也發現分化之肌原母細胞於細胞接觸區域其黏滯力較低,具有較剛硬之特性,此與細胞免疫染色結果類似;前述結果驗證本研究之假說,富含 SM 之脂筏群聚於肌原母細胞之細胞間接觸邊緣,可創造有利區域環境幫助細胞往同方向進行排列;此漿膜結構改變可能與細胞間及細胞與胞外間質 (extracellular matric) 接觸之感應蛋白 integrin β3 之表達量提高、下游訊息傳導分子 Src 之活化及生肌作用中重要的影響因子 p38 相關。總結而言,由結果可推測藉改變細胞神經鞘磷脂之含量可影響 C2C12 肌原母細胞之分化及融合,因神經鞘磷脂為緻密且具極性之脂筏結構脂質,脂筏移動可導致漿膜脂雙層小區域物化特性改變,促使細胞進行排列且利於多種膜蛋白進行群聚,使經細胞間及細胞與胞外間質接觸下游與生肌相關之訊息傳導路徑受到誘發,藉其所扮演的多種功能促進肌原母細胞之分化及融合。
Skeletal muscle accounts for the most of body mass and function in moving, supporting, breathing, and energy metabolism in vertebrates. Dysfunction of skeletal muscle such as cachexia with advanced cancers, AIDS, and other chronic progressive diseases may lead to death. In contrast to the mechanisms of muscle dystrophy or wasting progress such as Duchenne muscular dystrophy and sarcopenia, another focus of muscle functionality is myogenic regulation. The later event of myogenesis is that differentiating elongated myoblasts start to align locally toward same directions and then the adjacent myoblasts integrate membranes to fuse into multinucleated myofibers. However, the factors and driving forces to ensure the fusion process are still poorly defined. In the study we hypothesized that the alignment and fusion process during myoblast differentiation is regulated by sphingomyelin (SM). Sphingomyelin, the most abundant form of sphingolipids, can interact with cholesterol and glycosphingolipids to form compact and rigid membrane microdomains, rafts. We proposed changes of cellular SM level and raft distribution functioning to facilitate the alignment and membrane integration of myoblasts during fusion process, due to its chemo-physical characteristics as a structural lipid, colocalization with various membrane proteins, and thereby downstream relays with the myogenic signaling. Results showed that expression of both sphingomyelin synthase 1 (SMS1) and SMS2 transcript increased with the progress of C2C12 myoblast differentiation. Blockade of SMS activity by inhibitor D609 or by siRNA intervention, severely inhibited the fusion process as evidenced by morphological changes in accordance with differentiation marker expressions including myogenin, myosin heavy chain (MHC), and caveolin-3. However, the SMS activity interruption particularly at a high level of D609 also suppressed C2C12 cell proliferation. Treatment of fumonisin B1 (FB1) to block ceramide synthase activity also suppressed the fusion process but had no effect on cell proliferation. The results suggested that sphingomyelin abundance regardless to intermediate ceramide per se that has been shown to inhibit myogenesis is the main cause of C2C12 differentiation suppressed by manipulating SMS activity. Treatment of diacylglycerol (DAG) analog, 1-oleoyl-2-acetyl-sn-glycerol (OAG) also failed to promote C2C12 differentiation and proliferation, suggesting that inhibition of C2C12 differentiation by interrupting SMS activity can not be attributed to suppressed DAG production from the SMS catalytic reaction of ceramide and phosphatidylcholne into SM. This suggestion was further confirmed by the failure of FB1 or OAG alone or combination of both to rescue the suppression of C2C12 proliferation and differentiation induced by D609. To further fortify the evidences, human SMS2 constructed as pcDNA-SMS2 was transduced into C2C12 cells, which thereafter demonstrated dramatic acceleration of fusion process. Immunocytochemical studies suggested that raft microdomains detected by Alexa Fluor 555-labelled cholera toxin subunit B staining migrated and clustered toward the approaching and junction edges around the membranes of differentiating myoblasts. The adhesion force detected by atom force microscopy confirmed a similar result suggesting that the approaching or contact junction edges of adjacent cells were more compact and rigid than the other regions within the same cells. These observations also suggested that abundance of rafts rich of SM distribution or cluster along the approaching and junction edges of adjacent myoblasts can create a facilitated microenvironment in local regions to drive cells migrating in alignment for fusion. These structural membrane mechanic alterations were consistently associated with upregulation of integrin β3, a sensing molecule of cell-cell/extracellular matrix (ECM) contact and downstream signaling molecule, Src activation, and furthermore p38, a critical signaling effector in myogenic program. In conclusion, results in the study suggested that alterations of SM level function to facilitate the alignment and fusion process of myoblast differentiation by serving as a rigid and polar structural lipid in membrane rafts, whose abundance and distribution affect chemo-physical characteristics of the membranes to drive cells moving in alignment for fusion and to render colocalization with various membrane proteins and thereby regulate the downstream myogenic signaling with cell-cell/ECM contact and approaching.
其他識別: U0005-1808201023573200
Appears in Collections:動物科學系



Show full item record
TAIR Related Article

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.