Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/25306
標題: 探討兩種發酵條件之大豆粕取代魚粉對白肉雞生長與腸道性狀影響
Study on two kinds of fermented soybean meal replacement for fish meal on growth and intestinal characteristics in broilers
作者: 王偉杰
Wang, Wei-Jie
關鍵字: fermented soybean meal
發酵大豆粕
fish meal
broiler
gut health
growth performance
魚粉
肉雞
生長性狀
腸道健康
出版社: 動物科學系所
引用: 林宜正。1992。飼料抗原對早期離乳仔豬的影響(上)。飼料營養雜誌 6:70-80。 林禮斌。2004。蛋白水解酵素處理大豆粕於離乳仔豬飼糧之應用性。碩士論文。國立中興大學。 林優婷。2008。發酵大豆粕取代魚粉對肉雞飼養效果之探討。碩士論文。國立中興大學。 洪平。1986。飼料原料要覽。台灣養羊雜誌社。台南縣。 袁國芳。2009。麴菌研究之現況及展望。食品工業 41(11):1-2。 郭俊欽。1989。醱酵食品。財團法人徐氏基金會。台北縣。 曾浩洋、董啟功。1985。以Rhizopus thailandensis醱酵脫脂黃豆粉之酵素活性及生化組成變化探討。中國農業化學會誌 23(1、2):111-118。 曾富生、吳詩都。1996。農藝。東大圖書出版社。台北市。 詹惠雯。2005。利用 Aspergillus oryzae 固態發酵處理黃豆粕以去除寡醣暨過敏性蛋白質之研究。碩士論文。國立中興大學。 連逸韻。2006。利用兩階段固態發酵模式製備發酵豆粕以去除寡糖暨過敏性蛋白質。碩士論文。國立中興大學。 鄭長義。1991。飼料配方技術大全(上)。華香園出版社。台北市。 蔡文城。2002。微生物學。藝軒圖書出版社。台北市。 劉英俊。1996。最新微生物應用工業。中央圖書出版社。台北市。 賴欣豐。2006。轉殖xylanase基因之Lactobacillus reuteri Pg4作為家禽益生菌之評估。碩士論文。國立中興大學。 蘇遠志、黃世佑。1971。微生物化學工程學。天然書社。台北市。 Allison, C., and G. T. MacFarlane. 1989. Influence of pH, nutrient availability and growth rate of amino production by Bacteroides fragilis and Clostridium perfringens. Appl. Environ. Microbiol. 55:2894-2898. Babinszky, L., J. M. van der Mear, H. Bear, and L. A. der Hartog. 1990. An in vitro method for prediction of the digestible crude protein content in pigfeeds. J. Sci. Food Agric. 50:173-178. Bhushan, R., and U. Arya. 2008. Subunit structure of glycinin and its molecular species based on RP-HPLC, gel electrophoresis and SEC studies. Biomed Chromatogr. 22:1296-1303. Breves, G., and K. Stuck. 1995. Short-chain fatty acids in the hindgut. Page 73-85 in Physiological and clinical aspects of short-chain fatty acids. J. H. Chummings, J. L. Rombeau, and T. Sakata, ed. Cambridge University Press, New York. Byrd, J. A., B. M. Hargis, D. J. Caldwell. R. H. Bailey, K. L. Herron, J. L. McReynolds, R. L. Brewer, R. C. Anderson, K. M. Bischoff, T. R. Callaway, and L. F. Kubena. 2001. Effect of lactic acid administration in the drinking water during preslaughter feed withdrawal on Salmonella and Campylobacter contamination of broilers. Poult. Sci. 80:278-283. Chang, C. J., T. D. Tanksley, D. A. Knabe, and T. Zebrowska. 1987. Effects of different heat treatments during processing on nutrient digestibility of soybean meal in growing swine. J. Anim. Sci. 65:1273-1282. Choct, M., R. J. Hughes, and M. R. Bedford. 1999. Effects of a xylanase on individual bird variation, starch digestion throughout the intestine, and ileal and caecal volatile fatty acid production in chickens fed wheat. Br. Poult. Sci. 40:419-422. Cherrington, C. A., M. Hinton, G. R. Peson, and I. Chopra. 1991. Short chain organic acid at pH 5.0 kill E. coli and Salmonella sp. without causing membrane perturbation. J. Appl. Bacteriol. 70:161-165. Coon, C. N., K. L. Leske, O. Akavanichan, and T. K. Cheng. 1990. Effect of oligosaccharide-free soybean meal on true metabolizable energy and fiber digestion in adult roosters. Poult. Sci. 69:787-793. de Fatima Viana, S., V. M. Guimaraes, I. C. Jose, M. G. de Almeida e Oliveria, N. M. Brunoro Costa, E. G. de Barro, M. A. Moreira, and S. T. de Rezende. 2005. Hydrolysis of oligosaccharides in soybean flour by soybean α-galactosidase. Food Chem. 93:665-670. Delente, J., and K. Ladenburg. 1972. Quantitative determination of the oligosaccharides in defatted soybean meal by gas-liquid chromatography. J. Food Sci. 37:372-374. Dunsford, B. R., D. A. Knabe, and W. E. Hacnsly. 1989. Effect of dietary soybean meal on the microscopic anatomy of the small intestine in the early-weaned pig. J. Anim. Sci. 67:1855-1864. Feng, J., X. Liu, Y. Y. Liu, Z. R. Xu, and Y. P. Lu. 2007a. Effects of Aspergillus oryzae 3.042 fermented soybean meal on growth performance and plasma biochemical parameters in broilers. Anim. Feed Sci. Technol. 134:235-242. Feng, J., X. Liu, Z. R. Xu, Y. P. Lu, and Y. Y. Liu. 2007b. Effect of fermented soybean meal on intestinal morphology and digestive enzyme activities in weaned piglets. Dig. Dis. Sci. 52:1845-1850. Feng, J., X. Liu, Z. R. Xu, Y. Z. Wang, and J. X. Liu. 2007c. Effects of fermented soybean meal on digestive enzyme activities and intestinal morphology in broilers. Poult. Sci. 86:1149-1154. Friedman, M., and D. L. Brandon. 2001. Nutritional and health benefits of soy protein. J. Agric. Food Chem. 49:1069-1086. Garro, M. S., G. F. de Valdez, G. Oliver, and G. S. de Giori. 1998. Growth characteristics and fermentation products of Streptococcus salivarius subsp. thermophilus, Lactobacillus casei and L. fermentum in soymilk. Z. Lebensm. Unters. Forsch. A 206:72-75. Geary, T. M., P. H. Brooks, J. D. Beal, and A. Campbell. 1999. Effect on weaner pig performance and diet microbiology of feeding a liquid diet acidified to pH 4 with either lactic acid or through fermentation with Pediococcus acidilactici. J. Sci. Food Agric. 79:633-640. Grigsby, K. N., M. S. Kerley, J. A. Paterson, and J. C. Weigel. 1992. Site and extent of nutrient digestion by steers fed a low-quality bromegrass hay diet with incremental levels of soybean hull substitution. J. Anim. Sci. 70:1941-1949. Guard-Petter, J. 2001. The chicken, the egg and Salmonella enteritidis. Environ. Microbiol. 3:421-430. Hajjaj, H., P. Duboc, L. B. Fay, I. Zbinden, K. Mace, and P. Niederberger. 2005. Aspergillus oryzae produces compounds inhibiting cholesterol biosynthesis downstream of dihydrolanosterol. FEMS Microbiol. Lett. 242:155-159. Han, S. W., K. W. Lee, B. D. Lee, and C. G. Sung. 1999. Effect of feeding Aspergillus oryzae culture on fecal microflora, egg qualities, and nutrient metabolizabilities in laying hens. Asian Aust. J. Anim. Sci. 12:417-421. Hong, K. J., C. H. Lee, and S. W. Kim. 2004. Aspergillus oryzae GB-107 fermentation improves nutritional quality of food soybeans and feed soybean meals. J. Med. Food. 4:430-435. Hrckova, M., M. Rusnakova, and J. Zemanovic. 2002. Enzymatic hydrolysis of defatted soy flour by three different proteases and their effect on the functional properties of resulting protein hydrolysates. Czech J. Food Sci. 20:7-14. Huisman, M. M., H. A. Schols, and A. G. J. Voragen. 1998. Cell wall polysaccharides from soybean (Glycine max.) meal isolation and characterization. Carbohydr. Polym. 37:87-95. Hymowitz, T., F. I. Collins, J. Panczner, and W. M. Walker. 1972. Relationship between the content of oil, protein, and sugar in soybean seed. Agron. J. 64:613-616. Irish, G. G., and D. Balnave. 1993. Non-starch polysaccharides and broiler performance on diets containing soybean meal as the sole protein concentrate. Aust. J. Agric. Res. 44:1483-1499. Jiang, H. Q., L. M. Gong, Y. X. Ma, Y. H. He, D. F. Li, and H. X. Zhai. 2006. Effect of stachyose supplementation on growth performance, nutrient digestibility and caecal fermentation characteristics in broilers. Br. Poult. Sci. 47:516-522. Kiers, J. L., A. E. A. Van Laeken, F. M. Rombouts, and M. J. R. Nout. 2000. In vitro digestibility of Bacillus fermented soya bean. Int. J. Food Microbiol. 60:163-169. Kiers, J. L., J. C. Meijer, M. J. R. Nout, F. M. Rombouts, M. J. A. Nabuurs, and J. van der Meulen. 2003. Effect of fermented soya beans on diarrhea and feed efficiency in weaned piglets. J. Appl. Microb. 95:545-552. Kim, S. H., S. Y. Park, D. J. Yu, S. J. Lee, K. S. Ryu, and D. G. Lee. 2003. Effects of feeding Aspergillus oryzae ferments on performance, intestinal microflora, blood serum components and environmental factors in broiler. Kor. J. Poult. Sci. 30:151-159. Kim, S. W., E. van Heugten, F. Ji, C. H. Lee, and R. D. Mateo. 2010. Fermented soybean meal as a vegetable protein source for nursery pigs: I. Effect on growth performance of nursery pigs. J. Anim. Sci. 88:214-224. Kim, S. W., and R. A. Easter. 2001. Nutritional value of fish meals in the diet for young pigs. J. Anim. Sci. 79:1829-1839. Kim, S. Y., P. S. W. Park, and K. C. Rhee. 1990. Functional properties of proteolytic enzyme modified soy protein isolate. J. Agric. Food Chem. 38:651-656. LeBlanc, J. G., M. S. Garro, A. Silvestroni, C. Connes, J. C. Piard, F. Sesma, and G. S. de Giori. 2004a. Reduction of α-galctooligosaccharides in soyamilk by Lactobacillus fermentum CRL 722: in vitro and in vivo evaluation of fermented soyamilk. J. Appl. Microbiol. 97:876-881. LeBlane, J. G., A. Silvestroni, C. Connes, V. Juillard, G. S. de Giori, J. C. Piard, and F. Sesma. 2004b. Reduction of non-digestible oligosaccharides in soymilk: application of engineered lactic acid bacteria that produce α-galactosidase. Genet. Mol. Res. 3:432-440. Lee, H. J. 1998. Health functional peptides from soybean foods. Kor. Soyb. Digest. 15:16-22. Leske, K. L., and C. N. Coon. 1999. Nutrient content and protein and energy digestibilities of ethanol-extracted, low α-galactoside soybean meal as compared to intact soybean meal. Poult. Sci. 78:1177-1183. Li, D. F., J. L. Nelssen, P. G. Reddy, F. Blecha, J. D. Hancock, G. L. Allee, R. D. Goodband, and R. D. Klemm. 1990. Transient hypersensitivity to soybean meal in the early-weaned pig. J. Anim. Sci. 68:1790-1799. Li, D. F., J. L. Nelssen, P. G. Reddy, F. Blecha, R. D. Klemm, and R. D. Goodband. 1991. Interrelationship between hypersensitivity to soybean protein and growth performance in early-weaned pigs. J. Anim. Sci. 69:4062-4069. Liener, I. E. 1994. Implications of antinutritional components in soybean foods. Crit. Rev. Food Sci. Nutr. 34:31. MacFarlane, S., G. T. MacFarlane. 1995. Human colonic bacteria: Role in nutrition, physiology and pathology. Pages 75-100 in Proteolysis and amino acid fermentation. G. R. Gibson, ed. CRC Press, Boca Raton, FL. Marounek, M., O. Suchorska, and O. Savka. 1999. Effect of substrate and feed antibiotics on in vitro production of volatile fatty acids and methane in caecal contents of chickens. Anim. Feed Sci. Technol. 80:223-230. Marsili, R. T., H. Ostapenko, R. E. Simmons and D. E. Green. 1981. High performance liquid chromatographic determination of organic acids in dairy products. J. Food Sci. 46:1049-1054. Maruyama, N., T. Fukuda, S. Saka, N. Inui, J. Kotoh, M. Miyagawa, M. Hayashi, M. Sawada, T. Moriyama, and S. Utsumi. 2003. Molecular and structural analysis of electrophoretic variants of soybean seed storage proteins. Phytochemistry 64:701-708. Mathivanan, R., P. Selvaraj, and K. Nanjappan. 2006. Feeding of fermented soybean meal on broiler performance. Int. J. Poult. Sci. 5:868-872. Mead, G. C. 2000. Prospects for‘competitive exclusion’treatment to control salmonellas and other foodborne pathogens in poultry. Vet. J. 159:111-123. Messina, M. J. 1999. Legumes and soybeans: overview of their nutritional profiles and health effects. Am. J. Clin. Nutr. 70 (suppl.):439S-450S. Moore, S. and W. H. Stein. 1954. A modified ninhydrin reagent for the photometric determination of amino acids and related compounds. J. Bio. Chem.211:907-913. Mroz, Z., S. J. Koopmans, A. Bannink, K. Partanen, W. Krasucki, Øverland, S. Radcliffe. 2006. Biology of nutrition in growing animals, Vol. 4. Pages 81-134 in Carboxylic acids as bioregulators and gut growth promoters in nonruminants. R. Mosenthin, J. Zentek, T. Zebrowska, ed. Elsevier, London. Ogunbanwo, S. T., A. I. Sanni, and A. A. Onilude. 2004. Influence of bacteriocin in the control of Escherichia coli infection of broiler chickens in Nigeria. World J. Microbiol. Biotechnol. 20:51-56. Parker, D. C. and R. T. McMillan. 1976. The determination of volatile fatty acids in the caecum of the conscious rabbit. Br. J. Nutr. 35:365-371. Peng, I. C., W. R. Dayton, D. W. Quass, and C. E. Allen. 1982. Investigations of soybean 11S protein and myosin interaction by solubility, turbidity and titration studies. J. Food Sci. 47:1976-1983. Pluske, J. R., D. J. Hampson, and I. H. Williams. 1997. Factors influencing the structure and function of the small intestine in the weaned pig: a review. Livest. Prod. Sci. 51:215-236. Podolsky, D. K. 1993. Regulation of intestinal epithelial proliferation: a few answers, many questions. Am. J. Physiol. Gastrointest. Liver Physiol. 264: G179-G186. Schägger, H. 2006. Tricine–SDS-PAGE. Nat. Protoc. 1:16-22. Smiricky-Tjardes, M. R., C. M. Grieshop, E. A. Flickinger, L. L. Bauer, and G. C. Fahey Jr. 2003. Dietary galactooligosaccharides affect ileal and total-tract nutrient digestibility, ileal and fecal bacterial concentrations, and ileal fermentative characteristics of growing pigs. J. Anim. Sci. 81:2535-2545. Sneath, P. H. A., N. S. Mair, E. M. Sharpe, and J. G. Holt. 1986. Bergey`s manual of systematic bacteriology, Vol. 2. Pages 1130-1139. Williams and Wilkins, Baltimore. Thanh, N. T., T. C. Loh, H. L. Foo, M. Hair-Bejo, and B. K. Azhar. 2009. Effects of feeding metabolite combinations produced by Lactobacillus plantarum on growth performance, faecal microbial population, small intestine villus height and faecal volatile fatty acids in broilers. Br. Poult. Sci. 50:298-306. Van der Wielen, P. W. J. J., S. Biesterveld, S. Notermans, H. Hofstra, B, A. P. Urlings, and F. van Knapen. 2000. Role of volatile fatty acids in development of the cecal microflora in broiler chickens during growth. Appl. Environ. Microbiol. 66: 2536-2540. Van Deun, K., F. Haesebrouck, F. Van Immerseel, R. Ducatelle, and F. Pasmans. 2008. Short-chain fatty acids and L-lactate as feed additive to control Campylobacter jejuni infections in broilers. Avian Pathol. 37:379-383. Van Eys, J. E., A. Offner, and, A. Bach. 2005. Manual of quality analyses for soybean products in the feed industry. American Soybean Association. USA. Van Immerseel, F., J. De Buck, G. Meulemans, F. Pasmans, P. Velge, E. Bottreau, F. Haesebrouck, and R. Ducatelle. 2003. Invasion of Salmonella Enteritidis in avian intestinal epithelial cells in vitro is influenced by short-chain fatty acids. Inter. J. Food Micro. 85:237-248. Visek, W. J. 1978. The mode of growth promotion by antibiotics. J. Anim. Sci. 46:1447-1469. Wang, Y. C., R. C. Yu, H. Y. Yang, and C. C. Chou. 2003. Sugar and contents in soymilk fermented with lactic acid bacteria alone or simultaneously with bifidobacteria. Food Microbiol. 20:333-338. Wang, Z. R., S. Y. Qiao, W. Q. Lu, and D. F. Li. 2005. Effects of enzyme supplementation on performance, nutrient digestibility, gastrointestinal morphology, and volatile fatty acid profiles in the hindgut of broilers fed wheat-based diets. Poult. Sci. 84:875-881. Weatherburn, M. W. 1967. Phenol-hypochlorite reaction for determination of ammonia. Anal. Chem. 39:971–974. Wiseman, J., S. Jagger, D. J. A. Cole, and W. Haresign. 1991. The digestion and utilization of amino acids of heat-treated fish meal by growing/finishing pigs. Anim. Prod. 53:215-225. Wrong, O. M. 1981. Nitrogen compounds. Pages 133-211 In: The large intestine: Its role in mammalian nutrition and homeostasis. O. M. Wrong, C. J. Edmonds, and V. S. Chadwick, ed. John Wiley and Sons, New York. Yeo, J., and K. I. Kim. 1997. Effect of feeding diets containing an antibiotic, a probiotic, or yucca extract on growth and intestinal urease activity in broiler chicks. Poult. Sci. 76:381-385. Yoon, M. Y., and H. J. Hwang. 2008. Reduction of soybean oligosaccharides and properties of α-D-galactosidase from Lactobacillus curvatus R08 and Leuconostoc mesenteriodes JK55. Food Microbiol. 25:815-823. Yusrizal, Y., and T. C. Chen. 2003. Effect of adding chicory fructans in feed on fecal and intestinal microflora and excreta volatile ammonia. Int. J. Poult. Sci. 2:188-194. Xu, Z. R., C. H. Hu, M. S. Xia, X. A. Zhan, and M. Q. Wang. 2003. Effect of dietary fructooligosaccharide on digestive enzyme activities, intestinal microflora and morphology of male broilers. Poult. Sci. 82:1030-1036.
摘要: 大豆粕(Soybean meal)與魚粉(Fish meal)具有較高粗蛋白質與含有動物所需必須胺基酸等特性,為飼糧中蛋白質來源,然而魚粉價格居高不下,若能以大豆粕取代魚粉添加於飼糧中,則能大大降低飼養成本。然而大豆粕具有抗營養因子如胰蛋白酶抑制因子、過敏性蛋白質與致脹氣性寡醣等,降低大豆粕在飼糧之應用,而大豆粕抗營養因子能藉由加熱、酵素處理或微生物發酵等方式消除。本試驗旨在探討利用Aspergillus oryzae與Lactobucillus casei發酵之大豆粕取代白肉雞飼糧中魚粉之可行性。大豆粕接種Aspergillus oryzae於30℃發酵24小時後(fermented soybean meal by A., FSBMA),再添加Lactobucillus casei於42℃培養16小時(fermented soybean meal by A. and L., FSBMA+L)後乾燥為產品。結果顯示經發酵後之大豆粕(FSBMA與FSBMA+L)能提高粗蛋白、TCA-soluble protein與乳酸含量,並降低過敏性蛋白質(β-conglycinin與glycinin)與致脹氣性寡醣(水蘇糖與棉子醣)含量。以500隻一日齡白肉雞作為試驗動物,逢機分成五組,其中四組分別餵飼兩種發酵大豆粕全量取代或半量取代飼糧魚粉之飼糧,並以餵飼玉米大豆粕飼糧當對照組,每組4重複,公母分飼,每欄為一重複,飼養期為35天,於21與35天時個別秤重並犧牲,採集消化道內容物與糞便進行分析。結果顯示,餵予發酵大豆粕取代50 %魚粉飼糧之白肉雞,其體增重、飼料採食量與飼料效率與對照組並無顯著差異(P > 0.05),然而以發酵大豆粕全取代之處理組,於0-21日齡時體增重與體重則顯著較對照組差(P < 0.05)。而餵予發酵大豆粕雞隻之迴腸與盲腸內容物,其pH值較對照組低。FSBMA+L處理組能顯著降低21日齡雞隻嗉囊與迴腸腸內桿菌與大腸菌菌數(P < 0.05)。發酵大豆粕處理組皆能顯著降低35日齡白肉雞糞中氨濃度(P < 0.05)。綜上所述,以發酵大豆粕取代飼糧中50 %魚粉,對雞隻生長性狀不會產生負面影響,並能降低飼料成本,而餵予FSBMA+L能降低0-21日齡雞隻消化道病原菌菌數,改善消化道健康。
Soybean meal and fish meal are the protein source of animal diet because of higher crude protein content and with all essential amino acids needed by animal. However, the price of fish meal was more expensive because abnormal weather conditions and overfishing by people have caused the depression of fish catch. If the fish meal of diets could be replaced by SBM, the feed cost could be decreased. But, anti-nutritional factors (ANTs) of soybean meal have limited their nutritive values and utilization in diet. ANTs in soybean meal include trypsin inhibitor, flatulence-causing oligosaccharide (mainly raffinose and stachyose) and allergenic protein (β-conglycinin and glycinin). Use processing method, like heating, enzyme treatment and microorganism fermentation, could reduce some of the ANTs in soybean meal. The purpose of this study was to evaluate the feasibility of replacing the fish meal of broiler diets by two kinds of fermented soybean meal, which were inoculated SBM with Aspergillus oryzae incubated at 30℃ for 24 hours (FSBMA), followed by adding Lactobucillus casei for 24 hours fermentation at 42℃ (FSBMA+L). Both FSBMA and FSBMA+L, were dried and grounded respectively. The results showed that the crude protein, TCA-soluble protein and lactic acid content of FSBMA and FSBMA+L were increased. The flatulence-causing oligosaccharide and allergenic protein of soybean meal were depressed after fermentation. Five hundred one-day-old chicks of equal number of male and female were randomly allocated into five groups, 4 replicates of 25 chicks for 5 weeks feeding trial. The five groups included control (corn-soybean meal diet) and 4 of a half or full replacement for fish meal by FSBMA or FSBMA+L. The results indicated that chicks fed diet of FSBMA or FSBMA+L for half replacement of fish meal content didn`t be significantly different with body weight gain, feed intake and feed conversion compared with control group (P > 0.05). However, full FSBMA or FSBMA+L replacement groups significantly decreased the body weight gain and body weight at 35 day of age (P < 0.05). The pH of crop and ileum in broilers fed FSBMA and FSBMA+L was lower than in control group at 21-day-age. FSBMA+L could reduce both Coliform and Enteric bacilli population of crop and ileum at 21 day of age (P < 0.05). In addition, the fecal ammonia concentration of broilers fed FSBMA and FSBMA+L was less compared control group. In summary, FSBMA and FSBMA+L could replace a half content of fish meal in broiler diet, then the growth performance didn`t have negative effect. FSBMA+L could depress the pathogens of digestive tract and improved gut health of young broiler chicken.
URI: http://hdl.handle.net/11455/25306
其他識別: U0005-1908201013324800
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-1908201013324800
Appears in Collections:動物科學系

文件中的檔案:

取得全文請前往華藝線上圖書館

Show full item record
 
TAIR Related Article
 
Citations:


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.