Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/2532
標題: α-type史特靈引擎性能模擬與分析
α Type Stirling Engine Performance Analysis
作者: 楊浚泯
Yang, Chun-Min
關鍵字: α-type Stirling engine
α型史特靈引擎
thermodynamics model
engine performance
heat transfer coefficient ratio
熱力學模式
引擎性能
熱傳系數比
出版社: 機械工程學系所
引用: [1] Key World Energy Statistics 2009. Available at: www.iea.org/textbase/nppdf/free/2009/key_stats_2009.pdf [2]能源供給表,經濟部能源局,2009 [3] Wikipedia. renewable energy. Available at: http://en.wikipedia.org/wiki/File:Ren2008.png [4] Caleb C. Lloyd. 2009. A low temperature differential stirling engine for power generation. [5] Wikipedia. Stirling engine theory. Available at: http://en.wikipedia.org/wiki/Stirling_Cycle#theory [6] Urieli, Israel. 2008. Stirling Cycle Machine Analysis Ohio University Russ College of Engineering and Technology. Available at: http://www.ent.ohiou.edu/~urieli/stirling/me422.html. [7] Wikipedia. Stirling Engine. Available at: http://en.wikipedia.org/wiki/Stirling_engine. [8]http://www.photology.fr/stirling/stirlinglinear.html [9] MSI employs Stirling Engine Theory. Available at: http://www.tweaktown.com/news/9051/msi_employs_stirling_engine_theory/index.html [10]Clever Swedish and their AIP subs. Available at: http://zerosix.wordpress.com/2007/07/22/clever-swedes-and-their-aip-subs-part-1/ [11] Sandia, Stirling to build solar dish engine power plant. Available at: http://www.sandia.gov/news-center/news-releases/2004/renew-energy-batt/Stirling.htm [12] Hidekazu Takizawa Nobolu Kagawa. 2002. Performance of New Matrix for Stirling Regenerator. IECEC 37th. [13] 許世宗。2002。利用史特靈引擎回收焚化爐廢熱之熱傳分析。 [14] Bancha Kongtragool a, Somchai Wongwises b. A review of solar-powered Stirling engines and low temperature differential Stirling engines science direct. [15] 林育煌。2005。使用菱形驅動機構之同軸式史特靈引擎研究。 [16] 潘俊煌。2006。太陽能追蹤式碟型集熱史特靈發電系統。 [17] 蔣小偉。2007。太陽能微型渦輪史特靈複合式發電系統技術研發,國科會計畫。 [18]黃仲雍。2005。移氣閥式stirling引擎性能分析與測量。 [19]郭凱琳。2008。 γ型史特靈引擎性能模擬與內部流場分析。 [20]http://www.quirao.com/en/p/inventions/stirling-engines-/26674/hb28-bohm-stirling-engine.htm [21] Annand, W.J. Heat Transfer in the Cylinders of Reciprocating Internal Combustion Engine. Proc. Instn. Mech. Engrs, vol. 177. [22] The engineering toolbox. Available at: http://www.engineeringtoolbox.com/hydrogen-d_1419.html [23] Gas Viscosity Calculator. Available at: http://www.lmnoeng.com/Flow/GasViscosity.htm [24] Fundamental of Thermaldynamics by Sonntag, Borgnakke, Van Wylen sixth edition P.434. ISBN 0-471-15232-3 [25] http://www.bekkoame.ne.jp/~khirata/academic/schmidt/schmidt.htm [26] Yunus A. Cengel and Robert H. Fundamental of Thermal-Fulid Sciences. Turner ISBN 007-123926-x. [27] Tanaka, M., Yamashita, I. and Chisaka, F. Flow and heat transfer characteristics of Stirling engine regenerator in an oscillating flow JSME Inr J: Ser II (1990) 33 283-289
摘要: 本文主要針對α型史特靈引擎內部流場進行分析、計算,以探討操作參數、設計參數對於引擎效率、輸出功率之影響,提供設計者做為參考、修正依據。本文分為兩個模式對史特靈引擎進行分析,第一部分為無再生器之引擎模式、第二部分為有再生器之引擎模式。本文依據熱力學模式推導出相關方程式,再利用MATLAB程式語言撰寫引擎性能分析程式計算。 經由改變引擎的設計參數,得知在無再生器模式中,引擎連通管尺寸對引擎性能有顯著的影響,在本模式中連通管長度越長導致效率越低、輸出功率越小,長度越短引擎效率越高、輸出功率越大。連通管的管徑在本模式中有最佳尺寸3mm。在相位角為90度時,引擎有最大輸出功率。當相位角為80度時,引擎有最大效率。熱傳係數比越大、引擎輸出功率越大、效率越高。當熱傳係數比為1時,引擎效率為7.81%、輸出功率為193.23W,當熱傳係數比提高至3時,引擎效率提高至13%、輸出功率提高至335.23W。 在有再生器的引擎模式中,加熱管尺寸對引擎性能分析的模擬中發現,加熱管長度、直徑有最佳值。相位角對於引擎性能影響的測試中發現,本模式中引擎在相位角為70度時有最大輸出功率,在相位角60度時效率有最大值。增加工作流體熱傳係數能有效提高引擎性能,當熱傳係數提高至3倍時,引擎效率由11.54%提升至13.52%,輸出功率可由99.78W提升至117.21W。 無再生器的模式中,引擎效率為7.81%,有再生器的模式中,引擎效率為12.07%,提升54.55%的引擎效率,由此可知加裝再生器確實能提升史特靈引擎之效率。 本研究發展出一個可藉由輸入引擎設計參數,計算出引擎效率與輸出功率的程式,欲製作史特靈引擎的設計者可藉由本程式先行估算該引擎可能的輸出功率與效率。
The aim of this study is to discuss the effect of engine parameters and engine performance of alpha type Stirling engine using thermodynamic and heat transfer analysis of the flow in the engine. In order to improve the engine performance, the simulation result could be used as a reference to the designer. In this study, two different models are conducted to evaluate Stirling engine. One is with regenerator and the other one is without regenerator. Based on the models which derived in this study we wrote a program with MATLAB to analysis the engine performance. Changing the design parameters in the model with no regenerator has affected the performance of Stirling engine. The size of connecting tube influences the engine performance strongly. In the model the shorter length of connecting tube results the greater power output and efficiency. The optimize diameter in this model is 3 mm. The maximum work output obtains at the phase angle 90 degrees, while the maximum efficiency occurs at 80 degree. The heat transfer coefficient has high inflection to the engine performance. To change the ratio of heat transfer coefficient from 1 to 3, the efficiency of engine varies from 7.81% to 13% and the work output varies from 193.23W to 335.23W. While testing the model with regenerator we have several results. The size of heating tube has great influenced the engine performance. There are the optimize length and diameter in the engine. Changing phase angle, we found out that at 70 degree engine has the maximum output and at 60 degree it has the greatest efficiency. Heat transfer coefficient ratio of the working fluid has strongly affected the engine performance, when the heat transfer ratio changes from 1 to 3, the engines efficiency varies from 11.54% to 13.52%, the power varies from 99.78 W to 117.21 W. The engine efficiency of Stirling engine with and without regenerator are 7.81% and 12.07% respectively. The utilized of regenerator could increases 54.55% of engine efficiency. The model could be used to design and evaluate Stirling engine performance and the modified design parameter could be performed. The results could be simulated before construct the engine.
URI: http://hdl.handle.net/11455/2532
其他識別: U0005-2508201003123500
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2508201003123500
Appears in Collections:機械工程學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.