Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/25379
標題: 乳牛多形核嗜中性白血球上TNF-α自泌調控血纖維酶原活化系統對乳腺組織重組之探討
Bovine PMN-associated TNF-α autocrine regulation of plasminogen activation system in mammary tissue remodeling
作者: 周文科
Chou, Wen-Ko
關鍵字: involution
乳腺退化
dry period
PMN
casein
PA system
plasmin
uPA
TNF-α
autocrine
somatic cell
乾乳期
酪蛋白
PA系統
PMN
plasmin
uPA
TNF-α
自泌作用
體細胞
出版社: 畜產學系所
引用: Adamson, N. J. and E. C. Reynold. 1995. Characterization of multiply phosphorylated peptides selectively precipitated from a pancreatic casein digest. J. Dairy Sci. 78:2653-2659. Akers, R. M., W. E. Beal, T. B. Mcfadden and A. V. Capuco. 1990. Morphometric analysis of involuting bovine mammary tissue after 21 or 42 days on ono-suckling. J. Anim. Sci. 68:3604-3613. Andreasen, PA., B. Georg, LR. Lund, A. Riccio and SN. Stacey. 1990. Plasminogen activator inhibitors: hormonally regulated serpins. Mol Cell Endocrinol. 68:1-19. Annen, E. L., R. J. Collier, M. A. Mcguire and J. L. Vincini. 2004. Effects of dry period length on milk yield and mammary epithelial cells. J. Dairy Sci. 87:66-76. Athie, F., K. C. Bachman, H. H. Head, M. J. Hayen and C. J. Wilcox. 1997. Milk plasmin during bovine mammary involution that has been accelerated by estrogen. J. Dairy Sci. 80:1561-1568. Balkwill, F. 2002. Tumornecrosis factor or tumor promoting factor? Cytokine & gowth factor review 13:135-141. Bastian, E. D. and R. J. Brown. 1996. Plasmin in milk and dairy products: an update. Int. Dairy Journal 6:435-457. Benfelt, C., L. B. Larsen, J.T. Rasmussen, P. A.Andreasen and T. E. Petersen. 1996. Isolation and characterization of plasminogen and plasmin from bovine milk. Int. Dairy Journal 5:577-592. Berglund, L., M. D. Anderson and T. E. Petersen. 1995. Cloning and characterization of the bovine plasminogen cDNA. Int. Dairy Journal 5:593-603. Blasi, F. and P. Carmeliet. 2002. uPAR: a versatile signaling orchestrator. Nature 3:932-943. Bode, W. and M. Renaltus. 1997. Tissue-type plasminogen activator: variants and crystal/solution structures demarcates of function. Curr. Opin. Struct. Biol.7:865-872. Borregaard, N. and J. B. Cowland. 1997. Dranule of the human neutrophilic polymorphonuclear leukocyte. Blood vol89:3503-3521. Bradford, M. 1976. A rapid and sensitive method for the quantitation of microgram quantities utilizing the principle of protein dye binding. Anal. Biochem. 72:248-254. Brisken, C. 2002. Hormonal control of alveolar development and its implications for breast carcinogenesis. J. Mammary Gland Boil. Neoplasia 7:49-66. Capple, D. S., D. J. Masin, C. L. Joannou, E. W. Odell, V. Gant and R. W. Evans. 1998. Sructure-function relationship of antibacterial synthetic peptides homologous to a helical surface region on human lactoferrin against Escherichia coli serotype 0111. Infect. Immun. 66:2434-2440. Capuco, A. V. and R. M. Akers. 1999. Mammary involution in dairy animals. J. Mammary Gland Boil. Neoplasia 4:137-144. Capuco, A. V., R. M. Akers and J. J. Smith. 1997. Mammary structurally-distinct cell populations contribute to murine mammary epithelial renewal. Tissue cell 29:239-253. Capuco, A. V. and S. Ellis. 2005. Bovine mammary progenitor cells: current concepts and future directions. J. Mammary Gland Boil. Neoplasia 10:5-15. Cassatella, M. A. 1995. The production of cytokines by polymorphonuclear neutrophils. Immunology today 16:21-26. Chen, G. and D. V. Goeddel. 2002. TNF-R1 signaling: a beautiful pathway. Science 296:1634-1635. Coley, W. B. 1906. Late results of the treatment of inoperable sarcoma by the mixed toxins of erysipelas and bacillus prodigiosus. Am J Med Sci. 131:375-430. Dano, K., P. A. Andreasen, J. Hansen-Grondahl, P. Kristensen and L. S. Nielsen. 1985. Plasminogen activators, tissue degradation, and cancer. Adv. Cancer Res. 44:139-266. Faurschou, M. and N. Borregaard. 2003. Neutrophil granules and secretory vesicles in inflammation. Microbes and Infection 5:1317-1327. Fiat, A., D. Migliore-Samour, P. Jolles, L. Drouet, C. Sollier and J. Caen. 1993. Biologically active peptides from milk proteins with emphasis on two examples concerning antithrombotic and immunomodulating activities. J Dairy Sci 76:301-310. Fodok, V. A., D. L. Bratton, A. Konowal, P. W. Freed, J. Y. Westcott, and P. W. Henson. 1998. Macrophages that have ingested apoptotic cells in vitro inhibit proinflammatory cytokine production through autocrine/paracrine mechanisms involving TGF-β, PGE2, and PAF. J. Clin. Invest. 101:890-898. Garofalo, R. P. and Goldman, A. S. 1998. Cytokines, Chemokines, and Colony-Stimulating Factors in Human Milk: The 1997 Update. 74:134-142. Ge, Y. and M. T. Elghetany. 2003. Urokinase plasminogen activator receptor (CD87): something old, something new. Hematology 9:67-71. Goodman, R. E. and F. L. Schanbacher. 1991. Bovine lactoferrin mRNA: sequence, analysis, and expression in the mammary gland. Biochem Biophys Res Commun. 180:75-84. Grufferty, MB. and PF. Fox. 1988. Milk alkaline protease. J. Dairy Res. 55:609-630. Grutter, MG. 2000. Caspases: key players in programmed cell death. Curr. Opin. Struct. Biol. 10:649-655. Hartmann, P. E. 1973. Change in the composition and yield of the mammary secretion of cows during the initiation of lactation. J. Endocrinol. 59:231-247. Hengartner, M. 2000. Biochemistry of apoptosis. Nature 407:770-776. Hurley, W. L., M. Aslam, H. M. Hegarty and A. Morkoc. 1994. Synthesis of lactoferrin and casein by explants of bovine mammary tissue. Cell Biol. Int. 18:629-638. Ilkbahar, Y. N., G. Thordarson, I. G. Camarillo and F. Talamantes. 1999. Differential expression of the growth hormone receptor and growth hormone-binding protein in epithelia and stroma of the mouse mammary gland at various physiological stages. J. Endocrinol. 161:77-87. Innocente, N., C. Corradini, C. Blecker and M. Paquot. 1998. Dynamic surface properties of the proteose-peptone fraction of bovine milk. J. Dairy Sci. 81:1833-1839. Irigoyen, J. P., P. Munoz-Canoves, L. Montero, M. Koziczak and Y. Nagamine. 1999. The plasminogen activatorsystem: biology and regulation. Cell Mol. Life Sci. 56: 104-132. Isseroff, RR. and Rifkin DB. 1983. Plasminogen is present in the basal layer of the epidermis. J Invest Dermatol. 80:297-299. Kelliher, MA., S. Grimm, Y. Ishida, F. Kuo, BZ. Stanger and P. Leder. 1998. The death domain kinase RIP mediates the TNF-induced NF-kappaB signal. Immunity 8:297-303. Kjeldsen, L., O. W. Bjerrum, D. Hovgaard, A. H. Johnsen, M. Sehested and N. Borregaard. 1992. Human neutrophil gelatinase: a marker for circulating blood neutrophils. Purification and quantitation by enzyme linked immunosorbent assay. Eur. J. Haematol. 49:180-191. Kwak, SH., S. Mitra, K. Bdeir, D. Strassheim, JS. Park, JY Kim, S. Idell, D. Cines and E. Abraham. 2005. The kringle domain of urokinase-type plasminogen activator potentiates LPS-induced neutrophil activation through interaction with Vß3 integrins. J. Leuk. Biol. 78:937-945. Larrick, J. W. and S. C. Wright. 1990. Cytotoxic mechanism of tumor necrosis factor-α. FASEB J. 4:3215-3223. Liang, O. D., T. Chavakis, S. M. Kanse and K. T. Preissner. 2001. Ligand Binding Regions in the Receptor for Urokinase-type Plasminogen Activator. J. Biol. chem. 276:28946-28953. Linda, M. V. and M. IP. Margot. 1996. Tumor necrosis factor-α: a multifunctional regulation of mammary gland development. Endocrinology 137:4915-4924. Locksley, R. M., N. Killen and M. J. Lenardo. 2001. The TNF and TNF receptor superfamilies: integrating mammalian biology. Cell 104:487-501. Longstaff, C., RE. Merton, P. Fabregas and J. Felez. 1999. Characterization of Cell-Associated Plasminogen Activation Catalyzed by Urokinase-Type Plasminogen Activator, but Independent of Urokinase Receptor (uPAR, CD87). Blood 93:3839-3846. Lund, L. R., J. Rømer, N. Thomasset, H. Solberg, C. Pyke, M. J. Bissell, K. Danø and Z. Werb. 1996. Two distinct phases of apoptosis in mammary gland involution: proteinase-independent and -dependent pathways. Development 122: 181-193. MacEwan, D. J. 2002. TNF ligands and receptors- a matter of life and death. Br. J. Pharmacol. 135: 855-875. Monks, J., F. J. Geske, L. Lehman and V. A. Fadok. 2002. Do inflammatory cells participate in mammary gland involution? J. Mammary Gland Boil. Neoplasia 7:163-176. Murdoch, J., E. A. Van kirk and W. J. Murdoch. 1999. Hormonal control of urokinase plasminogen activator secretion by sheep ovarian surface epithelial cells. Biol. Reprod. 61:1487-1491. Mustjoki, S., N. Sidenius, C. F. M. Sier, F. Blasi, E. Elonne, R. Alitalo and A. Vaheri. 2000. Soluble urokinase receptor levels correlate with number of circulating tumor cells in acute myeloid leukemia and derease rapidly during chemotherapy. Cancer Res. 60:7126-7132. Nguyen, DA. D. and M. C. Neville. Tight juction regulation in the mammary gland. J. Mammary Gland Boil. Neoplasia 3:233-246. Neville, M. C. and J. Morton. 2001. Physiology and endocrine changes underlying human lactogenesis II. J. Nutr. 131:3005-3008. Ostroski, S. R., Piironen, T. Høyer-Hansen, G. Gerstof, J. Pedersen, B. K. and Ullum, H. 2005. Reduced Release of Intact and Cleaved Urokinase Receptor in Stimulated Whole-Blood Cultures from Human Immunodeficiency Virus-1-Infected Patients. Scandinavian Journal of Immunology 61:347-356. Paape, M. J., D. D. Bannerman, X. Zhao and J. W. Lee. 2003. The bovine neutrophil: Structure and function in blood and milk. Vet. Res. 34:597-627. Paker, F., D. Migliore-Samour, F. Floc'h, A. Zerial, GH. Werner, J. Jolles, M. Casaretto, H. Zahn and P. Jolles. 1984. Immunostimulating hexapeptide from human casein: amino acid sequence, synthesis and biological properties. Eur. J. Biochem 145:677-682. Plesner, T., M. Ploug, V. Ellis, E. Ronne, G. Hoyer-Hansen, M. Wittrup, T. L. Pedersen, T. Tscherning, K. Dano and N. E. Hansen. 1994. The receptor for urokinase - type plasminogen activator and urokinase is translocated from two distinct intracellular compartments to the plasma membrane on stimulation of human neutrophils. Blood 83:808-815. Plesner, T., N. Behrendt and M. Ploug. 1997. Structure, function and expression on blood and bone marrow cells of the urokinase-type plasminogen activator receptor, uPAR. Stem cell 15:398-408. Ploug, M., H. Gårdsvoll, T. J. D. Jørgensen, L. Lønborg Hansen and K. Danø. 2002. Structural analysis of the interaction between urokinase-type plasminogen activator and its receptor: a potential target for anti-invasive cancer therapy. Biochem. Soc. Trans. 30:177-183. Pluskota, E., D. A. Soloviev, K. Bdeir, D. B. Cines and E. F. Plow. 2004. Integrin αMβ2 orchestrates and accelerates plasminogen activation and fibrinolysis by neutrophils. J. Biol. Chem. 279:18063-18072. Politis, I., E. Lachance, E Block and J. D. Turner. 1989. Plasmin and plasminogen in bovine milk: a relationship with involution? J. Dairy Sci. 72:900-907. Politis, I. and K. F. N. K. Hang. 1989. Environmental factors affecting plasmin in milk. J. Dairy Sci. 72:1913-1918. Politis, I. 1996. Plasminogen Activator System: Implications for Mammary Cell Growth and Involution. J.Dairy Sci. 79:1097-1107. Potempa, J., E. Korzus and J. Travis. 1994. The serpin superfamily of proteinase inhibitors: structure, function, and regulation. 269:15957-15960. Raum, D., D. Macrus, CA. Alper, R. Levey, PD. Taylor and TE. Starzl. 1980. Synthesis of human plasminogen by the liver. Sience 208:1036-1037. Remond, B., J. Rouel, N. Pinson and S. Jabet. 1997. An attempt to omit the dry period over three consecutive lactations in dairy cows. Ann. Zootech. 46:399-408. Sakesla, O. and K. K. Vihko. 1986. Local synthesis of plasminogen by the seminiferous tubules of the testis. FEBS Lett. 204:193-197. Schaller, J., P. W. Moser, G. A. K. Dannegger-Muller, S. J. Rosselet, U. Kampfer and E. E. Rickli. 1985. Complete amino acid sequence of bovine plasminogen. Eur. Biol chem. 149:267-278. Seiffert, D., J. Mimuro, RR. Schleef and DJ. Loskutoff. 1990. Interactions between type 1 plasminogen activator inhibitor, extracellular matrix and vitronectin. 32:287-292. Sengelov, H., L. Kjeldsen, M. S. Diamond, T. A. Springer and N. Boreegaard. 1993. Subcellular localization and dynamics of Mac-1 (alpha m beta 2) in human neutrophils. J. Clin. Invest. 92:1467-1476. Sengelov, H., P. Follin, L. Kjeldsen, K. Lollike, C. Dahlgren and N. Borregaard. 1995. Mobilization of granules and secretory vesicles during in vivo exudation of human neutrophils. J. Immunol. 154:4157-4165. Shamay, A., F. Shapiro, G. Leitner and N. Silanikove. 2003. Infusions of casein hydrolysates into the mammary gland disrupt tight junction integrity and induce involution in cows. J. Dairy Sci. 86:1250-1258. Shea-Eaton, W. K., PP. H. Lee and M. M. IP. 2001. Regulation of milk protein gene expression in normal mammary epithelial cells by tumor necrosis factor. Endocrinology 142:2558-2568. Silanikove, N., A. Shamay, D. Shinder and A. Moran. 2000. Stress down regulates milk yield in cows by plasmin induced β-casein product that blocks K+ channels on the apical membranes. Life Science 67:2201-2212. Sitrin, R. G., P. M. Pan, H. A. Harper, R. A. Blackwood and R. F. Todd III. 1999. Urokinae receptor (CD87) aggregation triggers phosphoinositide hydrolysis nd intracellular calcium mobilization in mononuclear phagocytes. J. Immunol. 163: 6193-6200. Sitrin, R. G., R. F. Todd III, I. F. Mizukami, T. J. Gross, S. B. Shollenberger and M. R. Gyetko. 1994. Cytokine-specific regulation of urokinase receptor (CD87) expression by U937 mononuclear phagocyte. Blood 84:1268-1275. Sottrup-Jensen, L., H. Claeys, M. Zajdel, TE. Petersen and S. Magnusson. 1978. The primary structure of human plasminogen: isolation of two lysine-binding fragments and one "mini"-plasminogen (M.W. 38,000) by elastase-catalyzed specific limited proteolysis. Progress in chemical fibrinolysis and thrombolysis 3:191-209. Stepaniak, L. 2004. Dairy enzymology. International Journal of Dairy Technology 57:153-171. Takeda, K., S. Iwamato, H. Sugimoto, T. Takuma, N. Kawatani, M. Node, A. Masaki, H. Morise, H. Arimura and K. Konno. 1986. Identity of differentiation inducing factor and tumor necrosis factor. Nature 323:338-340. Urban, J. L., H. M. Shepard, J. L. Rothstein, B. J. Sugarman and H. Schreiber. 1986. Tumor necrosis factor: a potent effector molecule for tumor cell killing by activated macrophages. Proc Natl Acad Sci USA 83:5233-5237. Van Hinsbergh, V. W. M., E. A. Van den Berg, W. Fisher and G. Dooijewaard. 1990. Tumor necrosis factor induces the production of urokinase - type plasminogen activator by human endothelial cells. Blood 75:1991-1998. Varela, L. M. and M. M. IP. 1996. Tumor necrosis factor-α: a multifunctional regulator of mammary gland development. Endocrinology 137: 4915-4924. Weng, M. H., C. J. Chang, W. Y. Chan, W. K. Chou, H. C. Peh, M. C. Huang, M. T. Chen and H. Nagahata. 2006. Contribution of somatic cell-associated activation of plasminogen to caseinolysis within the goat mammary gland. J. Dairy Sci. 89:2025-2037. Wilde, C. J., C. H. Knight and D. J. Flint. 1999. Control of milk secretion and apoptosis during mammary involution. J. Mammary Gland Boil. Neoplasia 4:129-136. Wilde, C. J., C. Addey, P. Li and D. G. Fernig. 1997. Programmed cell death in bovine mammary tissue during lactation and involution. Exper. Physiol. 82: 943-953. Wu, SC., F. J. Castellino and SL. Wong. 2003. A fast-acting, module-structured straphylokinase fusion with kringle-1 from human plasminogen as the fibrin-targeting domain offers improved clot lysis efficacy. J. Biol. Chem. 278:18199-18206. Xiao, C., LZ. Jin and X. Zhao. 2000. Bovine casein peptides co-stimulate native macrophages with lipopolysaccharide for proinflammatory cytokine production and nitric oxide release. J. Sci. Food Agric 81:300-304. Xing, L. and D. G. Remick. 2003. Relative cytokine and cytokine inhibitor production by mononuclear cells and neutrophils. Shock 20:10-16.
摘要: 本試驗的目的在測定乾乳時乳腺分泌物之蛋白質水解與體細胞上plasminogen activation system (PA system) 的活化程度。同時應用試管中polymorphonuclear neutrophil (PMN) 為細胞模型,探討乾乳分泌物調控PA系統的生物活性及tumor necrosis factor-α (TNF-α) 可能角色。本試驗每週一次收集停止泌乳後一至三週之乳腺分泌物,分別利用100,000 x g 沉澱酪蛋白 (casein, CN),或是1700 x g製備體細胞以及乳清。結果發現casein比例隨乾乳期間而逐漸下降,總蛋白量則隨乾乳時間而漸增。體細胞數以及neutrophil/macrophage ratio (N/M ratio) 會在第一週乾乳顯著的上升 (P < 0.05)。乳清中urokinase-type plasminogen activator (uPA) 以及plasmin在乾乳時的活性,發現在乾乳第一週會比第二以及第三週有最顯著的plasmin活性上升 (P < 0.05),uPA在乾乳期間則無顯著的增加。體細胞中uPA以及TNF-α的表現,發現uPA基因會隨乾乳進行顯著降低在體細胞的表現,TNF-α基因則會在第一週乾乳時表現最顯著 (P < 0.05),第二以及第三週下降。分離血液中PMN作為細胞模型,觀察添加第一週乾乳分泌物處理對PA系統的影響,並添加TNF-α抗體觀察TNF-α在PA系統活化上的角色。試驗發現,乾乳分泌物並不能很顯著的增加游離態uPA以及plasmin在的活性,但是添加TNF-α抗體後可以顯著的抑制PMN釋放plasmin以及uPA。乾乳分泌物對PMN TNF-α以及uPA基因表現的影響發現,乾乳分泌物顯著的增加了兩者的表現,加入TNF-α抗體後PMN TNF-α以及uPA基因的表現會部分的下降。從uPA以及plasmin在乾乳乳腺分泌物中活性的測量結果可以推測, plasmin會在乾乳期間上升活性,可能藉此參與乳線的退化。乾乳時uPA活性並不會產生改變,因此plasmin活性的上升可能是因為乾乳時tight junction滲透性改變,血液中PMN 以及plasminogen轉移到乳腔中被活化,而導致plasmin活性的上升,進而參與extracellular matrix (ECM)重組以及酪蛋白的水解。從in vitro試驗結果可以推測乳腺乾乳分泌物可以刺激PMN TNF-α以及uPA重新合成,而TNF-α的路徑也會部分的參與其中。添加TNF-α抗體後可以顯著的抑制PMN釋放plasmin以及uPA,顯示在PMN PA系統活化時內生性的TNF-α會以自泌的方式參與,進而影響PA系統的活性。綜合以上的結果可以得到以下結論,停止泌乳後乳腺分泌物內有大量的酪蛋白水解以及plasminogen活化產生。而早期乾乳分泌物中分離出來的體細胞可以發現TNF-α以及uPA基因顯著的表現,可以推測乾乳牛乳腺內體細胞所分泌的TNF-α會以自泌作用的方式來調節本身的PA系統的活性。進一步藉由血液中分離出的PMN為模型發現,PMN基礎釋出uPA以及plasmin的能力部分必須依靠自泌方式作用的TNF-α途徑才能維持。添加乾乳分泌物可以部分的經由TNF-α自泌作用的途徑稍微的使PMN釋出的uPA以及plasmin活性增加,同添加乾乳分泌物後發現PMN TNF-α會藉由重新合成,並以自泌的方式提升自身uPA的活性,因而增加釋出plasmin的能力,使PMN在乳腺組織重組的能力上升。
The research objective of this thesis was to investigate the extent of proteolysis of mammary secretion as well as the activation of plasminogen activation (PA) system on somatic cells in dried-off cows. An in vitro model using polymorphonuclear neutrophil (PMN) isolated from peripheral blood was used to explore the bioactivity of dry-cow mammary secretion in PA system activation and the involvement of TNF-α. Dry secretion was collected at weeks 0 to 3 (wk0-wk3) posterior to milk stasis. Precipitation with 100,000 x g was used for casein determination while 1700 x g was used for separation somatic cells and milk serum. Results showed that the ratio of casein to total protein decreased with the advancement of dry period while microscopc somatic cell count (MSCC) and neutrophil/macrophage ratio (M/N) increased significant (P<0.05) since wk1. On the other hand, plasmin activity in milk serum of dry mammary secretion was significant (P<0.05) higher at wk1 compared with wk0 while the activity of urokinase plasminogen activator (uPA) did not show difference thoughtout wk0-wk3. The expression of uPA on somatic cells decreased along with the process of drying-off while the expression of TNF-α was significant increased (P<0.05) at wk1 then drcreased at wk 2 and wk3. In vitro study using blood PMN and antiTNFα antibody indicated that although dry mammary secretion did not significantly stimulate PMN-associated activities of uPA and plasmin, antiTNFα significantly (P<0.05) reduced these PMN-associated activities. Results of in vitro study also indicated that dry mammary secretion significant (P<0.05) induced TNF-α and uPA expressions on PMN which were partially blocked by antiTNFα antibody. Since plasmin activity, but not uPA activity, in dry secretion elevated in parallel with the progress of dry period, suggesting that plasmin might participate in mammary gland involution and its elevation was likely due to plasminogen migration from circulation to mammary gland through tight junction. In vitro study demonstreated that dry mammary secretion of cow contains factors responsible to the induction of neosyntheses of TNF-α and uPA in PMN. The finding that antiTNFα significantly decreased PMN-associated uPA and plasmin activity suggests the involvement of autocrine loop of PMN endogenous TNF-α. Combining of the in vivo and in vitro results we conclude that extensive caseinolysis and activation of plasminogen were observed in mammary gland secretion after stasis. Expressions of TNF-α and uPA on somatic cells were greater at earlier stage post milk stasis suggesting a role of somatic cell-associated TNF-α in autocrine regulation of plasmin system in mammary gland of dry cows. The constitutive plasmin and uPA activities of PMN were partially dependent on an autocrine TNF-α pathway. Early dry secretion of cows slightly increased PMN-associated plasmin activity and significantly stimulated uPA releasing by PMN partially via an autocrine TNF-α pathway. Early dry secretion of cow significantly up-regulated expressions of uPA and TNF-α on PMN via an autocrine TNF-α pathway and contribute to mammary tissue remodeling.
URI: http://hdl.handle.net/11455/25379
其他識別: U0005-1208200623023900
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-1208200623023900
Appears in Collections:動物科學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.