Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/25630
DC FieldValueLanguage
dc.contributor陳仁炫zh_TW
dc.contributor.author陳禹潔zh_TW
dc.contributor.authorChen, Yu-Chiehen_US
dc.contributor.other土壤環境科學系所zh_TW
dc.date2013en_US
dc.date.accessioned2014-06-06T07:25:47Z-
dc.date.available2014-06-06T07:25:47Z-
dc.identifierU0005-2008201320361300en_US
dc.identifier.citation王銀波、劉黔蘭、吳論、林宴夙。1986。銅、鋅、鎘及鉻對土壤微生物與作物生長的影響。農林學報。35:97-109。 行政院環保署。2013。全國農地重金屬污染潛勢調查成果報告。 行政院環保署。2011。土壤污染管制標準。 朱育賢。2006。淋洗對污染農地重金屬的去除效果及其對土壤肥力之衝擊。國立中興大學環境工程學系研究所碩士論文。 初建。1994。台灣數種污染土壤之重金屬型態及其釋放趨勢。國立中興大學土壤環境科學系碩士倫文。 吳君蘭、張國平、朱恩、吳敬忠、張霆。2005。土壤中重金屬含量檢測技術研究。上海農業學報。21(14) : 82-85。 吳家誠、呂進榮。2002。台灣地區不同土綱土壤中重金屬總量檢測分析。行政院環境保護署。 李芷儀。2009。以植生復育技術處理受重金屬銅、鉻與鎳污染土壤之研究。嘉南藥理科技大學環境工程與科學系碩士論文。 林易署、陳俊桀、楊純明。2013。簡介農地之重金屬污染及其復育。農業試驗所技術服務。93:6-10。 郝漢舟、靳孟貴、李瑞敏、王支農、韓冰華、祖文普。2010。耕地土壤銅、鎘、鋅型態及生物有效性研究。生態環境學報。19(1):92-96。 莊佩祺。2003。土壤重金屬污染物化合物型態分布之影響因子探討。逢甲大學環境工程與科學學系碩士論文。 許正一。2011。土壤重金屬知多少。科學發展。486:54-59。 許振宏、駱尚廉。2001。動物廢棄物堆肥期間銅錳與鋅化學特性與溶出性變化之研究。台東師院學報。12: 37-58。 陳仁炫。1995。有機質肥料的添加對土壤磷吸附及礦化作用之影響。中國農化會誌。31: 399-411。 陳慎德。2003。淺論我國農地土壤重金屬污染處理之現況與問題。台灣土壤及地水環境保護協會簡訊。9:10-17。 黃舒瑜。2003。土壤重金屬0.1 N HCl 萃取量與全量濃度之相關性研究。逢甲大學環境工程與科學學系碩士論文。 楊淞富。2005。深耕翻轉與酸洗對污染農地中重金屬之去除效率及肥力之影響。國立成功大學環境工程學系碩士論文。 楊逸秋。2012。翻土混合稀釋法對受重金屬鉻污染農地土壤整治復育成效之研究。國立臺北科技大學環境工程與管理研究碩士論文。 廖婉岑。2010。不同改良資材對同和鎘污染之強酸性土壤的改良。國立中興大學土壤環境科學系研究所碩士論文。 廖祿津。2006。受重金屬污染農地土壤調查及整治技術之探討。國立中興大學環境工程學系所在職專班碩士學位論文。 劉文徹、李松伍、王銀波。1995。有機肥料之施用與土壤重金屬之聚積、作物吸收之關係。有機質肥料合理施用技術改進研討會專刊。 歐淑真。2003。評估四種有機資材在不同性質土壤的氮與磷之釋出效應。國立中興大學土壤環境科學系碩士論文。 蔡妮珊。2006。有機資材的施用對銅和鎳污染土壤之改良效果研究。國立中興大學土壤環境科學系研究所碩士論文。 蔡宜峰、莊作權、黃裕銘。1993。一般有機質在土壤中礦化潛能及礦化速率之估算。永續農業研討會專集。69-77。 蔡宜峰、陳清文。1993。施用牛糞堆肥對一般作物及土壤特性之影響效應。台中區農業改良場研究彙報。40:9-16 蔡宜峰、黃祥慶。1998。有機堆肥製作之原理及要領。台中區農推專訊 116 期。 蔡青芬。2011。評估不同組合有機廢棄物對蚯蚓生長及蚓糞堆肥特性的影響。國立中興大學土壤環境科學系研究所碩士論文。 賴鴻裕、陳尊賢。2005。由國內外之試驗結果探討環保署土壤重金屬污染法規標準之合宜性。台灣土壤及地下水環境保護協會。16:3-12。 顏偉益。2010。評估有機廢棄物的特性對蚯蚓生長生殖及蚯蚓糞肥的影響。國立中興大學土壤環境科學系碩士論文。 鍾文俊。2010。事業廢棄堆肥之品質評估與應用。國立中興大學土壤環境科學系碩士論文。 Akbour, R.A., J. Douch , M. Hamdani and P. Schmitz. 2002. Transport of kaolinite colloids through quartz sand: influence of humic acid, Ca2+, and trace metals. Journal of Colloid & Interface Science, 253:1–8. Alva, A.K., T. J. Baugh, S. Paramasivam, K. S. Sajwan. 2005. Adsorption/Desorption of copper by a sandy soil amended with variousrates of manure, sewage sludge, and incinerated sewage sludge. J.Environ. Sci. Health, Part B, 40:687–696. Asada K., K. Toyota, T. Nishimura, J. Ikeda, K. Hori. 2010. Accumulation and mobility of zinc in soil amended with different levels of pig-manure compost. Journal of Environmental Science and Health. 45:285–292. Asada K., Y. Yabushita, H. Saito, T. Nishimura. 2012. Effect of long-term swine-manure application on soil hydraulic properties and heavy metal behaviour. European Journal of Soil Science. 63:368–376. Atiyeh R.M., C.A. Lee Edward, S. Sulbar, T. Metzger. 2001. Pig manure vermicompost as a component of a horticultural bedding plant medium. Effects on physiochemical properties and plant growth. Bioresour Techno, 78:11–20 Beesley L., E. Moreno-Jime’nez, R. Clemente, N. Lepp, N. Dickinson.2010. Mobility of arsenic, cadmium and zinc in a multi-element contaminatedsoil profile assessed by in-situ soil pore water sampling, column leaching and sequential extraction. Environmental Pollution, 158: 155–160. Beffa, T., M. Blanc, and R. Nogales. 2005. Hydrolytic enzyme activities of wxtracted humic substances during the vermicompost of lignocellulosic olive waste. Bioresour. Technol. 96: 785-790. Brock, E.H., Q.M. Ketterings, M. McBride. 2006. Copper and zinc accumulation in poultry and dairy manure-amended fields. Soil Science, 171(5):219-226. Brunetti G., K. Farrag, P. Soler-Rovira, M. Ferrara, F. Nigro, N. Senesi. 2012. The effect of compost and Bacillus licheniformis on the phytoextraction of Cr, Cu, Pb and Zn by three brassicaceae species from contaminated soils in the Apulia region, Southern Italy. Geoderma. 170:322–330 Clemente, R., and M. P. Bernal. 2006. Fractionation of heavy metals and distribution of organic carbon in two contaminated soils amended with humic acids. Chemosphere, 64:1264–1273. Contreras-Ramos S.M., D. A’ lvarez-Bernal, L.Dendooven. 2006. Eisenia fetida increased removal of polycyclic aromatic hydrocarbons from soil. Environmental Pollution, 141:396–401. Dominguez, J., and C.A. Edwards. 2004. Vermicomposting organic wastes: a review. In: Shakir, S.H., Mikha, W.Z.A. (Eds.), Soil Zoology for Sustainable Development in the 21st Century. Cairo, p. 369-396. Draft International standard ISO / DIS 11047. 1998. Soil quality- Determination of cadmium, chromium, cobalt, copper, lead, manganese, nickle and zinc in aqua regia extracts of soil- Flame and electrothermal atomic absorption spectrometric methods. Farrell M., Jones D. L.. 2010. Use of composts in the remediation of heavy metal contaminated soil. J Hazard Mater 175:575–582 Farrell M., W.T. Perkins, P.J. Hobbs, G.W. Griffith, D.L. Jones. 2010. Migration of heavy metals in soil as influenced by compost amendments. Environmental Pollution, 158:55-64. Havlin J.L., J.D. Beaton, S.L. Tisdale, W.L. Nelson. 2005. Soil fertility and fertilizers: an introduction to nutrient management, 7th edn. Prentice Hall, New York He X. T., T. J. Logan, and S. J. Traina. 1995. Physical and chemical characteristics of selected U.S. municipal solid waste composts. Journal of Environmental Quality. 24: 543-522. Hue, N.V., G.R., Graddock, and F. Adams. 1986. Effect of organic acids on aluminum toxicity in subsoil. Soil Sci. Soc. Am. J. 50:28-34. Jackson, B.P., W. P. Miller. 2000. Soil solution chemistry of a fly ash-, poultry litter-, and sewage sludge-amended soil. Journal of Environmental Quality, 29 (2):430–436. Johnsen A.R., L.Y. Wick, H. Harms. 2005. Principles of microbial PAH-degradation in soil. Environmental Pollution, 133:71–84. Jordao, C. P., R. B. A. Fernades, K. L. Ribeiro, P. M. Barros, M. P. F. Fontes, and F. M. P. Souza. 2010. A study on Al(III) and Fe(II)ions sorption by cattle manure vermicompost. Water Air Soil Pollut, 210:51-61. Jung, H. B., S. T. Yun, B. Mayer, S. O. Kim, S. S. Park, and P. K. Lee. 2005 . Transport and sediment-water partitioning of trace metals in acid mine drainage: an example from the abandoned Kwangyang Au-Ag mine area, South Korea. Environ. Geol, 48:437-449. Kabata-Pendias, A., Pendias, H., 2000. Trace Elements is Soils and Plants. CRC Press, Boca Raton, Florida, USA. Kamali S., A. Ronaghi, N. Karimian. 2011. Soil Zinc transformations as affected by applied zinc and organic materials. Communications in Soil Science and Plant Analysis, 42:1038-1049. Karimian, N., and J. Yasrebi. 2003. Effect of growing wheat, spinach, and lettuce on chemical forms of zinc in calcareous soils. Yemeni Journal of Science, 5(1):13–21. Kumpiene J., A. Lagerkvist, C. Maurice.2008. Stabilization of As, Cr, Cu, Pb and Zn in soil using amendments –A review. Waste Management , 28:215–225. Lai, H.Y.; Z.S. Chen. 2005. The EDTA effect on phytoextraction of single and combined metals-contaminated soils using rainbow pink (Dianthus chinensis). Chemospfere, 68:1062-1071. Lair, G.J., M.H.Gerzabek, G. Haberhauer, M. Jakusch,H. Kirchmann. 2006. Response of the sorption behavior of Cu, Cd, and Zn to different soil management. J. Plant Nutr. Soil Sci, 169:60–68. Lazcano, C., M. Gomez-Brandon, J. Dominguez. 2008. Comparison of the effectiveness of composting and vermicomposting for the biological stabilization of cattle manure. Chemosphere, 72:1013-1019. Luo X., S. Yu, X. Li. 2011. Distribution, availability, and sources of trace metals in different particle size fractions of urban soils in Hong Kong: Implications for assessing the risk to human health. Environmental Pollution, 159:1317-1326. Luo X., S. Yu, X. Li. 2012. The mobility, bioavailability, and human bioaccessibility of trace metals in urban soils of Hong Kong. Applied Geochemistry, 27:995-1004. Malik M. A., K. S. Khan, P. M., S. Ali. 2013. Organic amendments differ in their effect on microbial biomass and activity and on P pools in alkaline soils. Biol Fertil Soils, 49:415–425 Marinari S,G. Masciandaro, B. Ceccanti, S. Grego. 2000. Influence of organic and mineral fertilizers on soil biological and physical properties. Bioresour Technol, 72:9–17 Markman S., I.A. Guschina, S. Barnsley, K.L. Buchanan, D. Pascoe, C.T. Muller. 2007. Endocrine disrupting chemicals accumulate in earthworms exposed to sewage effluent. Chemosphere, 70:119-125. McGrath, S. P., and J. Cegarra. 1992. Chemical extractability of heavy metals during and after longterm application of sewage sludge to soil. Journal of Soil Science, 43:313– 321. McGrath, S. P., J. R. Sanders and M. H. Shalaby. 1988. The effects of soil organic matter levels on soil solution concentrations and extractabilities of manganese, zinc and copper. Geoderma, 42:177-188. Mench M., V. L. Didier, M. Loffler, A. Gomez, and P. Masson. 1994. A mimicked in-situremediation study of metal-contaminated soils with emphasis on cadmium and lead. J. Environ. Qual, 23:58-63. Ndegwa P.M., S.A. Thompson . 2000. Effect of C-to-N ratio on vermicomposting of Biosolids Bioresour. Technol, 75(1):7–12 Nwachukwu O. I., I. D. Pulford. 2008. Compawative effectiveness of selected adsorbant materials as potential amendments for the remediation of lead-, copper- and zinc-contaminated soil. Soil Use and Management, 24:199-207. Olueatosin G. A., O. D. Adeyolanu, T. O. Dauda, G. E. Akinbola. 2008. Levels and geochemical fractions of Cd, Pb and Zinc in valley bottom soils of some urban cities in southwestern Nigeria. African journal of Biotechnology. 7(19):3455-3465. Page M.M., C. L. Page. 2002. Electroremediation of contaminated soils. Journal of encironmental engineering-asce, 128(3):208-219. Perez-Novo C., M. Pateiro-Moure, F. Osorio, J.C. Novoa-Munoz, E. Lopez-Periago, M. Arias-Estevez. 2008. Influence of organic matter removal on competitive and noncompetitive adsorption of copper and zinc in acid soils. Journal of Colloid and Interface Science. 322:33-40. Perria, M.G.. and M.A.Z. Arruda. 2003. Vermicompost as a natural adsorbent material:characterization and potentialities for cadmium adsorption. Journal of the Brazilian Chemical Society, 14(1):39-47. Pierzynski G. M., G. Hettiarachchi, F. Oehme. 2001. In situ stabilization of soil lead using phosphorus and other soil amendments. Abstracts of Papers of the American Chemical Society, 222:67. Rene’ van H., T. Laverye, J. Poole, M.E. Hodson, T.R. Hutchings. 2007. The effect of organic materials on the mobility and toxicity of metals in contaminated soils. Applied Geochemistry, 22 :2422–2434. Salazar, F.J., D. Chadwick, B.F. Pain, D. Hatch, E. Owen. 2005. Nitrogen budgets for three cropping systems fertilized with cattle manure. Bioresour. Technol, 96:235-245. Sanchez-Monedero, M.A., Mondini, C., de Nobili, M., Leita, L., Roig, A., 2004. Land application of biosolids. Soil response to different stabilization degree of the treated organic matter. Waste Management, 24: 325–332. Shahmansouri, M.R., H. Pourmoghadas, A. R. Parvaresh, H. Alidadi. 2005. Heavy metals bioaccumulation by Iranian and Australian earthworms(Eisenia fetida)in the sewage sludge vermicompost. Iranian J. Env. Health Sci. Eng., 2(1):28-32. Shuman L. M., S. Dudka and K. Das. 2001. Zinc forms and plant availability in a compost amended soil. Water, Air, and Soil Pollution, 128: 1-11 Shuman L.M., Li Z.B.. 1997. Amelioration of zinc toxicity in cotton using lime or mushroom compost. Journal of Soil Contamination, 6: 425-438. Sims J.T.. 1986. Soil pH effects on the distribution and plant availability of manganese, copper and zinc. Soil Science Society of America Journal, 50:367-373. Sims, J. L., and W. H. Patrick. 1978. The distribution of micronutrient cations in soil under conditions of varying redox potential and pH. Soil Science Society of America Journal, 42:258–262. Sinha R.K., G. Bharambe, D. Ryan. 2008. Converting wasteland into wonderland by earthworms—a low-cost nature’s technology for soil remediation: a case study of vermiremediation of PAHs contaminated soil. Environmentalist, 28:466–475. Sinha R.K., G. Bharambe, U. Chaudhari. 2008. Sewage treatment by vermifiltration with synchronous treatment of sludge by earthworms: a low-cost sustainable technology over conventional systems with potential for decentralization. Environmentalist, 28:409–420. Sinha, R. K., G. Bharambe, D. Ryan. 2008. Converting wasteland into wonderland by earthworms-a low-cost nature’s technology for soil remediation:a case study of vermiremediation of PAHs contaminated soil. Environmentalist, 28:466-475. Stevenson, F. J. 1986. Gross chemical fractionation of organic matter. The analysis of soil part II. Chemical and microbiological properties. Amerian Society of Agronomy. P1409-1421. Stinner, B.R., and G.J. House. 1990. Anthropod and other invertebrates in tests. Pestic. Sci., 10:66-74. Suthar S.. 2010. Recycling of agro-industrial sludge through vermitechnology. Ecological Engineering, 36: 1028–1036. Suthar, S. 2009. Vermicomposting of vegetable market solid waste using Eisenia fetida: impact of bulking material on earthworm growth and decomposition rate. Ecol. Eng, 35:914-920. Tandy S.,J.R. Healey, M.A. Nason, J.C. Williamson, D.L. Jones. 2009. Remediation of metal polluted mine soil with compost: Co-composting versus Incorporation. Environmental Pollution,157:690-697. Tessier, A., P. G. C. Campbell and M. Bisson. 1979. Sequential extraction procedure for the speciation of particulate trace metals. Anal. Chem, 51:844-851. Thompson M.B., J.R. Stewart, B.K. Speake. 2000. Comparison of nutrient transport across the placenta of lizards differing in placental complexity. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology. 127(4):469-479. Yadav A., V. K. Garg. 2011. Industrial wastes and sludges management by vermicomposting. Rev Environ Sci Biotechnol, 10:243–276. Yadav, A., and V.K Garg. 2009. Feasibility of nutrient recovery from industrial sludge by vermicomposting technology. Journal of Hazardous Materials, 168:262-268. Yasrebi, J., N. Karimian, M. Maftoun, A. Abtahi, and M. Sameni. 1994. Distribution of zinc forms in highly calcareous soils as influenced by soil physical properties and application of zinc sulfate. Communications in Soil Science Plant Analysis, 25:2133–2145. Zheljazkov, V. D., and P. R. Warman. 2004. Phytoavailability and fractionation of copper, manganese, and zinc in soil following application of two composts to four crops. Environmental Pollution, 131:187–195. Zhou Y-F, R. J. Haynes. 2010. Sorption of heavy metals by inorganic and organic components of solid wastes: significance to use of wastes as low cost adsorbents and immobilizing agents. Crit Rev Environ Sci Technol, 40:909–977 Zhou Y-F., R. J. Haynes, R. Naidu. 2012. Use of inorganic and organic wastes for in situ immobilisation of Pb and Zn in a contaminated alkaline soil. Environ Sci Pollut Res, 19:1260–1270en_US
dc.identifier.urihttp://hdl.handle.net/11455/25630-
dc.description.abstract農地土壤之重金屬污染問題,近年來已成為重要的課題。土壤酸洗法及翻土稀釋法常被用來改良該等土壤,惟會造成土壤肥力的降低。因此,添加有機資材至土壤中,使土壤重金屬有效性降低並增進土壤肥力,為目前改良重金屬污染土壤的重要方法之一。本研究利用培育試驗評估不同原料製成之蚓糞堆肥施用至銅和鋅含量高於監測值之農地土壤後,對土壤中銅和鋅之有效性和型態的影響,並利用管柱淋洗試驗,評估其對土壤剖面中銅和鋅型態及移動性,處理包括:(1) 對照組 (CK); (2) 菇包蚓糞堆肥處理組 (MW);(3) 牛糞蚓糞堆肥處理組 (CC);(4) 食品污泥蚓糞堆肥處理組 (FC);其中,蚓糞堆肥係以 2% (w/w) 之劑量施至土壤中。培育試驗結果顯示,以牛糞蚓糞堆肥處理對降低土壤中銅和鋅之有效性較佳,且難移動性之殘留態銅的增加程度為所有處理中最顯著者。管柱淋洗試驗結果顯示,土壤pH之高低對銅之有效性及移動性確有影響,以牛糞蚓糞堆肥處理降低銅之有效性及移動性效果最佳;而土壤剖面中可交換態鋅含量,則以菇包蚓糞堆肥處理較高,三種蚓糞堆肥添加後,均可增加土壤中碳酸鹽鍵結態鋅之含量。綜合以上結果可知,不同原料製成之蚓糞堆肥雖均可降低銅地土壤中銅和鋅之有效性及造成各型態銅和鋅含量的消長,但蚓糞堆肥的成分特性確可影響銅和鋅有效性之改變。在供試的淋洗條件下,總銅和總鋅仍局限在表層,惟 0.1 N 鹽酸可萃出性銅和鋅可因蚓糞堆肥的添加而往下層移動,但移動的程度會因蚓糞堆肥的成分特性的不同而異。zh_TW
dc.description.abstractAgricultural soils polluted by heavy metal has become an important issue. The practices of acid washing and turnover and attenuation are suggested to ameliorate these soils, however, the fertilities of the soils was found to decrease with these practices applied. Therefore, adding organic materials is one of the important ways to reduce heavy metals in contaminated soils and improve their soil fertilities. The incubation study was used to evaluate the fractions and availabilities of Cu and Zn in agricultural soil with high contents of Cu and Zn by application with different vermicomposts derived from different raw materials. In addition, column leaching test was used to examine the change of fractions and mobilities of Cu and Zn along soil profile. Treatments including: (1) control (CK); (2) vermicomposted mushroom wasted (MW); (3) vermicomposted cow manure (CC); (4) vermicomposted food waste sludge (FC). 2% (w/w) of the vermicomposts was applied within the soil. The results showed that the treatment of CC was better in reducing Cu and Zn mobilities in the soil and increasing the residual-Cu fraction which is difficult to mobile than other treatments. Column leaching test results showed that the change of soil pH actually affected the availability and mobility of Cu. Among the treatments, the reduction of availability and improvement mobility of Cu was found in the treatment of CC, and the content of exchangeable-Zn in soil profile was the highest in MW treatment. All vermicomposts used can increase the content of carbonated-bound Zn. Based on the above results, the vermicompost application could reduce the availabilities and increase the mobilities of Cu and Zn in contaminated soils with high contents of Cu and Zn. In the situation of this study, total contents of Cu and Zn mainly accumulated in soil surface, but the content of 0.1 N hydrochloric acid extractable Cu and Zn might move down along soil profile due to the application of vermicomposts, however, the degree of movement varied with the characteristics of vermicompost used.en_US
dc.description.tableofcontents謝誌-----I 中文摘要-----II 英文摘要-----IV 目錄-----VI 表次-----VIII 圖次-----X 壹、前言-----1 貳、前人研究-----2 一、農地土壤受重金屬污染之狀況-----2 二、常用於整治或復育重金屬污染土壤的方法-----3 (一) 翻土混合稀釋法-----3 (二) 土壤酸洗法-----3 三、土壤中銅和鋅之來源、特性及移動性-----5 (一) 銅-----5 (二) 鋅-----6 四、有機資材添加對重金屬污染土壤之改良效果-----8 (一) 有機廢棄物堆肥化-----9 (二) 蚓糞督肥施用對土壤性質之影響-----10 參、材料與方法-----12 肆、結果與討論-----23 一、三種蚓糞堆肥之添加對污染土壤銅和鋅有效性的影響-----23 (一) 對污染土壤pH與有機質含量的影響-----23 (二) 對污染土壤銅和鋅有效性的影響-----28 1.對污染土壤中銅有效性之影響-----28 2.對污染土壤中鋅有效性之影響-----34 (三) 土壤中其他離子對銅和鋅有效性之影響-----40 二、三種蚓糞堆肥之施用對污染土壤中銅和鋅在土壤剖面移動性的影響-----43 (一) 土壤剖面pH之變化-----43 (二) 土壤剖面中有機質含量變化-----44 (三) 蚓糞堆肥添加對銅和鋅在土壤剖面中移動的影響-----48 1.銅在土壤剖面中之移動及分布情形-----48 2.鋅在土壤剖面中之移動及分布情形-----54 伍、結論-----58 陸、參考文獻-----59 附錄-----69zh_TW
dc.language.isozh_TWen_US
dc.publisher土壤環境科學系所zh_TW
dc.relation.urihttp://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2008201320361300en_US
dc.subject蚓糞堆肥zh_TW
dc.subjectVermicomposten_US
dc.subject重金屬污染zh_TW
dc.subject銅和鋅有效性zh_TW
dc.subject移動性zh_TW
dc.subject重金屬型態zh_TW
dc.subjectHeavy metal pollutionen_US
dc.subjectAvailabilities of Cu and Znen_US
dc.subjectMobilityen_US
dc.subjectFractions of heavy metalen_US
dc.title施用不同蚓糞堆肥對農地土壤中銅和鋅有效性及移動性之研究zh_TW
dc.titleStudies on the availability and mobility of copper and zinc in agricultural soils applied with different vermicompostsen_US
dc.typeThesis and Dissertationzh_TW
Appears in Collections:土壤環境科學系
文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.