Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/2572
標題: 超指向麥克風陣列應用於微銑削刀具磨耗之研究
Application of Superdirective Microphone Arrays for The Micro-Tool Wear Monitoring
作者: 劉彥宏
Liou, Yan-Hung
關鍵字: tool monitoring
刀具偵測
beamforming
Wiener filter
波束成型法
偉納濾波
出版社: 機械工程學系所
引用: 【1】 黃集豐,2009,麥克風陣列在刀具磨耗偵測之應用研究,國立中興大學,碩士論文。 【2】 Weller, E. J., Schrier, H. M. and Weichbrodt, B., 1969, “What sound can be expected from a worn tool?,”Trans. ASME, J. Engng for Industry, pp.525-534. 【3】 Trabelsi, H. and Kannatey-Asibu, Jr, E., 1991, “Pattern recognition analysis of sound radiation in metal cutting, ”Int. J. Adv. Mfg Technol., pp.220–231. 【4】 Sadat, A. B. and Raman, S., 1987 , “Detection of tool flank wear using acoustic signature analysis,” Wear , pp.265–272. 【5】 Lu, M. C. and Kannatey-Asibu, Jr, E. , 2000 ,“Analysis of sound characteristics associated with adhesive wear in machining,”Trans. NAMRI, pp. 257–262. 【6】 Lu, M. C. and Kannatey-Asibu, Jr, E. , 2004,“Flank wear and process characteristic effect on system dynamics in turning,”Trans. ASME J. Mfg Sci. Engng, pp.131–140. 【7】 Kopac, J. and Sali, S., 2001, “Tool wear monitoring during the turning process,” J. Mater. Process. Technol., pp.312–316. 【8】 G.W. Elko, 1996 , “Microphone array systems for hands-free telecommunication,” Speech Communication, pp.229–240. 【9】 Y. Kaneda, 1997, “Microphone array technologies for speech recognition under noisy environment,” J. Acoust. Soc. Jpn., pp.872–876. 【10】 J. Meyer and U. Simmer, 1997 “Multi-channel speech enhancement in a car environment using Wiener filtering and spectral subtraction,” Proc. ICASSP 97, pp.1167–1170. 【11】 Dedieu, S., Moquin, P. and Goubran, R., 2005, “Sound measurement in noisy environment using optimized conformal microphone arrays,” Instrumentation and Measurement Technology Conference, 2005. IMTC 2005. Proceedings of the IEEE, pp.748 – 751. 【12】 Saeed V. Vaseghi,1996,”Advanced Signal Processing and Digital Noise Reduction,” John Wiley&Sons and B.G Teubner Publishers 【13】 Kazunori Kobayashi, 2006, “A microphone array system with echo canceller,” Electronics and Communications in Japan 【14】 D. Mahmoudi, 1997, “A microphone array for speech enhancement using multiresolution wavelet transform,” in Proc. of Eurospeech97, pp. 339-342. 【15】 Rainer Zelinski, 1988, “A microphone array with adaptive post-filtering for noise reduction in reverberant rooms,” Proceedings of the IEEE, pp. 2578-2581. 【16】 Saeed Gazor and Yves Grenier, 1995, “Criteria for positioning of sensors for a microphone array,” Proceedings of the IEEE, pp. 294-303. 【17】 Michael Brandstein and Darren Ward,2001, “Microphone Arrays- signal processing techniques and applications” 【18】 蔡國隆、王光賢、涂聰賢,“聲學原理與噪音量測控制”,全華科技圖書股份有限公司 【19】 邱銘杰、張英俊、葉隆吉、藍天雄,2006,“噪音控制技術與原理”,碩博文化股份有限公司。 【20】 Barry D. Van Veen and Kevin M. Buckley, 1988, “Beamforming:a versatile approach to spatial filtering,” Proceedings of the IEEE, pp. 4-24. 【21】 Don H.Johnson and Dan E Dudgeon,1993, “Array Signal processing : concepts and techiques,” P T R Prentice Hall,Englewood Cliffs 【22】 E. N. Gilbert and S. P. Morgan, 1955, “Optimum design of directive antenna arrays subject to random variations,” Bell syst. Tech. J. , pp. 637-663. 【23】 Mingsian R. and Chenpang Lin, 2004, “Microphone array signal processing with application in three-dimensional spatial hearing,” 2005 Acoustical Society of America, pp.2112-2121. 【24】 Wavelet Toolbox User''s Guide, 2008, http://www.mathworks.com/access/helpdesk/help/pdf_doc/wavelet/wavelet_ug.pdf. 【25】 Haykin, S., Van Veen, B., 2003, Signals and System, John Wiley & Sons. 【26】 Schilling, R. J. and Harris, S. L., 2005, Fundamentals of Digital Signal Processing Using MATLAB, Thomson. 【27】 李明興,2009,整合聲音訊號與自組特徵映射網路於微細刀具磨耗狀態之應用研究,國立中興大學,碩士論文。 【28】 Kohonen, T., 1986, Learning Vector Quantization for Pattern Recognition, Technical Report TKK-F-A601, Helsinki University of Technology, Finland. 【29】 謝萬澔,2009,應用類神經網路與振動訊號之微銑刀具狀態偵測系統開發,國立中興大學,碩士論文。 【30】 Andrea Trucco, Marco Crocco and Stefania Repetto, 2006, “A stochastic approach to the synthesis of a robust frequency-invariant filter-and-sum beamformer,” Proceedings of the IEEE, pp. 1407-1415. 【31】 Sven Fischer and Klaus Uwe Simmer, 1996, “Beamforming microphone arrays for speech acquisition in noisy environments,” Speech Communication 20 (1996) pp.215-227. 【32】 Gerhard Doblinger, 2008, “Beamforming with optimized interpolated microphone arrays,” Proceedings of the IEEE, pp. 33-36. 【33】 Iain A. McCowan Herv´e Bourlard, 2002, “Microphone array post-filter for diffuse noise field,” Proceedings of the IEEE, pp. 906-908. 【34】 Edwin Mabande, Adrian Schad and Walter Kellermann, “Design of robust superdirective beamformers as a convex optimization problem,” 【35】 Stefania Repetto and Andrea Trucco, 2006, “Designing superdirective microphone arrays with a frequency-invariant beam pattern,” Proceedings of the IEEE, pp. 737-747. 【36】 Simon Doclo and Marc Moonen, 2007, “Superdirective beamforming robust against microphone mismatch,” Proceedings of the IEEE, pp. 617-631. 【37】 Joerg Bitzer , Karl-Dirk Kammeyer and Klaus Uwe Simmer, 1999, “An alternative implementation of the superdirective beamformer,” Proceedings of the IEEE, pp. 17-20. 【38】 René M. M. Derkx and Kees Janse, 2009, “Theoretical analysis of a first-order azimuth-steerable superdirective microphone array,” Proceedings of the IEEE, pp. 150-162. 【39】 Qing-Guang Liu , Benoit Champagne and Peter Kabal, 1996, “A microphone array processing technique for speech enhancement in a reverberant space,” Speech Communication, pp. 317-334. 【40】 Kenji Kiyohara, Yutaka Kaneda, Satoshi Takahashi, Hiroaki Nomura and Junji Kojima, 1997, “A microphone array system for speech recognition,” Proceedings of the IEEE, pp. 215-218. 【41】 Walter Kellermann, 1991, “A self-steering digital microphone array,” Proceedings of the IEEE, pp. 3581-3584. 【42】 Sven Nordebo, Ingvar Claesson, and Sven Nordholm,1994, “Adaptive beamforming spatial filter designed blocking matrix,” Proceedings of the IEEE, pp. 583-590 【43】 J. L. Flanagan, R. Mammone and G. W. Elko, “Autodirective microphone systems for natural communication with speech recognizers,” Proceedings of the IEEE, pp. 170-175. 【44】 John H. Doles and Frank D. Benedict, 1988, “Broad-band array design using the asymptotic theory of unequally spaced arrays,” Proceedings of the IEEE, pp. 27-33. 【45】 Kevin M. Buckley, 1986, “Broad-band beamforming and the generalized sidelobe canceller,” Proceedings of the IEEE, pp. 1322-1323. 【46】 Darren B. Ward, Robert C. Williamson and Rodney A. Kennedy, 1998, “Broadband microphone arrays for speech acquisition,” Acoustics Australia, pp. 1-8. 【47】 Fabian Kuech, Markus Kallinger, Richard Schultz-Amling, Giovanni Del Galdo, Jukka Ahonen and Ville Pulkki, 2008, “Directional audio coding using planar microphone arrays,” Proceedings of the IEEE, pp. 37-40. 【48】 Darren B. Ward, Rodney A. Kennedy and Robert C. Williamson, 1996, “FIR filter design for frequency invariant beamformers,” Proceedings of the IEEE, pp. 69-71. 【49】 Ling-jun Yang , Hong Sun, Dong Liu and Gu-jing Han,2008, “Improved wideband beamforming algorithm based on microphone arrays,” Proceedings of the IEEE, pp. 942-945. 【50】 Iain A. McCowan and Hervé Bourlard, 2003, “Microphone array post-filter based on noise field coherence,” Proceedings of the IEEE, pp. 709-716. 【51】 Ning Cheng, Wen-Ju Liu, Peng Li and Bo Xu, 2008, “Microphone array speech enhancement based on a generalized post-filter and a novel perceptual filter,” Proceedings of the IEEE, pp. 370-373. 【52】 Joerg Bitzer, Klaus Uwe Simmer and Karl-Dirk Kammeyer, “Multi-microphone noise reduction by post-filter and superdirective beamformer,” 【53】 Jacek Dmochowski, Jacob Benesty, and Sofiène Affès, 2009, “On spatial aliasing in microphone arrays,” Proceedings of the IEEE, pp. 1383-1395. 【54】 Kevin D. Donohue, Jens Hannemann, Henry G. Dietz, 2007, “Performance of phase transform for detecting sound sources with microphone arrays in reverberant and noisy environments,”, pp. 1677-1691. 【55】 M. W. Hoffman, K. M. Buckley , M. J. Link, and S. Soli, 1997, “Robust microphone array processor incorporating headshadow effects,” Proceedings of the IEEE, pp. 3637-3640. 【56】 Boaz Rafaely, 2008, “Spatial sampling and beamforming for spherical microphone arrays,” Proceedings of the IEEE, pp. 5-8. 【57】 Hiroshi Saruwatari, Shoji Kajita, Kazuya Takeda, 1999, “Speech enhancement using nonlinear microphone array based on complementary beamforming,” Proceedings of the IEEE, pp. 1-10. 【58】 Steven F. Boll, 1979, “Suppression of acoustic noise in speech using spectral subtraction,” Proceedings of the IEEE, pp. 113-120. 【59】 Darren B. Ward, Rodney A. Kennedy and Robert C. Williamson, 1995, “Suppression of acoustic noise in speech using spectral subtraction,” J. Acoust. Soc. Am, pp. 1023-1034. 【60】 Bishop, C. M., 2006, Pattern Recognition And Machine Learning, Springer. 【61】 賴建端、簡仁宗,2000“結合麥克風陣列及模型調整技術之遠距離語音辨識系統”,國立成功大學。
摘要: 微切削加工技術逐漸受到工業界重視。然而,微切削刀具容易在切削過程中磨耗或斷裂,因此,刀具即時磨耗狀態之監測便成為微切削加工的重要課題之一。 由於,具有豐富經驗的技師,能從聲音得知狀態,因此,使用聲音訊號作為偵測刀具磨耗狀態的工具,可被賦予期待。但此技術經常受到背景噪音的嚴重干擾,造成在實際應用上存在許多困難與限制。因此,發展有效的噪音濾除方法扮演著重要的角色。 本研究探討超指向麥克風陣列波束成型法(SDB)在切削加工時之噪音濾除之能力。系統整合偉納濾波器(WF),建立SDB+WF濾波系統,分析系統對不同方向與距離噪音之濾除能力,最後並整合LVQ 辨識系統以驗證其在刀具磨耗辨識之應用性能。 實驗結果顯示,系統與偉納濾波整合後能有效濾除干擾訊號,相較於延遲加總陣列系統(Delay and Sum),可以得到較佳之濾波效果,在刀具磨耗辨識應用中,整合此陣列之偵測系統可明顯較採用延遲加總麥克風陣列或單一麥克風系統提升系統之辨識成功率,由約67% 提升至79%。
The micro-mechanical machining technology draws much more attention in industry lately. However, due to the easier tool breakage and wear in micro machining than conventional counterpart, the tool wear monitoring system plays an important role in the development of this technology. In tradition, an experienced technician can identify the cutting condition based on the sound generated during the cutting. Therefore, the audible sound single was expected to be a candidate signal for monitoring the tool condition system. However, the background noise always contaminates the signal obtained by microphone system and reduces the chance to be applied in industry. In order to reduce the noise effect, the development of an effective filter is an important step in developing the sound based monitoring system. The objective of this research is to study the capability of noise reduction for the super directive microphone array in micro milling. The microphone array integrated with Wiener filter was designed and implemented to analyze its effect on reducing the noises from different directions and distances. By integrated with LVQ classifier, its effect on the micro tool wear monitoring was verified as well. The results show that the implemented system can reduce the noise from different direction effectively. By the way, its performance in noise reduction was observed to be better than adopting the delay and sum algorithm. In the study of tool wear monitoring in micro machining, a 12% increase of the classification rate was observed for the monitoring system integrated with super directive microphone array than that with delay and sum microphone array or only single microphone system.
URI: http://hdl.handle.net/11455/2572
其他識別: U0005-3008201002451300
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-3008201002451300
Appears in Collections:機械工程學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.