Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/2578
標題: 車削切槽刀具之設計與其線切割之最佳製造分析
Design of a Groove Cutting Tool and Its Optimum Manufacturing by Wire Electro Discharge Machining
作者: 沈鴻文
Shen, Hung-Wen
關鍵字: Groove cutting tool
車削切槽刀具
Wire EDM
Taguchi method
Cutting speed
Surface roughness
線切割放電加工
田口方法
切削速率
表面粗糙度
出版社: 機械工程學系所
引用: 參考文獻 1.湯富俊,高速切削技術探討,機械工程雙月刊,239期,23-34頁,民國90年10月。 2.蕭瑞聖,切削加工技術最新動向,機械技術雜誌,171期,108-116頁,民國88年5月。 3.林清源與許晉謀,先進複合化切削加工技術介紹,機械工程會刊,255期,102-114頁,民國94年12月。 4.宋健民,鑽石膜(CVDD)切削刀具,粉末治金會刊,4期,251-261頁,民國89年11月。 5.林洋鑫與李雅玲,線切割放電加工機技術發展分析與應用,機械工程會刊,257期,74-84頁,民國95年7月。 6.W.H. Yang and Y.S. Tarng, “Design optimization of cutting parameters for turning operations based on the Taguchi method”, Journal of Materials Processing Technology, Vol. 84, pp. 122-129, 1998. 7.W. Bouzid, “Cutting parameter optimization to minimize production time in high speed turning”, Journal of Materials Processing Technology, Vol. 161, pp. 388-395, 2005. 8.Y.K. Sze, W.B. Lee, C.F. Cheung and S. To, “A power spectrum analysis of effect of rolling texture on cutting forces in single-point diamond turning”, Journal of Materials Processing Technology, Vol. 180, pp. 305-309, 2006. 9.E.S. Topal and C. Cogun, “A cutting force induced error elimination method for turning operations”, Journal of Materials Processing Technology, Vol. 170, pp. 192-203, 2005. 10.D. Dhupal, B. Doloi and B. Bhattacharyya, “Pulsed Nd:YAG laser turning of micro-groove on aluminum oxide ceramic ”, International Journal of Machine Tools and Manufacture, Vol. 48, pp. 236-248, 2008. 11.S.S. Mahapatra and A. Patnaik, “Optimization of wire electrical discharge machining (WEDM) process parameters using Taguchi method”, The International Journal of Advanced Manufacturing Technology, Vol. 34, pp. 911-925, 2007. 12.M.T. Yan and T.L. Chiang, “Design and experimental study of a power supply for micro-wire EDM”, The International Journal of Advanced Manufacturing Technology, Vol. 40, pp. 1111-1117, 2009. 13.A. Schoth, R. Forster and W. Menz, “Micro wire EDM for high aspect ratio 3D microstructuring of ceramics and metals”, Microsystem Technologies, Vol. 11, pp. 250-253, 2005. 14.M.T. Yan and T.H. Cheng, “High accuracy motion control of linear motor drive wire-EDM machines”, The International Journal of Advanced Manufacturing Technology, Vol. 40, pp. 918-928, 2009. 15.R. Ramakrishnan and L. Karunamoorthy, “Multi response optimization of wire EDM operations using robust design of experiments”, The International Journal of Advanced Manufacturing Technology, Vol. 29, pp. 105-112, 2006. 16.P. Saha, A. Singha, S.K. Pal and P. Saha, “Soft computing models based prediction of cutting speed and surface roughness in wire electro-discharge machining of tungsten carbide cobalt composite”, The International Journal of Advanced Manufacturing Technology, Vol. 39, pp. 74-84, 2008. 17.A. Mohammadi, A.F. Tehrani, E. Emanian and D. Karimi, “A new approach to surface roughness and roundness improvement in wire electrical discharge turning based on statistical analyses”, The International Journal of Advanced Manufacturing Technology, Vol. 39, pp. 64-73, 2008. 18.N. Tosun, C. Cogun and H. Pihtili, “The effect of cutting parameters on wire crater sizes in wire EDM”, The International Journal of Advanced Manufacturing Technology, Vol. 21, pp. 857-865, 2003. 19.B. Schacht, J.P. Kruth, B. Lauwers and P. Vanherck, “The skin-effect in ferromagnetic electrodes for wire-EDM”, The International Journal of Advanced Manufacturing Technology, Vol. 23, pp. 794-799, 2004. 20.S.K. Hargrove and D. Ding, “Determining cutting parameters in wire EDM based on workpiece surface temperature distribution”, The International Journal of Advanced Manufacturing Technology, Vol. 34, pp. 295-299, 2007. 21.H.J. Tzeng, B.H. Yan, R.T. Hsu and H.M. Chow, “Finishing effect of abrasive flow machining on micro slit fabricated by wire-EDM”, The International Journal of Advanced Manufacturing Technology, Vol. 34, pp. 649-656, 2007. 22.G.L. Benavides, L.F. Bieg, M.P. Saavedra and E.A. Bryce, “High aspect ratio meso-scale parts enabled by wire micro-EDM”, Microsystem Technologies, Vol. 8, pp. 395-401, 2002. 23.Y. Uno, A. Okada, Y. Okamoto and T. Hirano, “High performance slicing method of monocrystalline silicon ingot by wire EDM”, Proc. of 10th International Conference on Precision Engineering , pp. 219-223, 2001. 24.趙芝眉、湯銘權與蔡在亶(編著),金屬切削原理,科技圖書股份有限公司,民國91年10月。 25.張渭川(編譯),圖解放電加工的結構與實用技術,全華科技圖書,民國90年12月。 26.陳彥宏,“線切割放電加工精修表面細緻化之研究”,臺灣大學機械工程研究所碩士論文,2001年。 27.張欽隆(編譯),刻模線放電加工手冊,機械技術出版社,民國85年1月。 28.線切割DWC90CA機型之操作說明書,日本三菱電機株式會社,1998年。 29.線切割DWC90CA機型之加工特性使用手冊,日本三菱電機株式會社,1998年。 30.李祥國與林洋鑫,線切割機修細加工控制技術,機械工業雜誌,264期,231-237頁,民國94年3月。 31.李輝煌著,田口方法-品質設計的原理與實務,高立圖書,民國97年1月。 32.線切割機週邊消耗品之資訊,冠金國際有限公司,http://www.kwanking.com.tw 33.單輝祖(主編),材料力學,文京圖書有限公司,民國90年7月。 34.線電極材料之資訊,鍀興金屬科技股份有限公司,http://www.der-shin.com.tw 35.張世於(編著),車刀與車削,徐氏基金會出版,民國72年12月。 36.王則眾與葉端平,鐵鋁基合金線切割放電加工特性之研究,中正嶺學報,31卷,2期,123-134頁,民國92年5月。 37.陳栢東,“以線放電加工在微細槽模具製程探討”,中興大學機械工程研究所碩士論文,2004年。
摘要: 摘要 本研究乃對一種車削切槽刀具之設計、製作與品質分別進行分析,並予以實驗印證。本研究之切槽刀具,其切削面要比一般切槽刀具之切削面大許多,因此須透過金屬切削原理之理論公式,才能分析出切槽刀具之最佳切削面寬。於第一部分之分析中,在車床電動機功率為3.75 KW、刀具為高速鋼材質與加工件為鋁合金(6061)時,分析出切槽刀具之最佳切削面寬為19 mm,並在實驗後確定刀具有斷屑槽之設計,乃是最理想之設計。在此研究之第二部分中,乃採用線切割放電加工機來製作切槽刀具,並利用田口方法來規劃線切割之放電加工參數,其分析項目為切削速率與表面粗糙度。經分析相關之研究資料與廠商之加工手冊,而選出尖峰電流、送線速度與加工電壓等三項最重要之放電加工參數,以做為切削實驗之控制因子。因本研究對田口方法之實驗規劃,只採用三項控制因子,且各項控制因子都規劃為三個水準數之分佈,故以(3×3)之實驗規劃,來對切削速率與表面粗糙度進行因子反應表、變異數分析與確認實驗等分析。由分析所獲得之結果顯示,在刀具厚度為3.15 mm之條件下,切削速率之改善率為64.2 %;而表面粗糙度之改善率為7.83 %,此改善率表示從初始設計變換到最佳設計時,其加工特性所獲得之改善。另外,切削速率其信號雜訊比(S/N)之誤差率為2.22 %;而表面粗糙度其S/N比之誤差率為0.44 %,額外確認印證之實驗顯示,其S/N比之誤差率為3 %。因此在最大切削速率條件下與最小表面粗糙度條件下,其預測值與實驗值之誤差率都低於10 %,此顯示實驗模式所獲得之結果乃具備很高之精確性。
ABSTRACT This work deals with design, manufacturing and quality control of a groove cutting tool which has a cutting surface much wider than normal cutting tools. In the first part of the work, a metal cutting theory was used to yield the best cutting width. For an aluminum alloy (6061) work piece and a high-speed steel tool material, as power of lathe is 3.75 kW, the best cutting width was found to be 19 mm. The result of an experiment also shows that the tool with a chip-breaker design performs better than that without it. In the second part of the work, wire electro-discharge machining (WEDM) was used to manufacture the tool. Taguchi method was used to plan the machine parameters. The target items were cutting speed and surface roughness respectively. Three controllable factors were peak current, wire speed and working voltage. The experiments were planned using 3 3 orthogonal arrays. Evaluation of factor response table, analysis of variance and experiments were performed. The result of the analysis shows that, for a tool thickness of 3.15 mm, the improvement of the cutting speed is 64.2%; while the improvement of the surface roughness is 7.83%. This improvement indicates, from an initial design changing to the best design, the improvement of the process on the target item. In addition, for the cutting speed, the signal to noises (S/N) ratio is 2.22%; for the surface roughness, the S/N ratio is 0.44%. An extra confirmation experiment was performed for the surface roughness. It shows that the S/N ratio is 3%. In summary, either at the maximum cutting speed or at the minimum surface roughness, the error between the predicted value and experimental value is less than 10%. This confirms that the analysis possesses a high accuracy.
URI: http://hdl.handle.net/11455/2578
其他識別: U0005-3101201101515200
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-3101201101515200
Appears in Collections:機械工程學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.