Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/27461
標題: 台灣種植能源作物以提煉生質酒精之可行性分析
The Feasibility Analysis of Refining Bioethanol by Growing Energy Crop in Taiwan
作者: 王志賢
Wang, Chih-Hsien
關鍵字: Energy crop
能源作物
Renewable energy
Biofuel
Kyoto Protocol
Emission trading
Carbon trading
Bioethanol
Ethanol
ASM
可再生能源
生質燃料
京都議定書
京都協議
排放權交易
碳稅交易
生質酒精
農業部門空間均衡模型
出版社: 應用經濟學系所
引用: 中文部分 [1]工業技術研究院能源與資源研究所,2005年,氣候變3化綱要公約資訊網站,「Online」http://sd.erl.itri.org.tw/fccc/。 [2]行政院環境保護署,2005年,中華民國環境保護統計年報。 [3]行政院主計處,2005年,中華民國臺灣地區物價統計月報。 [4]行政院主計處中部辦公室,2005年,臺灣省物價統計月報。 [5]行政院農業委員會,2005年,農產貿易統計要覽。 [6]行政院農業委員會,2005年,農業統計年報。 [7]行政院農業委員會,2005年,糧食供需年報。 [8]行政院農業委員會中部辦公室,2005年,臺灣地區農產品批發市場年報。 [9]行政院農業委員會中部辦公室,2005年,臺灣農產物價與成本統計月報。 [10]行政院農業委員會中部辦公室,2005年,臺灣農產品生產成本調查報告。 [11]朱蘭芬,2002年,「聖嬰現象預測對台灣稻米產業的經濟影響」,碩士論文,國立中興大學農業經濟研究所。 [12]李育明、朱雲鵬、陳文彥、張智淵,2005年,「推廣生質能源的資源需求與環境效益:以燃料乙醇為例」,乙醇作為替代能源之經濟效益評估研究計畫。 [13]林立夫、郭明朝、楊盛行、陳建源,2006年3月,「生質能源開發與利用」,國立台灣大學生化科學系、原子能委員會核能研究所、行政院國家科學委員會、財團法人台灣武智紀念基金會。 [14]吳俊賢、林俊成、李國忠、魏名聰,2001年4月,「栽種生質能源作物可增加再生能源使用與減緩溫室效應」,台灣林業,第27卷第2期,第7-14頁。 [15]柳中明、許志義、談駿嵩、馬振基、張四立、黃大仁、王振熙、曾國雄、馬小康、林憲德、楊盛行、李國忠、林鴻祺,1996年5月,溫室氣體排放減量策略之整體觀,國立台灣大學全球變遷研究中心、行政院環境保護署、中華民國地球科學學會,EPA85-1003-09-13,第72頁。 [16]財政部關稅總局,2005年,中華民國財政統計年報。 [17]財政部關稅總局,2005年,中華民國賦稅統計年報。 [18]財政部關稅總局,2006年,稅則稅率專區網站,「Online」 http://web.customs.gov.tw/ct.asp?xItem=12270&ctNode=10496。 [19]陳吉仲、張靜貞、李恆綺、顏宏德,2005年,「台灣稻米政策調整對稻米市場經濟影響之評估」,農業經濟叢刊,第10期,第163-198頁。 [20]陳威呈,2003年,「台灣種植能源作物作為發電燃料的可行性分析」,碩士論文,國立中興大學應用經濟研究所。 [21]黃宗煌、黃瀕儀,2005年5月,「稻田轉種能源作物生產生物能源的評估與政策整合」,水稻田農業多樣性機能研討會。 [22]黃宗煌、黃瀕儀、于眾峰,2003年11月,「能源作物轉作及應用推廣之可行性評估」,期末報告,國立清華大學永續發展研究室。 [23]張靜貞,1993年,「數學規畫在農業部門模型的應用」,台灣土地金融季刊,第30卷第4期,第35-50頁。 [24]張靜貞、孫金華、徐世勳、陳吉仲,2005年,「新國際經貿與區域整合環境下對台灣農漁業的產業結構調整政策分析」,行政院農業委員會九十四年度科技研究計畫研究報告。 [25]郭明朝,2005年,「生質酒精推動之價格分析」,原能會核能研究所。 [26]經濟部能源委員會,2005年,台灣能源供需統計年報。 [27]經濟部能源委員會,2005年,台灣能源供需統計季報。 [28]經濟部能源委員會,2005年,台灣石油供需統計月報。 [29]經濟部國際貿易局,2005年,中華民國台灣地區進出口貿易統計月報。 [30]經濟部國際貿易局,2005年,進出口貿易統計。 英文部分 [1]Akselsson, C., B. Berg, V. Meentemeyer, and O.Westling, 2005, “Carbon Sequestration Rates in Organic Layers of Boreal and Temperate Forest Soils-Sweden as A Case Study.” Global Ecology Biogeographic, 14 (1): 77-84 [2]Bain, R.L. and W.P. Amos, 2003, “Biopower Technical Assessment: State of the Industry and Technology.”, National Renewable Energy Laboratory, Golden, Colorado.「Online」http://www.nrel.gov/docs/fy03osti/33123.pdf [3]Biomass Co-Firing an efficient way to reduce greenhouse gas emissions, 2003, European Bioenergy Networks.「Online」http://eubionet.vtt.fi [4]Chang, C. C., 2002, “The potential impact of climate change on Taiwan’s agriculture.”, Agricultural Economics 27(1):51-64 [5]Dendoncker, B.V. Wesemael, D.A. Mark, Rounsevell, C. Roelandt and S. Lettens, 2004, “Belgium’s CO2 mitigation potential under improved cropland management.”, Agriculture, Ecosystems and Environment 103 101–116 [6]Feng, H., J. Zhao and C.L. Kling., 2000, “Carbon Sequestration in Agriculture: Value and Implementation.”, Working Paper 00-WP 256, September 2000. [Online]Available: http://www.card.iastate.edu/publications/texts/00wp256.pdf [7]Freibauera, A., D.A. Mark, Rounsevellb, P.Smithc and J. Verhagen, 2004, “Carbon sequestration in the agricultural soils of Europe.”, Review article Geoderma 122 1–23 [8]Hall, D.O., G.W. Bamard, and P.A. Moss, 1982, “Biomass from energy in development counties”,Pergamon Press, Oxford [9]Hsu, H. H. and C. T. Chen, 2002, “Observed and Projected Climate Change in Taiwan.”, Meteorology and Atmospheric Physics 79(1-2):87–104 [10]Jefferson, M., 1996, “Global prospects for renewable energy”, WREC, p1-5. [11]John M., U. Director and LLC LECG ,2004, “The Contribution of The American Economy in 2004.”LECG 1-3 [12]Jose G., T. Coelhob, P. Mario and N. Lucond, 2004, “Ethanol learning curve—the Brazilian experience.” Biomass and Bioenergy 26 301–304 [13]McCarl, B.A. and B.C. Murray, 2001, “Harvesting the Greenhouse: Comparing Biological Sequestration with Emissions Offsets”, Department of Agricultural Economics, Texas A&M University, College Station, TX [14]McCarl, B.A. and H.T. Spreen, 1980, “Price Endogenous Mathematical Programming as a Tool for Sector Analysis.”, American Journal of Agricultural Economics,62(1):87-102 [15]McCarl, B.A. and U.A. Schneider, 2000, “U.S. Agriculture’s Role in a Greenhouse Gas Emission Mitigation World: An Economic Perspective.”, Review of Agricultural Economics 22,No.1:134-159 [16]Outlaw, J.L., P. David, S.L.Anderson, K. James, W. Richardson, K. Brian, Herbst, L.Mark, J.Waller, M. Raulston, L.Shannon, Sneary, C.Robert and Gill, 2003, “An Economic Examination of Potential Ethanol Production in Texas. (Abbreviated Version)”, Department of Agricultural Economics Texas A&M University College Station, Texas 1-9 [17]Ryan L., F. Convery and S. Ferreira, 2005, “Stimulating the use of biofuels in the European Union: Implications for climate change policy.”, Energy Policy 1-11 [18]Schlegelmilch K., 1999, “Energy Taxation in the EU and some Member State: Looking for Opportunities Ahead.” Shih, W. C., 2002, “The Implementation of the UN Framework Convention on Climate Change in a Non-Party State: Taiwan.”,International Environmental Agreements: Politics, Law and Economics 2(1):69–98 [19]Thomas V. and A. Kwong, 2001, “Ethanol as a lead replacement: phasing out leaded gasoline in Africa.”, Energy Policy 29 1133–1143 [20]Tung, C. P., 2001, “Climate change impacts on water resources of the Tsengwen creek watershed in Taiwan.”, Journal of The American Water Resources Association 37(1): pp 167-176 [21]Urbanchuk J. M., 2001, “An Economic Analysis of Legislation for a Renewable Fuels Requirement for Highway Motor Fuels.”, Executive Vice President AUS Consultants 1-25 [22]Warwick J., McKibbin, R. Shackleton, J.Peter and Wilcoxen, 1999, “What to expect from an international system of tradable permits for carbon emissions.”, Resource and Energy Economics 21_.319–346 [23]Yue, C. D. and C. H. Sun, 2003, “Climate Protection and Newly Industrialized Countries: Dilemmas and Opportunities in Taiwan.”, Global Environmental Change 13:31-42
摘要: 各國為了要減緩溫室效應持續地產生,則要減少不可再生能源的使用,而歐、美等先進國家目前已藉由能源作物的轉換技術,研發出可利用的生質能源,如生質酒精、生質柴油及氫氣,期待以可再生的生質能源取代有限的石化能源之使用,達到減少二氧化碳的排放。在台灣由於農產品生產過剩且加入世界貿易組織後,國內農產品相對地較不具有競爭力,因此這幾年來政府不斷地鼓勵農民參與休耕並給予補貼。本研究試圖以數學規劃建立模型,模擬台灣種植能源作物以提煉生質酒精之可行性。 依據本研究所做的模擬,大約可得到以下的結果: 一、若以方案1:利用國內現有休耕地種植甘蔗以提煉生質酒精為模擬推廣生質酒精的方案,在我國全面推廣E3(或E5)以部份替代目前MTBE汽油的使用時,則最多約需有74.29(或92.95)千公頃的休耕地來種植甘蔗作物,如此政府可減少19,336.89(或19,309.81)百萬元的進口原油支出,種植甘蔗作物的農民每年每公頃的總收益將會在425,252.91 (或540,046.44)元左右,高於現今每年每公頃的休耕補貼金105,000元,因此若提高碳稅補貼將會有較大的利潤來吸引農民種植甘蔗作物。則此時國內生質酒精售價為45.16(或66.06) 元/公升且產量高達386,610.28公秉(或486,247.18公秉),並可減少583.78千公噸(或734.23千公噸)的二氧化碳排放,此將貢獻我國於民國94年時所需削減的二氧化碳排放量之0.22%(或0.28%)左右。 二、若以方案2:直接從國外進口生質酒精為模擬推廣生質酒精的方案,在我國全面推廣E3、E5或E10以部份替代目前MTBE汽油的使用時,政府可減少12,769.70百萬元的進口原油支出,改進口E3、E5或E10以部份替代目前MTBE汽油的使用,國內生質酒精售價為30.35或30.52元/公升且進口量高達484,389、807,315或1,614,630公秉,並可減少731.44、1,219.05或2,438.09千公噸的二氧化碳排放,此將貢獻我國於民國94年時所需削減的二氧化碳排放量之0.28%、0.46%或0.93%左右。 三、若以方案3:從國外進口生質料源(蔗糖),再由國內提煉生質酒精為模擬推廣生質酒精的方案,在我國全面推廣E3、E5或E10以部份替代目前MTBE汽油的使用時,政府可減少12,940.40或12,931.53百萬元的進口原油支出,改進口料源蔗糖,由國內自行提煉E3、E5或E10以部份替代目前MTBE汽油的使用,則國內生質酒精售價為36.22或36.69元/公升且產量高達407,430、679,050或1,358,100公秉,並可減少615.22、1,025.37或2,050.73千公噸的二氧化碳排放,此將貢獻我國於民國94年時所需削減的二氧化碳排放量之0.23%、0.39%或0.78%左右。
To reduce the generation of green house effect, every country has to decrease the use of non-renewable energy. Through switch technology on energy crops, developed countries, such as Europe and US, have found biomass energy like bioethanol、biodisel and hydrogen. They expect to replace limited petrochemical energy with the renewable biomass energy so as to lower the emission of carbon dioxide. In Taiwan, owing to the overproduction and the impact of being a member of WTO, the domestic produce has less competitive advantage. Consequently, the government has taken efforts on the implementation of land set-aside and subsidies. This study tries to build up a model by the application of mathematics, simulating the feasibility of refining bioethanol by growing energy crop.Based on the simulation of this study, we can roughly obtain the following results. First, we choose project 1 to make bioethanol widely accepted. If our country promotes E3 (or E5) in order to partly substitute MTBE gasoline in use, it needs at most 74.29 thousand hectares land set-aside to grow sugar cane. In this way, the government can reduce the expenses of importing crude oil by 19,336.89(or 19,309.81) million NT dollars As for the farmers who grow sugar cane, their total income will be 425,252.91(or 540,046.44) dollars, higher than the subsidies, which are 105,000 NT dollars. Therefore, if we raise the subsidies of carbon tax, the profits will prompt the farmers to grow sugar cane. The domestic price of bioethanol is 45.16 NT dollars per liter and the production will be up to 386,610.28(or 486,247.18) kiloliters. Moreover, it will diminish carbon dioxide emission by 583.78(or 734.23 thousand) thousand metric tons. This will contribute to the reduction of carbon dioxide to approximately 0.22(or 0.28) %. Second, we choose project 2 to make bioethanol widely accepted. If our country promotes E3, E5, or E10 in order to partly substitute MTBE gasoline in use. The government can reduce the expenses of importing crude oil by 12,769.70.89 million NT dollars. If we import E3, E5, or E10 to partly replace MTBE gasoline in use, the domestic price of bioethanol is 30.35 or 30.52 NT dollars per liter and the import is up to 484,389, or 807,315, or 1,614,630 kiloliters (or 486,247.18). It will reduce carbon dioxide emission by 731.44, 1,219.05, or 2,438.09 thousand metric tons. This will contribute to the reduction of carbon dioxide to approximately 0.28%, 0.46%, or 0.93%. Third, we choose project 3 to make bioethanol widely accepted. If our country promotes E3, E5, or E10 in order to partly substitute the use of MTBE gasoline. The government can reduce the expenses of importing crude oil by 12,940.40, or 12,931.53 million NT dollars. Instead, we import raw materials, cane sugar, and refine E3, E5, or E10 within our country to partly replace MTBE gasoline in use. Then, the domestic price of bioethanol is 36.22 or 36.69 NT dollars per liter and the production is up to 407,430, or 679,050, or 1,358,100 kiloliters (or 486,247.18). It will lessen carbon dioxide emission by 615.22, 1,025.37, or 2,050.73 thousand metric tons. This will contribute to the reduction of carbon dioxide to approximately 0.23%, 0.39%, or 0.78%.
URI: http://hdl.handle.net/11455/27461
其他識別: U0005-1008200609075400
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-1008200609075400
Appears in Collections:應用經濟學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.