Please use this identifier to cite or link to this item:
標題: 奈米金樹結構修飾電極於葡萄糖感測之應用
A novel glucose biosensor based on a gold nano-trees modified electrode
作者: 蔡崇哲
Tsai, Chung-Che
關鍵字: 奈米金三維結構
three-dimensional gold nanoparticle
electrochemical impedance spectroscopy
glucose testing
disposable three-electrode chip
出版社: 機械工程學系所
引用: [1] D. Muller, “Oxidation von Glukose mit Extrakten aus Aspegillus niger,” Biochem Z, vol. 199, pp. 136–170, 1928. [2] L. C. Clark and C. Lyons, “Electrode system for continuous monitoring in cardiovascular surgery,” Ann. NY Acad. Sci., vol. 148, pp. 133-135, 1962. [3] T. V. Anh, D. Pijanowska, W. Olthuis and P. Bergveld, “Highly sensitive glucose sensor based on work function changes measured by an MOSFET,” Analyst, vol. 128, pp. 1062-1066, 2003. [4] Y. Lin, F. Lu, Y. Tu and Z. Ren, “Glucose Biosensors Based on Carbon Nanotube Nanoelectrode Ensembles,” Nano Letters, vol. 4 (2), pp 191–195, 2004 [5] S. Zhang, N. Wang, Y. Niu and C. Sun, "Immobilization of glucose oxidase on gold nanoparticles modified Au electrode for the construction of biosensor," Sensors and Actuators B: Chemical, vol. 109, pp. 367-374, 2005. [6] C. Qiu, X. Wang, X. Liu, S. Hou and H. Ma, "Direct electrochemistry of glucose oxidase immobilized on nanostructured gold thin films and its application to bioelectrochemical glucose sensor," Electrochimica Acta, vol. 67, pp. 140-146, 2012. [7] D. M. Zhou, H. X. Ju, H. Y. Chen, “A miniaturized glucose biosensor based on the coimmobilization of glucose oxidase and ferrocene perchlorate in nafion at a microdisk platinum electrode,” Sensors and Actuators B: Chemical, vol. 40, pp. 89-94, 1997. [8] [9] J. X. Wang, X. W. Sun, A. Wei, Y. Lei, X. P. Cai, C. M. Li and Z. L. Dong, "Zinc oxide nanocomb biosensor for glucose detection," Applied Physics Letters, vol. 88, pp. 233106, 2006. [10] L. Chen, B. Gu, G. Zhu, Y. Wu, S. Liu, and C. Xu, "Electron transfer properties and electrocatalytic behavior of tyrosinase on ZnO nanorod," Journal of Electroanalytical Chemistry, vol. 617, pp. 7-13, 2008. [11] S. Laschi and M. Mascini, "Planar electrochemical sensors for biomedical applications," Med Eng Phys, vol. 28, pp. 934-43, 2006. [12] Z. Maya, K. Eugenii and W. Itamar, “Electrical Contacting of Glucose Oxidase by Surface-Reconstitution of the Apo-Protein on a Relay-Boronic Acid-FAD Cofactor Monolayer,” J. Am. Chem. Soc., vol. 124 (10), pp 2120–2121, 2002. [13] C. Asha, B. D. Malhotra, “Mediated biosensors,” Biosensors and Bioelectronics, vol. 17, pp. 441–456, 2002. [14] E. Fischer, “Einfluss der Configuration auf die Wirkung der Enzyme. ”Ber. Dt. Chem. Ges., vol.27 (3), pp. 2985–2993 , 1894. [15] 劉英俊. “酵素工程 ”中央圖書出版社, 1995. [16] I. M. Roitt, P. J. Delves, “Roitt 免疫學基礎,” 高等教育出版社, 2005. [17] A. Amine, J. M. Kauffmann, G. J. Patriarche“Amperometric biosensors for glucose based on carbon paste modified electrodes,” Talanta , vol.38(1), pp. 107–110, 1991. [18] S. Laschi and M. Mascini, "Planar electrochemical sensors for biomedical applications," Med Eng Phys, vol. 28, pp. 934-43, Dec 2006 [19] G. Urban, G. Jobst, F. Kohl, A. Jachimowicz, F. Olcaytug, O. Tilado, P. Goiser, G. Nauer, F. Pittner, T. Schalkhammer, E. M. Buxbaum, “Miniaturized thin-film biosensors using covalently immobilized glucose oxidase,” Biosensors and Bioelectronics , vol.6(7), pp. 555–562, 1991 [20] C. H. Kim and S. M. Oh, “Enzyme Sensors Prepared by Electrodeposition on platinized platinum Electrodes ” Electrochimica Acta, vol. 41(15) , pp. 2433-2439 , 1996. [21] O. Yehezkeli, Y. M. Yan, I. Baravik, R. Tel-Vered and I. Willner, "Integrated oligoaniline-cross-linked composites of Au nanoparticles/glucose oxidase electrodes: a generic paradigm for electrically contacted enzyme systems," Chemistry, vol. 15, pp. 2674-2679, Mar 2 2009. [22] S. Kayashima, T. Arai, M. Kikuchi, N. Sato, N. Nagata, O. Takatani, N. Ito, J. Kimura, T. Kuriyama, “ New noninvasive transcutaneous approach to blood glucose monitoring: successful glucose monitoring on human 75 g OGTT with novel sampling chamber” IEEE Transactions on Biomedical Engineering. vol. 38(8), pp. 752-755, 1991 [23] D. J. Yang, and C. C. Wu, “ To Develop Impedimetric Nucleic Acid Biosensors Chip Integrated with AC Electroosmosis Flow,” Master‘s thesis 2011 [24] Y. Li, Y.Y.Song, C. Yang and X. H. Xia, "Hydrogen bubble dynamic template synthesis of porous gold for nonenzymatic electrochemical detection of glucose," Electrochemistry Communications, vol. 9, pp. 981-988, 2007. [25] M. Zhou, L. Shang, B. Li, L. Huang and S. Dong, "Highly ordered mesoporous carbons as electrode material for the construction of electrochemical dehydrogenase- and oxidase-based biosensors," Biosens Bioelectron, vol. 24, pp. 442-447, Nov 15 2008. [26] J. Lu, L. T. Drzal, R. M. Worden, I. Lee, “Simple Fabrication of a Highly Sensitive Glucose Biosensor Using Enzymes Immobilized in Exfoliated Graphite Nanoplatelets Nafion Membrane” Chem. Mater, vol.19(25), pp. 6240-6246,2007 [27] B. Zheng, S. Xie, L. Qian, H. Yuan, D. Xiao and M. M. F. Choi, "Gold nanoparticles-coated eggshell membrane with immobilized glucose oxidase for fabrication of glucose biosensor," Sensors and Actuators B: Chemical, vol. 152, pp. 49-55, 2011. [28] Z. Zhu, W. Song, K. Burugapalli, F. Moussy, Y. L. Li and X. H. Zhong, "Nano-yarn carbon nanotube fiber based enzymatic glucose biosensor," Nanotechnology, vol. 21, p. 165501, Apr 23 2010. [29] Y. Mu, D. Jia, Y. He, Y. Miao and H. L. Wu, "Nano nickel oxide modified non-enzymatic glucose sensors with enhanced sensitivity through an electrochemical process strategy at high potential," Biosens Bioelectron, vol. 26, pp. 2948-2952, Feb 15 2011.
摘要: 本研究成功的在平面金電極上藉由電化學的方式沉積出具有樹枝狀奈米結構的薄膜,為了簡化製程,本研究進一步以市售之三極式拋棄電極為基材沉積奈米金仙人掌球電極,並藉由共價鍵結合(Covalent Bonding Method)的方式在奈米金仙人掌球電極上被覆一層葡萄糖氧化酵素(Glucose Oxidase,GOD),形成葡萄糖生物感測器,再以循環伏安法(CV)檢測溶液中葡萄糖的濃度。由於三維奈米金結構具有高生物相容性以及更大的表面積增加電子傳遞之效能,因此本研究之葡萄糖感測器具有低檢測電壓(0.06V)、高靈敏度(2.28 μA/mM.cm2)、迅速反應(1.8s)及與市售系統相容性佳等特點。
The study has successfully developed a thin film with branch-shaped nanostructure on flat gold electrode via electrochemical impedance spectroscopy (ESI). In order to facilitate our fabrication, a commercial disposable three-electrode chip is used to be a substrate to deposit gold nanoparticles. Moreover, Glucose oxidase (GOD) is coated on the selected electrode by covalent bonding method. After the fabrication, the glucose biosensor can measure the concentration of glucose by using cyclic voltammetry (CV). In addition, three-dimensional gold nanoparticles can represent high biocompatibility and larger surface area of reaction zone to increase the efficiency of conveying electrons. As a result, the glucose biosensor has several main advantages such as low requirement of voltage (0.06V), high sensibility (2.28μA/mM.cm2), quick response (1.8 sec) and its potential market.
其他識別: U0005-2307201215504400
Appears in Collections:機械工程學系所



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.