Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/2778
標題: UAV轉子引擎鰭片熱傳分析
Heat transfer analysis of the fins of UAV Wankel engine
作者: 劉士誠
Liu, Shih-Chen
關鍵字: 轉子引擎
rotary engine
鰭片
熱傳
fin
heat transfer
出版社: 機械工程學系所
引用: [1] D. Eiermann, R. Nuber, J. Breuer, M. Soimar & M. Gheorghiu, “An Experimental Approach for the Development of a small Spark Assisted Diesel Fueled Rotary Engine,” International Congress and Exposition, Detroit, Michigan, SAE Paper NO. 930683, 1993. [2] P. A Salanki & J. S. Wallace “Evaluation of the Hydrogen-Fueled Rotary Engine for Hybrid Vehicle Applications,” SAE International Congress and Exposition, Detroit, Michigan, February 26-29 SAE Paper NO. 960232, 1996. [3] K. M Pillai, A. J. Steve Mithran, V. K. William Grips, K. S. Kumar, U. K. Sinha, M. N. Varadarajan, J. J. Isaac & Y. V. S. Murthy, “Design and development of an indigenous 55 hp Wankel engine” Proceedings of the International Conference on Aerospace Science and Technology, Bangaloire, India, 26 - 28 June 2008 [4] M. Ohkubo, S. Tashima, R. Shimizu, S. Fuse & H. Ebino “Developed Technologies of the New Rotary Engine(Renesis),” 2004 SAE World Congress, Detroit, Michigan, SAE Paper NO. 2004-01-1790, 2004. [5] http://www.moller.com/files/Rotapac_Power_Module.pdf “Rotac power module” The Revolutionary Power Source for the Plug-in Hybrid Automobile 2009-05-19 [6] Jie Ma, R. Bowen, R. Allen & Hongzhong Gu, “Mathematical Simulation and Study of the Transient Performance of a Rotary Engine,” International Off-Highway & Powerplant Congress and Exposition, Milwaukee, Wisconsin, SAE Paper NO. 932455, 1993. [7] T. I.-P. Shih, H. J. Schock, H. L. Nguyen,J & J. D. Stegeman “Numerical Simulation of the Flowfield in a Motored Two-Dimensional Wankel Engine” Vol. 3, N0. 3, J. Propulsion AIAA, may-june 1987 [8] B. V Padmarajan “Numerical Modelling and Simulation of Rotary Engine” Cranfield University Thesis, 2004 [9] O. Badr, S. Naik, P. W. O''Callaghan & S. D. Probert “Wankel Engines as Steam Expanders: Design Considerations” Applied Energy 40 157-170,1991 [10] http://www.personal.utulsa.edu/~kenneth-weston/chapter7.pdf Chapter 7 “The Wankel Rotary Engine” 2009-05-19 [11] S. Raju & E. A. Willis “Computational Experience With a Three-Dimensional Rotary Engine Combustion Model” NASA Technical Memorandum 10310, 1990 [12] 郭崢,林其釗,阿布里提.阿布都拉 “微轉子發動機的三區準维模型燃燒計算研究”, 内燃機工程,2006 年4 月。 [13] M.S.Raju “Heat Transfer and Performance Characteristics of a Dual-Ignition Wankel Engine” SAE International Congress and Exposition, Detroit, Michigan February 24-28, SAE Paper NO. 920303, 1992. [14] D. A. Blank “ Hydrogen Combustion in a Novel Rotary DI-HCRI Engine with Low Heat Rejection” SAE International 2007 World Congress Detroit, Michigan April 16-19, SAE Paper NO. 2007-01。 [15] 李雪松,王尚勇,吳進軍,陳志平,郭建軍,楊青”基於Matlab/Simulink的柴油轉子發動機性能模擬研究” 機電產品開發與創新第20卷第5期 2007年9月。 [16] T. A. Bartrand & E. A. Willis “Rotary engine performance limits predicted by a zero-dimensional model” SAE International Congress and Exposition, Detroit, Michigan February 24-28, SAE Paper NO. 920301, 1992. [17] Y. Kenichi “Rotary Engine”, Published by Sankaido CO. Ltd 5-5-18, Hongo Bunkyo-ku, Tokyo, Japan, 1981. [18] H. L. Nguyen, H. E. Addy, T. H. Bond, C. M. Lee & K. S. Chun, “Performance and Efficiency Evaluation and Heat Release Study of an Outboard Marine Corporation Rotary Combustion Engine” NASA Technical Memorandum 89833,1987. [19] Hung Lee Nguyen “Performance and Combustion Characteristics of Direct-Injection Stratified-Charge Rotary Engines” NASA Technical Memorandum 100134,1990. [20] Chi M. Lee & H. J. Schock “Regressed Relations for Forced Convection Heat Transfer in a Direct Injection Stratified Charge Rotary Engine” NASA Technical Memorandum 100124,1988. [21] T. A. Bartrand & E. A. Willis “ Performance of a Supercharged Direct-Injection Stratified-Charge Rotary Combustion Engine” NASA Technical Memorandum 103105,1990. [22] T. A. Bartrand & E. A. Willis “Rotary Engine Performance Limits Predicted by a Zero-Dimensional Model” NASA Technical Memorandum 189129,1992. [23] M. Antonelli, R. Lensi & L. Martorano “Development and validation of a numerical model of a rotary steam engine for electric power micro generation using biomass” Department of Energetica, University of Pisa, Pisa, Italy,2007. [24] 李立君,尹澤勇,喬渭陽,劉志華,胡燕華 “汽油轉子發動機熱力過程數值模擬研究” Chinese Internal Combustion Engine Engineering,Vo1.27 No.1,Feb,2006。 [25] 李立君,唐狄毅,范靜 “直接喷射分層燃燒轉子發動機性能模擬研究”文章编號:1000-0909(2003)03-0227-06 西北工業大學航空動力與熱力工程系論文,陝西西安 710072,2003 [26] T. A. Bartrand & E. A. Willis “Rotary Engine Performance Computer Program( Rcemao and Rcemappc ) User’s guide ” NASA Contractor Report 191192 October 1993 [27] F. V. Bracco a & W. A. Sirignano “Theoretical Analysis of Wankel Engine Combustion” 1973, Vol: 7, pp. 109-123 Combustion Science and Technology, 1973 [28] 周乃君,裴海靈,張家奇,陳宏德 “轉子發動機熱力過程數學模型” 中南大學學報(自然科學版) 第39卷第2期 2008 年 4 月 [29] 李立君,尹澤勇,喬渭陽,劉志華,胡燕華“汽油轉子發動機燃燒過程模擬技術研究” Vo1.23 No.5,Trans actions of CSICE 内燃機學報, Feb,2005 [30] 馮俊宇“UAV Wankel引擎燃油噴射系統之設計與製作” 國立中興大學機械工程研究所碩士學位論文 12.2008 [31]郭奇亮“UAV轉子引擎熱傳特性分析與量測”國立中興大學機械工程研究所碩士學位論文 8.2008。 [32] http://commons.wikimedia.org/wiki/File:Wankel_Cycle.gif Wankel engine by Wikimedia
摘要: 本論文主旨在探討UAV轉子引擎鰭片的熱傳分析,透過理論模式與數值模擬計算,比較各類型鰭片散熱量的大小,並針對轉子引擎進行實際尺寸的分析。 本研究利用實驗量測的壓力變化來計算引擎在最大負載下的氣缸內溫度變化,並由氣缸內溫度變化來計算缸壁的工作溫度,以了解引擎的散熱片設計是否足夠將引擎的工作溫度限制在可接受的範圍。 本研究將整個引擎的外殼分割成三十六個區塊,分別計算各區塊的壁溫。從計算結果可得知,若要將缸壁溫度限制在200℃以下,使用平板型鰭片,則最大的鰭片長度需要3.46cm;若改使用三角形鰭片,在相同缸壁溫度下,最大的鰭片長度需要4.55cm。但使用三角形鰭片可以減少34%的鰭片重量。 本研究也發現,在不考慮區塊間的熱傳導現象時,所計算的缸壁溫度比考慮熱傳導的缸壁溫度高約29℃,顯示缸壁之間的熱傳導對於整個缸壁的熱傳分析來說,相當重要,不可忽略。 另外,本文也考慮在垂直鰭片之間增加橫向連結的鰭片,以建立網狀鰭片。計算結果發現網狀鰭片可以降低缸壁溫度約12℃,顯示網狀鰭片確實可以加強缸壁熱傳。
This study is to analyze the heat transfer performance of fins of a Wankel engine. Comparisons were made for two different types of fins with the calculation of theoretical model and numerical simulation for the actual dimension of a real Wankel engine. Temperature variations of burned gas inside the cylinder were obtained with the measured pressure data as well as the volume variations of the engine. The estimated gas temperature was then used to calculate the heat transfer rate inside the cylinder wall which was in turn used to find the required heat transfer coefficient outside the cylinder wall in order to maintain the wall temperature below a specified value. The whole engine case was divided into 36 parts in this study, and the averaged heating load was evaluated for each part with the estimated gas temperature. It was found that if the wall temperature was to be kept below 200℃, an array of fins is required to mount on the surface outside the cylinder wall. If rectangular fins were used, the longest one was 3.46cm. If triangle type fins were chosen, the longest one would be 4.55cm. It seems that triangle fins occupy more space. However, it can save 34% of weight due to less material is used. The effect of conduction along cylinder wall on the wall temperature was also investigated in this study. It was found that the maximum wall temperature would be 29℃lower if conduction was considered. Furthermore, a net type of fin was also considered in this study which was constructed by connecting vertical fins with horizontal fins on the top. It was found that the use of fin net may cool down the wall temperature about 12℃. It appears that the net type fin can enhance the heat transfer effort.
URI: http://hdl.handle.net/11455/2778
其他識別: U0005-3008201216383600
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-3008201216383600
Appears in Collections:機械工程學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.